浙教版初中数学第一章 二次函数单元测试卷(含答案)
- 格式:doc
- 大小:234.79 KB
- 文档页数:13
第1章综合测评卷一、选择题(每题3分,共30分)1.下列各式中,y 是x 的二次函数的是(C ).A.x 2+2y 2=2B.x=y 2C.3x 2-2y=1D.21x +2y-3=02.对于二次函数y=(x-1)2+3的图象,下列说法正确的是(C ).A.开口向下B.对称轴是直线x=-1C.顶点坐标是(1,3)D.与x 轴有两个交点(第3题)3.如图所示,一边靠墙(墙有足够长),其他三边用12m 长的篱笆围成一个矩形(ABCD)花园,这个矩形花园的最大面积是(C ).A.16m 2 B.12m 2 C.18m 2D.以上都不对4.如果抛物线y=mx 2+(m-3)x-m+2经过原点,那么m 的值等于(C ).A.0B.1C.2D.35.如图所示,直线x=1是抛物线y=ax 2+bx+c 的对称轴,那么有(D ).A.abc >0B.b <a+cC.a+b+c <0D.c <2b(第5题)(第6题)(第7题)(第8题)6.已知二次函数的图象(0≤x ≤3)如图所示.关于该函数在所给自变量的取值范围内,下列说法中正确的是(C ).A.有最小值0,有最大值3B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值7.如图所示,抛物线y=ax 2+bx+c 的顶点为点P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 由(-2,2)移动到(1,-1),此时抛物线与y 轴交于点A ′,则AA ′的长度为(A ).A.343 B.241 C.32D.38.如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度,他先测出门的宽度AB=8m ,然后用一根长4m 的小竹竿CD 竖直地接触地面和门的内壁,测得AC=1m ,则门高OE 为(B ).A.9mB.764m C.8.7m D.9.3m9.已知二次函数y=x 2+bx+c 与x 轴只有一个交点,且图象过A(x 1,m),B(x 1+n ,m)两点,则m ,n 满足的关系为(D ).A.m=21n B.m=41n C.m=21n 2D.m=41n 210.已知二次函数y=-(x-1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为(D ).A.25 B.2 C.23 D.21(第10题答图)【解析】二次函数y=-(x-1)2+5的大致图象如答图所示:①当m ≤0≤x ≤n <1时,当x=m 时y 取最小值,即2m=-(m-1)2+5,解得m=-2或m=2(舍去).当x=n 时y 取最大值,即2n=-(n-1)2+5,解得n=2或n=-2(均不合题意,舍去).②当m ≤0≤x ≤1≤n 时,当x=m 时y 取最小值,由①知m=-2.当x=1时y 取最大值,即2n=-(1-1)2+5,解得n=25,或x=n 时y 取最小值,x=1时y 取最大值,2m=-(n-1)2+5,n=25,∴m=811.∵m <0,∴此种情形不合题意.∴m+n=-2+25=21.故选D.二、填空题(每题4分,共24分)11.如果某个二次函数的图象经过平移后能与y=3x 2的图象重合,那么这个二次函数的表达式可以是y=3(x+2)2+3(只要写出一个).12.如图所示,抛物线y=ax 2+bx+c(a >0)的对称轴是过点(1,0)且平行于y 轴的直线.若点P(5,0)在抛物线上,则9a-3b+c 的值为.(第12题)(第13题)(第14题)(第15题)13.如图所示,抛物线y=ax 2+bx+c 与x 轴相交于点A ,B(m+2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c),则点A 的坐标是(-2,0).14.如图所示,将两个正方形并排组成矩形OABC ,OA 和OC 分别落在x 轴和y 轴的正半轴上.正方形EFMN 的边EF 落在线段CB 上,过点M ,N 的二次函数的图象也过矩形的顶点B ,C ,若三个正方形边长均为1,则此二次函数的表达式为y=-34x 2+38x+1.15.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图所示.这种工艺品的销售量y (件)关于降价x (元)的函数表达式为y=60+x.16.已知抛物线y=a(x-1)(x+a2)的图象与x 轴交于点A ,B ,与y 轴交于点C ,若△ABC 为等腰三角形,则a 的值是2或34或251 .三、解答题(共66分)17.(6分)已知抛物线的顶点坐标是(2,-3),且经过点(1,-25).(1)求这个抛物线的函数表达式,并作出这个函数的大致图象.(2)当x 在什么范围内时,y 随x 的增大而增大?当x 在什么范围内时,y 随x 的增大而减小?【答案】(1)设抛物线的函数表达式为y=a (x-2)2-3,把(1,-25)代入,得-25=a-3,即a=21.∴抛物线的函数表达式为y=21x 2-2x-1.图略.(2)∵抛物线对称轴为直线x=2,且a>0,∴当x ≥2时,y 随x 的增大而增大;当x ≤2时,y 随x 的增大而减小.18.(8分)今有网球从斜坡点O 处抛出,网球的运动轨迹是抛物线y=4x-21x 2的图象的一段,斜坡的截线OA 是一次函数y=21x 的图象的一段,建立如图所示的平面直角坐标系.(第18题)(1)求网球抛出的最高点的坐标.(2)求网球在斜坡上的落点A 的竖直高度.【答案】(1)∵y=4x-21x 2=-21(x-4)2+8,∴网球抛出的最高点的坐标为(4,8).(2)由题意得4x-21x 2=21x,解得x=0或x=7.当x=7时,y=21×7=27.∴网球在斜坡的落点A的垂直高度为27.19.(8分)若直线y=x+3与二次函数y=-x 2+2x+3的图象交于A ,B 两点,(1)求A ,B 两点的坐标.(2)求△OAB 的面积.(3)x 为何值时,一次函数的值大于二次函数的值?【答案】(1)由题意得⎩⎨⎧++-=+=3232x x y x y ,解得⎩⎨⎧==30y x 或⎩⎨⎧==41y x .∴A ,B 两点的坐标分别为(0,3),(1,4).(2)∵A ,B 两点的坐标是(0,3),(1,4),∴OA=3,OA 边上的高线长是1.∴S △OAB =21×3×1=23.(3)当x <0或x >1时,一次函数的值大于二次函数的值.20.(10分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫的距离为x(km),乘坐地铁的时间y 1(min)是关于x 的一次函数,其关系如下表所示:地铁站A B C D E x(km)89111.513y 1(min)182222528(1)求y 1关于x 的函数表达式.(2)李华骑单车的时间也受x 的影响,其关系可以用y 2=21x 2-11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【答案】(1)设y 1=kx+b ,将(8,18),(9,20)代入,得⎩⎨⎧=+=+209188b k b k ,解得⎩⎨⎧==22b k .∴y 1关于x 的函数表达式为y 1=2x+2.(2)设李华从文化宫回到家所需的时间为y.则y=y 1+y 2=2x+2+21x 2-11x+78=21x 2-9x+80.∴当x=9时,y 有最小值,y min =2149802142⨯-⨯⨯=39.5.∴李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5min.21.(10分)已知二次函数y=ax 2+bx+21(a >0,b <0)的图象与x 轴只有一个公共点A.(1)当a=21时,求点A 的坐标.(2)过点A 的直线y=x+k 与二次函数的图象相交于另一点B ,当b ≥-1时,求点B 的横坐标m 的取值范围.【答案】(1)∵二次函数y=ax 2+bx+21(a >0,b <0)的图象与x 轴只有一个公共点A ,∴Δ=b 2-4a×21=b 2-2a=0.∵a=21,∴b 2=1.∵b <0,∴b=-1.∴二次函数的表达式为y=21x 2-x+21.当y=0时,21x 2-x+21=0,解得x 1=x 2=1,∴A(1,0).(2)∵b 2=2a ,∴a=21b 2,∴y=21b 2x 2+bx+21=21(bx+1)2.当y=0时,x=-b 1,∴A (-b 1,0).将点A (-b 1,0)代入y=x+k ,得k=b 1.由⎪⎪⎩⎪⎪⎨⎧+=++=b x y bx x b y 1212122消去y 得21b 2x 2+(b-1)x+21-b 1=0,解得x 1=-b 1,x2=22b b -.∵点A 的横坐标为-b 1,∴点B 的横坐标m=22b b -.∴m=22b b -=2(21b -b 21)=2(b 1-41)2-81.∵2>0,∴当b 1<41时,m 随b1的增大而减小.∵-1≤b <0,∴b 1≤-1.∴m ≥2×(-1-41)2-81=3,即m ≥3.22.(12分)设函数y=kx 2+(2k+1)x+1(k 为实数).(1)写出符合条件的两个函数,使它们的图象不全是抛物线,并在同一平面直角坐标系内,用描点法画出这两个函数的图象.(2)根据所画的函数图象,提出一个对任意实数k ,函数的图象都具有的特征的猜想,并给予证明.(3)对任意负实数k ,当x<m 时,y 随着x 的增大而增大,试求出m 的一个值.【答案】(1)如:y=x+1,y=x 2+3x+1,图略.(2)不论k 取何值,函数y=kx 2+(2k+1)x+1的图象必过定点(0,1),(-2,-1),且与x 轴至少有1个交点.证明如下:由y=kx 2+(2k+1)x+1,得k(x 2+2x)+(x -y+1)=0.当x 2+2x=0,x -y+1=0,即x=0,y=1,或x=-2,y=-1时,上式对任意实数k 都成立,∴函数的图象必过定点(0,1),(-2,-1).∵当k=0时,函数y=x+1的图象与x 轴有一个交点;当k ≠0时,Δ=(2k+1)2-4k=4k 2+1>0,函数图象与x 轴有两个交点,∴函数y=kx 2+(2k+1)x+1的图象与x 轴至少有1个交点.(3)只要写出的m ≤-1就可以.∵k<0,∴函数y=kx 2+(2k+1)x+1的图象在对称轴直线x=-k k 212+的左侧,y 随x 的增大而增大.由题意得m ≤-k k 212+.∵当k<0时,k k 212+=-1-k21>-1.∴m ≤-1.23.(12分)如图1所示,点P(m ,n)是抛物线y=41x 2-1上任意一点,l 是过点(0,-2)且与x 轴平行的直线,过点P 作直线PH ⊥l ,垂足为点H .【特例探究】(1)当m=0时,OP=1,PH=1;当m=4时,OP=5,PH=5.【猜想验证】(2)对任意m ,n ,猜想OP 与PH 的大小关系,并证明你的猜想.【拓展应用】(3)如图2所示,图1中的抛物线y=41x 2-1变成y=x 2-4x+3,直线l 变成y=m(m <-1).已知抛物线y=x 2-4x+3的顶点为点M ,交x 轴于A ,B 两点,且点B 坐标为(3,0),N 是对称轴上的一点,直线y=m(m <-1)与对称轴交于点C ,若对于抛物线上每一点都满足:该点到直线y=m 的距离等于该点到点N 的距离.①用含m 的代数式表示MC ,MN 及GN 的长,并写出相应的解答过程.②求m 的值及点N 的坐标.(第23题)【答案】(1)1,1,5,5.(2)猜想:OP=PH.证明:设PH 交x 轴于点Q ∵P 在y=41x 2-1上,∴P (m ,41m 2-1),PQ=∣41m 2-1∣,OQ=|m|.∵△OPQ 是直角三角形,∴OP=22OQ PQ +=222141m m +⎪⎭⎫ ⎝⎛+=22141⎪⎭⎫ ⎝⎛+m =14m 2+1.∵PH=yp-(-2)=(41m 2-1)-(-2)=41m 2+1,∴OP=PH.(3)①∵M (2,-1),∴CM=MN=-m-1.GN=CG-CM-MN=-m-2(-m-1)=2+m.②点B 的坐标是(3,0),BG=1,GN=2+m.由勾股定理得BN=22GN BG +=()2221m ++.∵对于抛物线上每一点都有:该点到直线y=m 的距离等于该点到点N 的距离,∴1+(2+m )2=(-m )2,解得m=-45.∵GN=2+m=2-45=43,∴N (2,-43).。
二次函数单元测试卷一、选择题(每题3分,共30分)1.下列各式中,y是x的二次函数的是( )A.y=1x2B.y=x2+1x+1C.y=2x2−1D.y=x2−12.一个二次函数图象的顶点坐标是(2,4),且过另一点(0,−4),则这个二次函数的解析式为( )A.y=−2(x+2)2+4B.y=2(x+2)2−4C.y=−2(x−2)2+4D.y=2(x−2)2−43.已知A(−1,y1),B(1,y2),C(3,y3)三点都在抛物线y=x2−3x+m上,则y1、y2、y3的大小关系为( )A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y2<y14.将抛物线y=3x2+2先向左平移2个单位长度,再向下平移3个单位长度,则得到的抛物线的解析式为( )A.y=3(x−2)2−1B.y=3(x−2)2+5C.y=3(x+2)2−1D.y=3(x+2)2+55.在同一直角坐标系中,函数y=ax2+b与y=ax+b(a,b都不为0)的图象的相对位置可以是( )A.B.C.D.6.若m<n<0,且关于x的方程a x2−2ax+3−m=0(a<0)的解为x1,x2(x1<x2),关于x的方程a x2−2ax+3−n=0(a<0)的解为x3,x4(x3<x4).则下列结论正确的是( )A.x3<x1<x2<x4B.x1<x3<x4<x2C.x1<x2<x3<x4D.x3<x4<x1<x27.已知二次函数y=a x2+bx+c满足以下三个条件:①b2a>4c,②a−b+c<0,③b<c,则它的图象可能是( )A.B.C.D.8.小明在解二次函数y=a x2+bx+c时,只抄对了a=1,b=4,求得图象过点(−1,0).他核对时,发现所抄的c比原来的c值大2.则抛物线与x轴交点的情况是( )A.只有一个交点B.有两个交点C.没有交点D.不确定9.已知二次函数y=x2−bx+1,当−32≤x≤12时,函数y有最小值12,则b的值为( )A.−2或32B.−116或32C.±2D.−2或−11610.如图,把二次函数y=a x2+bx+c(a≠0)的图象在x轴上方的部分沿着x轴翻折,得到的新函数叫做y=a x2+bx+c(a≠0)的“陷阱”函数.小明同学画出了y=a x2+bx+c(a≠0)的“陷阱”函数的图象,如图所示并写出了关于该函数的4个结论,其中正确结论的个数为( )①图象具有对称性,对称轴是直线x=1;②由图象得a=1,b=−2,c=−3;③该“陷阱”函数与y轴交点坐标为(0,−3);④y=−a x2−bx−c(a≠0)的“陷阱”函数与y=a x2+bx+c(a≠0)的“陷阱”函数的图象是完全相同的.A.1B.2C.3D.4二、填空题(每题4分,共24分)11.若y=(m2+m)x m2+1−x+3是关于x的二次函数,则m= .12.如图所示,某大桥有一段抛物线形的拱梁,抛物线的解析式为y=ax2+bx.小强骑自行车从拱梁一端沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10 s时和26 s时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需 s. 13.二次函数y=ax2+bx+c的图象与x轴交于A,B两点,顶点为C,其中点A,C坐标如图所示,则一元二次方程ax2+bx+c=0的根是 第12题图第13题图第16题图14.若把二次函数y=x2−2x−2化为y=(x−ℎ)2+k的形式,其中ℎ,k为常数,则ℎ+k= .15.y关于x的二次函数y=a x2+a2,在−1≤x≤1时有最大值6,则2a= .16.如图,在平面直角坐标系中,抛物线y=1x2−3x与x轴的正半轴交于点E.矩形ABCD2的边AB在线段OE上,点C、D在抛物线上,则矩形ABCD周长的最大值为 .三、综合题(17-20、22每题6分,21、23每题8分,共46分)17.已知点M为二次函数y=−(x−m)2+4m+1图象的顶点,直线y=kx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由;(2)如图,若二次函数图象也经过点A,B,且kx+5>−(x−m)2+4m+1,根据图象,直接写出x的取值范围.18.如图,二次函数y=a x2+2ax+c的图象与x轴交于A,B两点(点A在点B的左侧),与y轴正半轴交于点C,且OA=OC=3.(1)求二次函数及直线AC的解析式.(2)P是抛物线上一点,且在x轴上方,若∠ABP=45°,求点P的坐标.19.为了振兴乡村经济,增加村民收入,某村委会干部带领村民把一片坡地改造后种植了优质葡萄,今年正式上市销售,并在网上直播推销优质葡萄.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为y={mx−76m(1≤x<20,x为正整数),n(20≤x≤30,x为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售葡萄的成本是18元/千克,每天的利润是W元.(1)m= ,n= ;(2)销售优质葡萄第几天时,当天的利润最大?最大利润是多少?20.如图,△ABC中,AC=BC,∠ACB=90°,A(−2,0),C(6,0),反比例函数y=kx (k≠0,x>0)的图象与AB交于点D(m,4),与BC交于点E.(1)求m,k的值;(2)点P为反比例函数y=kx(k≠0,x>0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM∥AB,交y轴于点M,过点P作PN∥x轴,交BC于点N,连接MN,求△PMN面积的最大值,并求出此时点P的坐标.21.如图,已知二次函数y=a x2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=a x2+2x+c的表达式;(2)连接PO,PC,并把ΔPOC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.22.根据以下素材,探索完成任务.如何设计跳长绳方案素材1图1是集体跳长绳比赛,比赛时,各队跳绳10人,摇绳2人,共计12人.图2是绳甩到最高处时的示意图,可以近似的看作一条抛物线,正在甩绳的甲、乙两位队员拿绳的手间距6米,到地面的距离均为1米,绳子最高点距离地面2.5米.素材2某队跳绳成员有6名男生和4名女生,男生身高1.70米至1.80米,女生身高1.66米至1.68米.跳长绳比赛时,可以采用一路纵队或两路纵队并排的方式安排队员位置,但为了保证安全,人与人之间距离至少0.5米.问题解决任务1确定长绳形状在图2中建立合适的直角坐标系,并求出抛物线的函数表达式.任务2探究站队方式当该队以一路纵队的方式跳绳时,绳子能否顺利的甩过所有队员的头顶?任务3拟定位置方案为了更顺利的完成跳绳,现按中间高两边低的方式居中安排站位.请在你所建立的坐标系中,求出左边第一位跳绳队员横坐标的最大取值范围.23.如图,对称轴为直线x=−1的抛物线y=a x2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(−3,0),且点(2,5)在抛物线y=a x2+bx+c上.(1)求抛物线的解析式;(2)点C为抛物线与y轴的交点;①点P在抛物线上,且S△POC=4S△BOC,求点P点坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.答案解析部分1.【答案】C2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】B9.【答案】A10.【答案】C11.【答案】112.【答案】3613.【答案】x1=-2,x2=114.【答案】-215.【答案】2或−616.【答案】1317.【答案】(1)解:点M在直线y=4x+1上,∵y=−(x−m)2+4m+1,∴点M坐标为(m,4m+1),把x=m代入y=4x+1上得y=4m+1,∴点M(m,4m+1)在直线y=4x+1上;(2)解:把x=0代入y=kx+5,可得y=5,∴点B坐标为(0,5),把(0,5)代入y=−(x−m)2+4m+1,可得5=−m2+4m+1,解得m1=m2=2,∴y=−(x−2)2+9,把y=0代入y=−(x−2)2+9,可得0=−(x−2)2+9,解得x1=−1,x2=5,∵点A在x轴正半轴上,∴点A坐标为(5,0),∴x<0或x>5时,kx+5>−(x−m)2+4m+1.18.【答案】(1)解:∵OA=OC=3,∴点A(−3,0),C(0,3),∴{9a−6a+c=0c=3,解得{a=−1c=3,∴二次函数的解析式为y=−x2−2x+3,设直线AC的解析式为y=kx+b(k≠0),将点A(−3,0),C(0,3)代入,得{−3k+b=0b=3,解得{k=1b=3,∴直线AC的解析式为y=x+3;(2)解:如图,过点B作BP⊥AC交抛物线于点P,∵OA=OC,OA⊥OC,∴∠CAB=45°,∴∠ABP=45°,∴直线PB可以看作由直线y=-x向右平移得到,∴设PB的解析式为y=−x+m,∵二次函数的表达式为y=−x2−2x+3,令y=0,即−x2−2x+3=0,解得x1=−3,x2=1,∴点B(1,0),代入y=−x+m,得m=1,∴PB的解析式为y=−x+1,联立得{y=−x2−2x+3y=−x+1,解得{x=1y=0或{x=−2 y=3,∴点P的坐标为(−2,3).19.【答案】(1)−12;25(2)解:由(1)知第x天的销售量为20+4(x−1)=(4x+16)千克.当1≤x<20时,W=(4x+16)(−12x+38−18)=−2x2+72x+320=−2(x−18)2+968,∴当x=18时,W取得最大值,最大值为968.当20≤x≤30时,W=(4x+16)(25−18)=28x+112.∵a=28>0,∴W随x的增大而增大,∴W最大=28×30+112=952.∵968>952,∴当x=18时,W最大=968.答:销售优质葡萄第18天时,当天的利润最大,最大利润是968元.20.【答案】(1)解:∵A(−2,0),C(6,0),∴AC=8.又∵AC=BC,∴BC=8.∵∠ACB=90°,∴点B(6,8).设直线AB的函数表达式为y=ax+b,将A(−2,0),B(6,8)代入y=ax+b,得{a=1,b=2.∴直线AB的函数表达式为y=x+2.将点D(m,4)代入y=x+2,得m=2.∴D(2,4).将D(2,4)代入y=kx,得k=8.(2)解:延长NP交y轴于点Q,交AB于点L.∵AC=BC,∠BCA=90°,∴∠BAC=45°.∵PN∥x轴,∴∠BLN=∠BAC=45°,∠NQM=90°.∵AB∥MP,∴∠MPL=∠BLP=45°,∴∠QMP=∠QPM=45°,∴QM=QP.设点P 的坐标为(t ,8t),(2<t <6),则PQ =t ,PN =6−t .∴MQ =PQ =t .∴S △PMN =12⋅PN ⋅MQ =12⋅(6−t)⋅t =−12(t−3)2+92.∴当t =3时,S △PMN 有最大值92,此时P(3,83).21.【答案】(1)解:将点B 和点C 的坐标代入 y =a x 2+2x +c ,得 {c =39a +6+c =0 ,解得 a =−1 , c =3 .∴ 该二次函数的表达式为 y =−x 2+2x +3 .(2)解:若四边形POP′C 是菱形,则点P 在线段CO 的垂直平分线上;如图,连接PP′,则PE ⊥CO ,垂足为E ,∵ C (0,3),∴ E(0, 32 ),∴ 点P 的纵坐标等于 32 .∴−x 2+2x +3=32 ,解得 x 1=2+102, x 2=2−102(不合题意,舍去),∴ 点P 的坐标为( 2+102, 32 ).(3)解:过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (m , −m 2+2m +3 ),设直线BC 的表达式为 y =kx +3 ,则 3k +3=0 , 解得 k =−1 .∴直线BC 的表达式为 y =−x +3 .∴Q 点的坐标为(m , −m +3 ),∴QP =−m 2+3m .当 −x 2+2x +3=0 ,解得 x 1=−1,x 2=3 ,∴ AO=1,AB=4,∴ S 四边形ABPC =S △ABC +S △CPQ +S △BPQ= 12AB ⋅OC +12QP ⋅OF +12QP ⋅FB = 12×4×3+12(−m 2+3m)×3当 m =32时,四边形ABPC 的面积最大.此时P 点的坐标为 (32,154) ,四边形ABPC 的面积的最大值为 758.22.【答案】解:任务一:以左边摇绳人与地面的交点为原点,地面所在直线为 x 轴,建立直角坐标系,如图:由已知可得, (0,1) , (6,1) 在抛物线上,且抛物线顶点的纵坐标为 2.5 ,设抛物线解析式为 y =a x 2+bx +c ,∴{c =136a +6b +c =14ac−b 24a=52 ,解得 {a =−16b =1c =1,∴抛物线的函数解析式为 y =−16x 2+x +1 ;任务二:∵y =−16x 2+x +1=−16(x−3)2+52,∴抛物线的对称轴为直线 x =3 ,10 名同学,以直线 x =3 为对称轴,分布在对称轴两侧,男同学站中间,女同学站两边,对称轴左侧的 3 位男同学所在位置横坐标分布是 3−0.5×12=114 , 114−0.5=94和 94−0.5=74,当 x =74 时, y =−16×(74−3)2+52=21596≈2.24>1.8 ,∴绳子能顺利的甩过男队员的头顶,同理当 x =34 时, y =−16×(34−3)2+52=5332≈1.656<1.66 ,∴绳子不能顺利的甩过女队员的头顶;∴绳子不能顺利的甩过所有队员的头顶;任务三:两路并排,一排 5 人,当 y =1.66 时, −16x 2+x +1=1.66 ,解得 x =3+3145 或 x =3−3145,但第一位跳绳队员横坐标需不大于 2 (否则第二、三位队员的间距不够 0.5 米)∴3−3145<x ≤2 .23.【答案】(1)解:∵抛物线的对称轴为直线x =−1,又∵点A(−3,0)与(2,5)在抛物线上,∴{9a−3b +c =04a +2b +c =5−b 2a=−1,解得{a =1b =2c =−3,∴抛物线的解析式为y =x 2+2x−3;(2)解:①由(1)知,二次函数的解析式为y =x 2+2x−3,∴抛物线与y 轴的交点C 的坐标为(0,−3),与x 轴的另一交点为B(1,0),则OC =3,OB =1,设P 点坐标为(x ,x 2+2x−3),∵S △POC =4S △BOC ,∴12×3×|x|=4×12×3×1,∴|x|=4,则x =±4,当x =4时,x 2+2x−3=16+8−3=21,当x =−4时,x 2+2x−3=16−8−3=5,∴点P 的坐标为(4,21)或(−4,5);②如图,设直线AC 的解析式为y =kx +t ,将A(−3,0),C(0,−3)代入得{−3k +t =0t =−3,解得{k =−1t =−3,∴直线AC 的解析式为y =−x−3,设Q 点坐标为(x ,−x−3),−3≤x ≤0,则D 点坐标为(x ,x 2+2x−3),∴QD =(−x−3)−(x 2+2x−3)=−x 2−3x =−(x +32)2+94,∴当x =−32时,线段QD 的长度有最大值94.。
第一章二次函数姓名:_______________班级:_______________学号:_______________(总分:100分考试时间:60分钟考试难度:0.60)一、填空题(每空3分,共15分)1、二次函数的最小值是.2、如图为长方形时钟钟面示意图,时钟的中心在长方形对角线的交点上,长方形的宽为20厘米,钟面数字2在长方形的顶点处,则长方形的长为_________厘米。
(第2题图)(第5题图)3、将抛物线向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为。
4、自由下落物体的高度(米)与下落的时间(秒)的关系为.现有一铁球从离地面米高的建筑物的顶部作自由下落,到达地面需要的时间是秒.5、已知二次函数()与一次函数的图象相交于点A(-2,4),B(8,2)(如图所示),则能使成立的的取值范围是.二、选择题(每题3分,共30分)6、正比例函数的图像经过二、四象限,则抛物线的大致图像是()7、函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1 B.2 C.3 D.4(第7题图)(第8题图)8、如图所示,二次函数的图像经过点(-1,2),且与轴交点的横坐标分别为,,其中,,下列结论:①;②;③;④.其中正确的有( )A.1个B.2个C.3个D.4个9、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=a,x2=b(a<b),则二次函数y=x2+mx+n中,当y<0时,x的取值范围是()A.x<a B.x>b C.a<x<b D.x<a或x>b10、某公园草坪的防护栏是由100段形状相同的抛物线形组成的.为了牢固起见,每段护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A.1.6 m B.100 m C.160 m D.200 m(第10题图)(第11题图)11、如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB以相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长()A.0.4米 B. 0.16米 C. 0.2米 D.0.24米12、绿茵场上,足球运动员将球踢出,球的飞行高度(米)与前行距离(米)之间的关系为:,那么当足球落地时距离原来的位置有( )A.25米B.35米C.45米D.50米13、已知M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x ()A. 有最小值,且最小值是B. 有最大值,且最大值是C. 有最大值,且最大值是D. 有最小值,且最小值是14、某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米(第14题图)(第15题图)15、我们在跳绳时,绳甩到最高处的形状可近似地看成是抛物线.如图2236所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m,距地面均为1 m,学生丙、丁分别站在距甲拿绳的手水平距离1 m,2.5 m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m,则学生丁的身高为()A.1.5 m B.1.625 m C.1.66 m D.1.67 m三、解答题(每题11分,共55分)16、已知:在Rt△ABO中,∠OAB=90°,∠BOA=30°,AB=2,若以O为坐标原点,OA所在直线为轴,建立如图所示平面直角坐标系,点B在第一象限内,将Rt△ABO沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线经过C、A两点,求此抛物线的解析式;(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P 作轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为很等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.17、如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)。
浙教版九年级上册数学二次函数一、单选题1.二次函数得顶点坐标是()A.B.C.D.2.二次函数y=x2﹣6x﹣4的顶点坐标为()A.(3,5)B.(3,﹣13)C.(3,﹣5)D.(3,13)3.抛物线经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①;②>;③若n>m>0,则时的函数值小于时的函数值;④点(,0)一定在此抛物线上.其中正确结论的个数是()A.4个B.3个C.2个D.1个4.如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),以下结论:①2a+b>0;②a+c<0;③4a+2b+c>0;④b2﹣5a2>2ac.其中正确的是()A.①②B.③④C.②③④D.①②③④5.飞机着陆后滑行的距离s(米)关于滑行的时间t(米)的函数解析式是s=60t﹣1.5t2,则飞机着陆后滑行到停止下列,滑行的距离为()A.500米B.600米C.700米D.800米6.已知二次函数(其中m>0),下列说法正确的是()A.当x>2时,都有y随着x的增大而增大B.当x<3时,都有y随着x的增大而减小C.若x<n时,都有y随着x的增大而减小,则D.若x<n时,都有y随着x的增大而减小,则7.已知:二次函数,其中正确的个数为()①当时,y随x的增大而减小;②若图象与x轴有交点,则;③当时,不等式的解集是;④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则 .A.1个B.2个C.3个D.4个8.二次函数的图象如图所示,则点在()A.第一象限B.第二象限C.第三象限D.第四象限9.新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.10.如图,二次函数(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②>4a,③0<b<1,④当x>﹣1时,y>0,其中正确结论的个数是()A.4个B.3个C.2个D.1个11.已知直线y=kx+b经过点A(0,6),且平行于直线y=-2x.(1)求该函数的解析式,并画出它的图象;(2)如果这条直线经过点P(m,2),求m的值;(3)若O为坐标原点,求直线OP的解析式;(4)求直线y=kx+b和直线OP与坐标轴所围成的图形的面积.。
第一章 二次函数单元测试卷(本试卷共三大题,26个小题 试卷分值:150分 考试时间:120分钟) 姓名: 班级: 得分:一、填空题(本题有10个小题,每小题4分,共40分) 1.抛物线2(1)3y x =-+的对称轴是( ) A .直线1x =B .直线3x =C .直线1x =-D .直线3x =-2.用配方法将2611y x x =-+化成2()y a x h k =-+的形式为 ( ) A .2(3)2y x =++ B .2(3)2y x =-- C .2(6)2y x =-- D .2(3)2y x =-+3.若二次函数c x x y ++=22配方后为7)(2++=h x y ,则c 、h 的值分别为( ) A .8、-1 B .8、1 C .6、-1 D .6、1 4.二次函数y =2(x -1)2+3的图像的顶点坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)5.已知二次函数2y 3=-+x x m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x的一元二次方程230-+=x x m 的两实数根是( )A .x 1=1,x 2=-2B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=3 6.二次函数2(1)2y x =-+的最小值是( ) A .2-B .2C .1-D .17.抛物线24y x x =-的对称轴是 ( ) A .x =-2B .x =4C .x =2D .x =-48.已知二次函数y =2(x -3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x =-3;③其图象顶点坐标为(3,-1);④当x <3,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个⑤a +b >m (am +b )(m ≠1),其中结论正确的有( )A . ③④B . ③⑤C . ③④⑤D . ②③④⑤ 10.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则正比例函数y =(b +c )x 的图象与反比例函数的图象在同一坐标系中大致是( )二、认真填一填 (本题有8个小题, 每小题4分, 共32分) 11.抛物线22(1)2y x =-++的顶点的坐标是12.进价为30元/件的商品,当售价为40元/件时,每天可销售40件,售价每涨1元,每天少销售1件,当售价为 元时每天销售该商品获得利润最大,最大利润是 ___________元.13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为y =-112(x -4)2+3,由此可知铅球推出的距离是________m.14.请你写出一个抛物线的表达式,此抛物线满足对称轴是y 轴,且在y 轴的左侧部分是上升的,那么这个抛物线表达式可以是 .15.将抛物线y =(x +2)2-3的图像向上平移5个单位,得到函数解析式为 . 16.若函数y =a (x -h )2+k 的图象经过原点,最小值为8,且形状与抛物线y =-2x 2-2x +3相17.周长为16cm 的矩形的最大面积为____,此时矩形边长为____,实际上此时矩形是 18.如图,抛物线y =ax 2+1与双曲线y =xm的交点A 的横坐标是2,则关于x 的不等式xm+ax 2+1<0的解集是 .三、解答题(本题有8个小题,共78分.解答应写出文字说明,证明过程或推演步骤.) 19.(6分)已知抛物线c bx x y ++=2经过点(1,-4)和(-1,2).求抛物线解析式.20.(8分)如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.21.(8分)某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价1元,其销量就减少20件。
九年级上册数学单元测试卷-第1章二次函数-浙教版(含答案)一、单选题(共15题,共计45分)1、二次函数,当时,y的取值范围为()A. B. C. D.2、把抛物线y=x2向下平移2个单位长度,所得抛物线是()A. y=(x+2)2B. y=(x-2)2C. y=x2-2D. y =x2+23、已知二次函数y=a(x+2)2+3(a<0)的图象如图所示,则以下结论:①当x>﹣2时,y随x的增大而增大;②不论a为任何负数,该二次函数的最大值总是3;③当a=﹣1时,抛物线必过原点;④该抛物线和x轴总有两个公共点.其中正确结论是()A.①②B.②③C.②④D.①④4、在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点(1,2),(5,3),则下列说法正确的是()①抛物线与y轴有交点②若抛物线经过点(2,2),则抛物线的开口向上③抛物线的对称轴不可能是x=3④若抛物线的对称轴是x=4,则抛物线与x轴有交点A.①②③④B.①②③C.①③④D.②④5、已知二次函数y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四个命题,则一定正确命题的序号是()①x=1是二次方程ax2+bx+c=0的一个实数根;②二次函数y=ax2+bx+c的开口向下;③二次函数y=ax2+bx+c的对称轴在y轴的左侧;④不等式4a+2b+c>0一定成立.()A.①②B.①③C.①④D.③④6、如图,二次函数y=ax2+bx+c的图象与y轴负半轴相交,其顶点为(, -1)下列结论:①ac<0;②a+b+c<0;③a-b+c<0;④a+b=0;⑤b2=4ac+4a.其中正确的结论有( )A.1个B.2个C.3个D.4个7、二次函数y=ax2+bx+c的图象如图,则下列结论正确的是()A.b>0,c>0,Δ>0B.b<0,c<0,Δ>0C.b>0,c<0,Δ<0D.b<0,c<0,Δ<08、已知(0,y1),(,y2),(3,y3)是抛物线y=ax2﹣4ax+1(a是常数,且a<0)上的点,则()A.y1>y2>y3B.y3>y2>y1C.y2>y3>y1D.y2>y1>y39、抛物线y= x2的顶点坐标是( )A.(0,)B.(0,0)C.(0,)D.(1,)10、把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是()A. B. C.D.11、在二次函数y=ax2+bx+c,x与y的部分对应值如下表:x …﹣2 0 2 3 …y …8 0 0 3 …则下列说法:①图象经过原点;②图象开口向下;③图象经过点(﹣1,3);④当x>0时,y随x的增大而增大;⑤方程ax2+bx+c=0有两个不相等的实数根.其中正确的是()A.①②③B.①③⑤C.①③④D.①④⑤12、在平面直角坐标系内,把抛物线y=(x﹣1)2+3向下平移2个单位,那么所得抛物线的解析式是()A.y=(x﹣3)2B.y=(x+1)2C.y=(x﹣1)2+5D.y=(x﹣1)2+113、在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A. B. C. D.14、二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A.x<﹣1B.x>3C.﹣1<x<3D.x<﹣1或x>315、下列函数中,是二次函数的是()A. B. C. D.二、填空题(共10题,共计30分)16、已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c=________.17、已知,关于x的函数图象如图所示,当y<0时,自变量x的取值范围是________.18、抛物线y=2(x﹣3)2+1先向左平移1个单位,再向上平移2个单位,得到抛物线________19、一位篮球运动员在距离篮圈中心水平距离处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为时,达到最大高度,然后准确落入篮筐内.已知篮圈中心距离地面高度为,在如图所示的平面直角坐标系中,则此抛物线的解析式为________.20、已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而减小,且-4≤x≤1时,y的最大值为7,则a的值为 ________21、将抛物线向下平移三个单位,则抛物线的解析式为________.22、如图,已知经过原点的抛物线y﹣ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:①ab>0,②a+b+c>0,③当﹣2<x<0时,y<0,正确的结论是________.23、已知二次函数( )的图象如上图所示,给出4个结论:①;②;③;④.其中正确的是________ (把正确结论的序号都填上).24、如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=________.</p>25、已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是________.三、解答题(共5题,共计25分)26、已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴相交于A、B两点,且AB=2,求m的值.27、已知二次函数y=2x2+4x﹣6,求该抛物线的顶点坐标.28、某汽车的行驶路程y(m)与行驶时间x(s)之间的函数表达式为y=3x+x2. y是x 的二次函数吗?求汽车行驶60s的路程.29、若z=3x(3y﹣x)﹣(4x﹣3y)(x+3y)(1)若x,y均为整数,求证:当x是3的倍数时,z能被9整除;(2)若y=x+1,求z的最小值.30、在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.参考答案一、单选题(共15题,共计45分)1、D2、C3、C4、A5、C7、C8、C9、B10、D11、B12、D13、D14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
第1章二次函数数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A. B. C. D.2、关于抛物线y=x2+6x﹣8,下列选项结论正确的是()A.开口向下B.抛物线过点(0,8)C.抛物线与x轴有两个交点 D.对称轴是直线x=33、二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1D.抛物线与x轴有两个交点4、将抛物线y=-x2向左平移2个单位后,得到的抛物线的解析式是()A. B. C. D.5、已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x …﹣1y …﹣31则方程ax2+bx+c=0的正根介于()A.3与4之间B.2与3之间C.1与2之间 D.0与1之间6、若对任意实数x,二次函数的值总是非负数,则的取值范围是()A. B. C. D.7、若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为4D.抛物线与x轴的交点为(﹣1,0),(3,0)8、若二次函数y=x2+bx+c的图象的对称轴是经过点(2,0)且平行于y轴的直线,且过点(5,5),则关于x的方程x2+bx+c=5的解为()A.x1=0或x2=4 B.x1=1或x2=5 C.x1=﹣1或 x2=5 D.x1=1或x2=﹣59、如图,在平面直角坐标系中,抛物线y=ax2+bx+5经过A(2,5),B(﹣1,2)两点,若点C在该抛物线上,则C点的坐标可能是()A.(﹣2,0)B.(0.5,6.5)C.(3,2)D.(2,2)10、如图,在平面直角坐标系中2条直线为l1:y=-3x+3,2:y=-3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:①a-b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形=5.其中正确的个数有()ABCDA.5B.4C.3D.211、在平面直角坐标系内,把抛物线y=(x﹣1)2+3向下平移2个单位,那么所得抛物线的解析式是()A.y=(x﹣3)2B.y=(x+1)2C.y=(x﹣1)2+5D.y=(x﹣1)2+112、如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤13、若将抛物线向左平移3个单位,再向下平移2个单位,则所得新的抛物线解析式是A. B. C.D.14、如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴下方且横坐标小于3,则下列结论:①a﹣b+c<0;②2a+b+c>0;③x(αx+b)≤a+b;④a>﹣1.其中正确的有()A. 4个B.3个C.2个D.1个15、若点在抛物线上,则的值()A.2021B.2020C.2019D.2018二、填空题(共10题,共计30分)16、已知二次函数y=ax2+3ax+c的图象与x轴的一个交点为(﹣4,0),则它与x轴的另一个交点的坐标是________.17、如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2, 0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中符合题意结论的序号为________.18、若二次函数y=x²+x+a和x轴有两个交点,则a的取值范围为________19、已知二次函数y=2x2﹣6x+m的图象与x轴没有交点,则m的值为________.20、如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE 交AC于点E,且cosα= .下列结论:①△ADE∽△ACD; ②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8; ④0<CE≤6.4.其中正确的结论是________.(把你认为正确结论的序号都填上)21、已知二次函数y=x2﹣2mx(m为常数),当﹣2≤x≤1时,函数值y的最小值为﹣2,则m的值为________.22、二次函数的图像开口方向________ 。
浙教版数学初三(上)第1章二次函数单元测试卷(含解析)题号一二三总分得分第Ⅰ卷(选择题)一.选择题(共12小题)1.关于抛物线y=x2+3x﹣,下列说法不正确的是()A.开口向下B.对称轴是直线x=﹣3C.顶点坐标是(3,2)D.顶点是抛物线的最高点2.将二次函数y=x2的图象平移后,可得到二次函数y=(x+1)2的图象,平移的方法是()A.向上平移1个单位 B.向下平移1个单位C.向左平移1个单位 D.向右平移1个单位3.如图,一次函数y=ax+b与二次函数y=ax2+bx+c的大致图象是()A.B.C. D.4.二次函数y=﹣x2+2x+3与x轴交于A、B两点,它的顶点为C,则△ABC的面积为()A.2 B.4 C.8 D.165.若a、b、c是△ABC中∠A、∠B、∠C的对边,抛物线y=x2﹣2a x+b2交x轴于M(a+c,0),则△ABC是()A.等腰三角形 B.等边三角形C.直角三角形D.不确定6.设抛物线y=x2+kx+4与x轴有两个不同的交点(x1,0),(x2,0),则下列结论中,一定成立的是()A.x12+x22=17 B.x12+x22=8 C.x12+x22<17 D.x12+x22>87.如图,已知直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,则①abc、②a﹣b+c、③a+b+c、④2a﹣b、⑤3a﹣b,其中是负数的有()A.1个B.2个C.3个D.4个8.已知抛物线y=x2+bx+c与y轴交于A,与x轴的正半轴交于B、C,且BC=2,S△ABC=3,则c的值为()A.1 B.2 C.3 D.49.老师出示了小黑板上的题后(如图),小华说:过点(3,0);小彬说:过点(4,3);小明说:a=1;小颖说:抛物线被x轴截得的线段长为2.你认为四人的说法中,正确的有()A.1个B.2个C.3个D.4个10.抛物线y=x2+2bx与x轴的两个不同交点是O和A,顶点B在直线y=kx上,若△OAB是等边三角形,则b=()A.± B.±3 C.±D.±11.如图所示,二次函数y=ax2+bx+c的图象与x轴负半轴相交于A、B两点,Q(n,)是二次函数y=ax2+bx+c图象上一点,且AQ⊥BQ,则a的值为()A.﹣B.﹣C.﹣1 D.﹣212.如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s 关于x的函数图象大致是()A.B.C.D.第Ⅱ卷(非选择题)二.填空题(共6小题)13.假如抛物线y=ax2﹣2ax+1通过点A(﹣1,7)、B(x,7),那么x=.14.用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象时,列出了如下表格:x … 1 2 3 4 …y=ax2+bx+c …0﹣1 0 3 …那么该二次函数在x=0时,y=.15.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特点的系数a、b、c称为该抛物线的特点数,记作:特点数{a、b、c},(请你求)在研究活动中被记作特点数为{1、﹣4、3}的抛物线的顶点坐标为.16.如图,在平面直角坐标系中,将抛物线y=x2通过平移得到抛物线y=x2﹣2x,其对称轴与两段抛物线所围成的阴影部分的面积为.17.抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点是点A(3,0),其部分图象如图,则下列结论:①2a+b=0;②b2﹣4ac<0;③一元二次方程ax2+bx+c=0(a≠0)的另一个解是x=﹣1;④点(x1,y1),(x2,y2)在抛物线上,若x1<0<x2,则y1<y2.其中正确的结论是(把所有正确结论的序号都填在横线上)18.如图,二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1.①c>0;②2a﹣b=0;③<0;④若点B(﹣,y1),C(﹣,y2)为函数图象上的两点,则y1>y2;四个结论中正确的是.三.解答题(共5小题)19.已知,抛物线y=﹣2x2.(1)在平面直角坐标系中画出y=﹣2x2的图象(草图);(2)将y=﹣2x2的图象向右平移2个单位长度,再向下平移1个单位长度,求所得新抛物线的解析式.20.如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求二次函数的解析式;(2)依照图象直截了当写出使一次函数值大于二次函数值的x的取值范畴;(3)若直线与y轴的交点为E,连结AD、AE,求△ADE的面积.21.某商场经销一种商品,已知其每件进价为40元.现在每件售价为70元,每星期可卖出500件.该商场通过市场调查发觉:若每件涨价1元,则每星期少卖出10件;若每件降价1元,则每星期多卖出m(m为正整数)件.设调查价格后每星期的销售利润为W元.(1)设该商品每件涨价x(x为正整数)元,①若x=5,则每星期可卖出件,每星期的销售利润为元;②当x为何值时,W最大,W的最大值是多少?(2)设该商品每件降价y(y为正整数)元,①写出W与y的函数关系式,并通过运算判定:当m=10时每星期销售利润能否达到(1)中W的最大值;②若使y=10时,每星期的销售利润W最大,直截了当写出W的最大值为.(3)若每件降价5元时的每星期销售利润,不低于每件涨价15元时的每星期销售利润,求m的取值范畴.22.已知y关于x的二次函数y=ax2﹣bx﹣2(a≠0).(1)当a=2,b=4时,求该函数图象的顶点坐标;(2)在(1)条件下,P(m,t)为该函数图象上的一点,若P关于原点的对称点P′也落在该函数图象上,求m的值;(3)当函数的图象通过点(1,0)时,若A(),B()是该函数图象上的两点,试比较y1与y2的大小.23.如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过原点O和B (﹣4,4),且对称轴为直线x=.(1)求抛物线的函数表达式;(2)D是直线OB下方抛物线上的一动点,连接OD,BD,在点D运动过程中,当△OBD面积最大时,求点D的坐标和△OBD的最大面积;(3)如图2,若点P为平面内一点,点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,直截了当写出满足△POD∽△NOB的点P坐标.参考答案一.选择题1.B.2.C.3.C.4.C.5.C.6.D.7.B.8.[来源:]C.9.C.10.A.11.D.12.B.二.填空题13.3.14.3.15.(2,﹣1).16.4.17.①③.18.①②④.三.解答题19.解:(1)如图:(2)将y=﹣2x2的图象向右平移2个单位长度,再向下平移1个单位长度,所得新抛物线的解析式为:y=﹣2(x﹣2)2﹣1.20.解:(1)设二次函数解析式为y=ax2+bx+c,解得,a=﹣1,b=﹣2,c=3,即二次函数的解析式是y=﹣x2﹣2x+3;(2)∵y=﹣x2﹣2x+3,∴该函数的对称轴是直线x=﹣1,∵点C(0,3),点C、D是二次函数图象上的一对对称点,∴点D(﹣2,3),∴一次函数值大于二次函数值的x的取值范畴是x<﹣2或x>1;(3)∵点A(﹣3,0)、点D(﹣2,3)、点B(1,0),设直线DE的解析式为y=kx+m,则,解得,,∴直线DE的解析式为y=﹣x+1,当x=0时,y=1,∴点E的坐标为(0,1),设直线AE的解析式为y=cx+d,则,得,∴直线AE的解析式为y=x+1,当x=﹣2时,y==,∴△ADE的面积是:=4.21.解:(1)①若x=5,则每星期可卖出500﹣5×10=450件,每星期的销售利润为(70+5﹣40)×450=15750元,故答案为:450、15750;②依照题意得:W=(70﹣40+x)(500﹣10x)=﹣10x2+200x+15000∵W是x的二次函数,且﹣10<0,∴当时,W最大.W最大值=﹣10×102+200×10+15000=16000答:当x=10时,W最大,最大值为16000.(2)①W=(70﹣40﹣y)(500+my)=﹣my2+(30m﹣500)y+15000,当m=10时,W=﹣10y2﹣200y+15000,∵W是y的二次函数,且﹣10<0,∴当y=﹣时,W最大,当y>﹣10时,W随y的增大而减小,∵y为正整数,∴当y=1时,W最大,W最大=﹣10×12﹣200×1+15000=14790,14790<16000答:当m=10时每星期销售利润不能达到(1)中W的最大值;②∵W=﹣my2+(30m﹣500)y+15000,当y=10时,W最大,∴10=,解得,m=50,∴W=﹣m×102+(30m﹣500)×10+15000=200m+10000=200×50+10 000=20210,故答案为:20210元;(3)降价5元时销售利润为:W=(70﹣40﹣5)(500+5m)=125m+1 2500涨价15元时的销售利润为:W=﹣10×152+200×15+15000=15750∵每件降价5元时的每星期销售利润,不低于每件涨价15元时的每星期销售利润,∴125m+12500≥15750解得,m≥26答:m的取值范畴是m≥26.22.解:(1)当a=2,b=4时,y=2x2﹣4x﹣2=2(x﹣1)2﹣4,∴该函数图象的顶点坐标是(1,﹣4);[来源:学_科_网](2)点P(m,t)关于原点对称的点的坐标是(﹣m,﹣t),则,解得,m=±1;(3)∵函数的图象通过点(1,0),∴0=a﹣b﹣2,∴b=a﹣2,∵y=ax2﹣bx﹣2,∴该函数的对称轴为直线x=﹣==,当a>0时,∵=,=,A(),B()是该函数图象上的两点,∴y2>y1,当a<0时,∵=,=,A(),B()是该函数图象上的两点,∴y1>y2.23.解:(1)∵抛物线对称轴为直线x=.∴A(﹣3,0),设抛物线解析式为y=ax(x+3),把B(﹣4,4)代入得a•(﹣4)•(﹣4+3)=4,解得a=1,∴抛物线解析式为y=x(x+3),即y=x2+3x,(2)过D点作DC∥y轴交OB于C,如图1,直线OB的解析式为y=﹣x,设D(m,m2+3m)(﹣4<m<0),则C(m,﹣m),∴DC=﹣m﹣(m2+3m)=﹣m2﹣4m,∴S△BOD=S△BCD+S△OCD=•4•DC=﹣2m2﹣8m=﹣2(m+2)2 +8,当m=﹣2时,S△BOD有最大值,最大值为8,现在D点坐标为(﹣2,﹣2);(3)作BK⊥y轴于K,BI⊥x轴于I,BN交y轴于M点,如图2,易得四边形BIOK为正方形,∵∠NBO=∠ABO,∴∠IBA=∠KBM,而BI=KM,∴Rt△BIA≌Rt△BKM,∴KM=AI=1,∴M(0,3),设直线BN的解析式为y=px+q,把B(﹣4,4),M(0,3)代入得,解得,∴直线BN的解析式为y=﹣x+3,解方程组得或,∴N(,),∵OB=4,OD=2,∴△POD与△NOB的相似比为1:2,过OB的中点E作EF∥BN交ON于F,如图2,∴△FOE∽△NOB,它们的相似比为1:2,∴F点为ON的中点,∴F(,),∵点E与点D关于x轴对称,∴点P′与点F关于x轴对称时,△P′OD≌△FOE,则△P′OD∽△NOB,现在P′(,﹣);作P′点关于OD的对称点P″,则△P″OD≌△P′OD,则△P″OD ∽△NOB,现在P″(﹣,),综上所述,满足条件的P点坐标为(,﹣)或(﹣,).。
第1章二次函数数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:则该二次函数图象的对称轴为( )A.y轴B.直线x=C.直线x=2D.直线x=2、函数(是常数)是二次函数的条件是()A. B. C. D.3、若x1, x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数x1,x2, a,b的大小关系为()A.x1<x2<a<b B.x1<a<x2<b C.x1<a<b<x2D.a<x1<b<x24、已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为( )A.2009B.2010C.2011D.20125、若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是C.当时,y的最大值为4D.抛物线与x轴的交点为,6、已知二次函数y=x2-bx+c的图象经过A(1,n),B(3,n),且与x轴只有一个交点,则n的值为()A. B. C.1 D.27、如图,抛物线y=﹣x2+ x+ 与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P的坐标是()A.(4,3)B.(5,)C.(4,)D.(5,3)8、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.ac>0B.当x>1时,y随x的增大而减小C.b﹣2a=0 D.x=3是关于x的方程ax 2+bx+c=0(a≠0)的一个根9、某幢建筑物,从10米高的窗口A用水管向外喷水,喷出的水流呈抛物线状(抛物线所在平面与墙面垂直,如图).若抛物线的最高点P离墙一米,离地面米,则水流落地点B 离墙的距离OB是( ).A.2米B.3米C.4米D.5米10、若关于x的一元二次方程x2+ax+b=0有两个不同的实数根m,n(m<n),方程x2+ax+b=2有两个不同的实数根p,q(p<q),则m,n,p,q的大小关系为()A.p<m<n<qB.m<p<q<nC.m<p<n<qD.p<m<q<n11、二次函数的顶点坐标是()A.(-1,2)B.(-1,-2)C.(1,2)D.(1,-2)12、如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A. B. C. D.13、已知二次函数的图象如图所示,有以下结论:①;②;③;④;⑤其中所有正确结论的序号是()A.①②B.①③④C.①②③⑤D.①②③④⑤14、已知二次函数y=mx2-7x-7的图象和x轴有交点,则m的取值范围是()A.m>-B.m>- 且m≠0C.m≥-D.m≥- 且m≠015、抛物线的部分图象如图所示(对称轴是),若,则的取值范围是()A. B. C. 或 D.或二、填空题(共10题,共计30分)16、如图,二次函数的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①abc>0;②a=b;③a=4c﹣4;④方程有两个相等的实数根,其中正确的结论是________.(只填序号即可).17、二次函数y1=ax2+bx+c与一次函数y2=mx+n的图象如图所示,则满足ax2+bx+c≥mx+n 的x的取值范围是________.18、如图,是一个半圆和抛物线的一部分围成的“芒果”,已知点A、B、C、D分别是“芒果”与坐标轴的交点,AB是半圆的直径,抛物线的解析式为y=x2﹣,则图中CD的长为________19、已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+b(k≠0)的图象相交于点A(﹣2,4),B(8,2)(如图所示),则能使y1>y2成立的x的取值范围是________.20、将抛物线y=x2-2x+3向左平移一个单位,再向下平移三个单位,则抛物线的解析式应为________.21、已知:直线经过抛物线的顶点,则该抛物线的函数表达式是________,不等式的解集是________.22、已知开口向上的抛物线,在此抛物线上有A (- , ) ,B(2, )和C(3, ) 三点,则, 和的大小关系为________.23、已知抛物线的顶点为(m,3) 则m=________ ,c=________.24、二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论:①;②;③一元二次方程的解是,;④当时,,其中正确的结论有________.25、已知关于的二次函数的图象开口向下,与的部分对应值如下表所示:下列判断,①;②;③方程有两个不相等的实数根;④若,则,正确的是________(填写正确答案的序号) .三、解答题(共5题,共计25分)26、已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴相交于A、B两点,且AB=2,求m的值.27、如图,二次函数y=ax2+bx的图象经过A(1,﹣1)、B(4,0)两点.(1)求这个二次函数解析式;(2)点M为坐标平面内一点,若以点O、A、B、M为顶点的四边形是平行四边形,请直接写出点M的坐标.28、如图,抛物线y= x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(1)求抛物线的解析式和tan∠BAC的值;(2)在(1)条件下,P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.29、如图,已知抛物线y=-+x+4交x轴的正半轴于点A,交y轴于点B.(1)求直线AB的解析式;(2)设P(x,y)(x>0)是直线y = x上的一点,Q是OP 的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.30、已知抛物线经过点(3,0),(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.参考答案一、单选题(共15题,共计45分)1、D2、D3、C4、D5、C6、C7、B8、D9、B11、B12、D13、C14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、30、。
第1章二次函数数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、平面直角坐标系中,若平移二次函数y=(x﹣6)(x﹣7)﹣3的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式为()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位 D.向下平移3个单位2、二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线X=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(-3,y1)、点B(,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x-5)=-3的两根为x1和x2,且x1<x2,则x1<-1<5<x2.其中正确的结论有()个.A.2个B.3个C.4个D.5个3、已知,是抛物线上的点,下列命题正确的是()A.若,则B.若,则C.若,则D.若,则4、已知函数y=2ax2-4ax+b(a<0),当自变量x>m,y<b-a;当自变量x<n时y<b-a,则下列m,n关系正确的是()A.m-n=1B.m-n=2C.m+n=1D.m+n=25、要得到y=(x-3)2-2的图象,只要将y=x2的图象()A.由向左平移3个单位,再向上平移2个单位;B.由向右平移3个单位,再向下平移2个单位;C.由向右平移3个单位,再向上平移2个单位;D.由向左平移3个单位,再向下平移2个单位.6、如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴为x=2,与x轴的一个交点是(-1,0).有下列结论:①abc>0;②4a-2b+c<0;③4a+b=0;④抛物线与x轴的另一个交点是(5,0);⑤点(-3,y1)、(6,y2)都在抛物线上,则有y1<y2,其中正确的是( )A.①②③B.②④⑤C.①③④D.③④⑤7、已知点,,在函数(为常数)的图象上,则,,的大小关系是()A. B. C. D.8、如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是A. B. C. D.9、对于二次函数,下列说法正确的是()A.当时,y随x的增大而增大B.当时,y有最大值-3C.图象的顶点坐标为D.图象与x轴有两个交点10、某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y(元)与销售单价x(元)满足关系y=﹣x2+70x﹣800,要想获得最大利润,则销售单价为()A.30元B.35元C.40元D.45元11、已知二次函数,m、n为常数,且下列自变量取值范围中y随x增大而增大的是()A.x<2B.x<1C.0<x<2D.x>112、二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3) C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0) D.当x <0时,y随x的增大而减小13、由表格中信息可知,若设y=ax2+bx+c,则下列y与x之间的函数关系式正确的是()x ﹣1 0 1ax2 1ax2+bx+c 8 3A.y=x 2﹣4x+3B.y=x 2﹣3x+4C.y=x 2﹣3x+3D.y=x 2﹣4x+814、若函数y=(m2+m)x m2−2m−1是二次函数,那么m的值是()A.2B.-1或3C.3D.-1±15、已知抛物线y=ax2-2x+1与x轴没有交点,那么该抛物线的顶点所在的象限是()A.第四象限B.第三象限C.第二象限D.第一象限二、填空题(共10题,共计30分)16、已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是________.(写出所有正确结论的序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.17、如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为________.18、如图,抛物线(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.①抛物线与直线有且只有一个交点;②若点、点、点在该函数图象上,则;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为;④点A关于直线的对称点为C,点D、E分别在x 轴和y轴上,当时,四边形BCDE周长的最小值为.其中正确判断的序号是________19、将抛物线向左平移2个单位,再向上平移2个单位后,得到新抛物线的解析式为________.20、把抛物线向左平移1个单位,然后向下平移3个单位,则平移后抛物线的解析式为________.21、抛物线y=x2﹣2x,当y随x的增大而减小时x的取值范围为________.22、如图,在平面直角坐标系中,抛物线与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为________.23、如图,抛物线y=x2+bx+ 与y轴相交于点A,与过点A平行于x轴的直线相交于点B (点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为________.24、已知抛物线,,.当时,,当时,,则与的大小关系为________.25、定义{a,b,c}为函数y=ax2+bx+c的“特征数”.如:函数y=x2﹣2x+3的“特征数”是{1,﹣2,3},函数y=2x+3的“特征数”是{0,2,3},函数y=﹣x的“特征数”是{0,﹣1,0}.在平面直角坐标系中,将“特征数”是{﹣4,0,1}的函数的图象向下平移2个单位,得到一个新函数图象,这个新函数图象的解析式是________三、解答题(共5题,共计25分)26、已知抛物线的顶点为(2,3),且经过点(3,1),求此抛物线对应的函数解析式。
九年级上册数学单元测试卷-第1章二次函数-浙教版(含答案)一、单选题(共15题,共计45分)1、二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①bc>0; ②3a+c>0;③a+b+c≤ax2+bx+c;④a(k12+1)2+b(k12+1)>a(k12+2)2+b(k12+2).其中正确结论的个数是()A.1B.2C.3D.42、二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x ﹣3 ﹣2 ﹣1 0 1 2 3 4 5y 12 5 0 ﹣3 ﹣4 ﹣3 0 5 12给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当﹣<x<2时,y<0;(3)a﹣b+c=0;(4)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧则.其中正确结论的个数是()A.1B.2C.3D.43、抛物线的图象向左平移3个单位,所得抛物线的解析式为().A. B. C. D.4、抛物线y=-x2向左平移2个单位后所得的抛物线解析式是()A.y=-x 2-2;B.y=-(x-2)2;C.y=-(x+2)2; D.y=-x 2+2.5、直线y=ax+b经过第二、三、四象限,那么下列结论正确的是()A. =a+bB.点(a,b)在第一象限内C.反比例函数y= ,当x>0时,函数值y随x增大而减小D.抛物线y=ax 2+bx+c的对称轴过二、三象限6、已知二次函数y=2(x+1)(x-a),其中a>0,若当x≤2时,y随x增大而减小,当x≥2时y随x增大而增大,则a的值是A.3B.5C.7D.不确定7、有下列四个函数:①②③④,其中图象经过如图所示的阴影部分(包括边界)的函数有()A.1 个B.2个C.3 个D.4个8、若一个二次函数的图像经过两点,则下列关系正确的是()A. B. C. D.9、对抛物线:y=﹣x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点B.开口向上C.与y轴的交点坐标是(0,3)D.顶点坐标是(1,﹣2)10、抛物线y=-x2+bx+c的部分图象如图所示,若y≥0,则x的取值范围是()A.-4<x<1B.-3≤x≤1C.x<-4或x>1D.x<-3或x>111、已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.ac>0B.当x>1时,y随x的增大而增大C.2a+b=1D.方程ax 2+bx+c=0有一个根是x=312、抛物线y=(x+1)2+1上有点A(x1,y1)点B(x2,y2)且x1<x2<﹣1,则y1与y2的大小关系是()A. y1<y2B. y1>y2C. y1=y2D.不能确定13、如图,二次函数y=a+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是( )A.abc<0B.2a+b<0C.a-b+c<0D.4ac-b 2<014、在下列y关于x的函数中,一定是二次函数的是()A.y=x 2B.y=C.y=kx 2D.y=k 2x15、已知二次函数y=ax2+bx+c的图象如图所示,下列结论中,正确的是()A.a>0,b<0,c>0B.a<0,b<0,c>0C.a<0,b>0,c<0 D.a<0,b>0,c>0二、填空题(共10题,共计30分)16、如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2, 0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中符合题意结论的序号为________.17、抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是________.18、关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,那么抛物线y=x2+bx+c的顶点坐标为________.19、某二次函数的图象过点(﹣3,m)和(7,m),则此二次函数的图象的对称轴为________.20、竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.21、如图,抛物线过点,,且顶点在第一象限,设,则M的取值范围是________.22、某企业五月份的利润是25万元,预计七月份的利润将达到36万元.设平均月增长率为x,根据题意所列方程是________.23、二次函数y=x2+bx+c的图象如图所示,当函数值y<0时,对应x的取值范围是________.24、在平面直角坐标系中,将一条抛物线向左平移3个单位,再向下平移5个单位,得到抛物线y=﹣2x2﹣4x﹣4,则原抛物线的函数解析式为:________.25、已知二次函数y=ax2+3ax+c的图象与x轴的一个交点为(﹣4,0),则它与x轴的另一个交点的坐标是________.三、解答题(共5题,共计25分)26、将抛物线y=x2﹣4x+4沿y轴向下平移9个单位,所得新抛物线与x轴正半轴交于点B,与y轴交于点C,顶点为D.求:(1)点B、C、D坐标;(2)△BCD的面积.27、抛物线y=ax2+2x+c与其对称轴相交于点A(1,4),与x轴正半轴交于点B.(1)求这条抛物线的函数关系式;(2)在抛物线对称轴上确定一点C,使△ABC是等腰三角形,求出所有点C的坐标.28、如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x-1)2-4,AB为半圆的直径,求这个“果圆”被y轴截得的CD的长.29、小李按市场价格30元/kg收购了一批海鲜1000kg存放在冷库里,据预测,海鲜的市场价格将每天每kg上涨1元.冷冻存放这批海鲜每天需要支出各种费用合计310元,而且这些海鲜在冷库中最多存放160天,同时平均每天有3kg的海鲜变质.(1)设x天后每kg该海鲜的市场价格为y元,试写出y与x之间的函数关系式;(2)若存放x天后,将这批海鲜一次性出售.设这批海鲜的销售总额为P元,试写出P与x之间的函数关系式;(3)小李将这批海鲜存放多少天后出售可获得最大利润,最大利润是多少元?(利润W=销售总额﹣收购成本﹣各种费用)30、“佳佳商场”在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.(1)为了实现每天1600元的销售利润,“佳佳商场”应将这种商品的售价定为多少?(2)物价局规定该商品的售价不能超过40元/件,“佳佳商场”为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?参考答案一、单选题(共15题,共计45分)1、B2、C3、D4、C5、D6、B7、B8、A9、D10、B11、D12、B13、D14、A15、D二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、30、。
九年级数学上册第一章《二次函数》单元测试题-浙教版(含答案)一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.函数221m m y mx --=是关于x 的二次函数,则m 的值是( )A .3B .1-C .3-D .1-或3 2.在半径为4cm 的圆中,挖去了一个半径为xcm 的圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( )A .216y x ππ=-+B .24y x π=-C .2(2)y x π=-D .2(4)y x =-+ 3.已知二次函数y =ax 2+4x +c ,当x 等于﹣2时,函数值是﹣1;当x =1时,函数值是5.则此二次函数的表达式为( )A .y =2x 2+4x ﹣1B .y =x 2+4x ﹣2C .y =-2x 2+4x +1D .y =2x 2+4x +14.将二次函数()2452--=x y 的图象沿x 轴向左平移2个单位长度,再沿y 轴向上平移3个单位长度,得到的函数表达式是( )A .()2772--=x yB .()2172--=x yC .()2732--=x yD .()2132--=x y 5.函数y =﹣x 2﹣2x+m 的图象上有两点A (1,y 1),B (2,y 2),则( )A .y 1<y 2B .y 1>y 2C .y 1=y 2D .y 1、y 2的大小不确定6.已知点 A (a ,2)、B (b ,2)、C (c ,7)都在抛物线()212--=x y 上,点A 在点B 左侧,下列选项正确的是( )A .若0<c ,则b c a << B.若0<c ,则c b a <<C .若0>c ,则b c a <<D .若0>c ,则c b a <<7.在同一坐标系中,函数y =ax 2+b 与y =bx 2+ax 的图象只可能是( )8.如图抛物线y =ax 2+bx +c (a ≠0)经过点(3,0)且对称轴为直线x =1.有四个结论:①ac <0;②b 2﹣4ac =0;③a ﹣b +c =0;④若m >n >0,则x =1﹣m 时的函数值小于x =1+n 时的函数值,其中正确的结论个数是( )A .1B .2C .3D .49.如图,二次函数y =ax 2+bx +c (a ≠0)图象的一部分与x 轴的一个交点坐标为(1,0),对称轴为直线x =﹣1,结合图象给出下列结论:①a +b +c =0;②a ﹣2b +c <0;③关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根分别为﹣3和1;④若点(﹣4,y 1),(﹣2,y 2),(3,y 3)均在二次函数图象上,则y 1<y 2<y 3;⑤a ﹣b <m (am +b )(m 为任意实数).其中正确的结论有( )A .1个B .2个C .3个D .4个 10.如图1,在菱形ABCD 中,060=∠A ,动点P 从点A 出发,沿折线CB DC AD →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB ∆的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( ) A.3 B.32 C. 33 D. 34二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.已知二次函数2y x bx c =++的图象经过()1,1与()2,3两点,则这个二次函数的表达式为__________12.已知抛物线y =ax 2+bx +c 过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线13.将抛物线y =x 2﹣2x +3向左平移2个单位长度,所得抛物线为14.已知二次函数y =2x 2﹣4x ﹣1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为____________15.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x (元/个)的关系如图所示,当10≤x ≤20时,其图象是线段AB ,则该食品零售店每天销售这款冷饮产品的最大利润为 元(利润=总销售额﹣总成本).16.抛物线y =ax 2+bx +c 的部分图象如图所示,对称轴为直线x =﹣1,直线y =kx +c 与抛物线都经过点(﹣3,0).下列说法:①ab >0;②4a +c >0;③若(﹣2,y 1)与(21,y 2)是抛物线上的两个点,则y 1<y 2;④方程ax 2+bx +c =0的两根为x 1=﹣3,x 2=1;⑤当x =﹣1时,函数y =ax 2+(b ﹣k )x有最大值.其中正确的是___________________(填序号)三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)已知二次函数y=x2﹣4x+c(c是常数)的图象与x轴只有一个交点,求c的值及这个交点的坐标.18(本题8分)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y)的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成心=2(x-h)2-2(h是常数)的形式,求b+c的最小值.19.(本题8分)已知二次函数y=ax2+bx﹣6(a≠0)的图象经过点A(4,﹣6),与y轴交于点B,顶点为C(m,n).(1)求点B的坐标;(2)求证:4a+b=0;(3)当a>0时,判断n+6<0是否成立?并说明理由.20(本题10分)已知函数y=-x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值;(2)当﹣4≤x≤0时,求y的最大值;(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.21.(本题10分)已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L 1上,求m 的值.(3)把抛物线L 1向右平移n (n >0)个单位得到抛物线L 3,若点B (1,y 1),C (3,y 2)在抛物线L 3上,且y 1>y 2,求n 的取值范围.22(本题12分)如图,已知抛物线()()a x x ay +-=21 ()0>a 与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线过点M (﹣2,﹣2),求实数a 的值;(2)在(1)的条件下,解答下列问题;①求出△BCE 的面积;②在抛物线的对称轴上找一点H ,使CH +EH 的值最小,直接写出点H 的坐标.23(本题12分).如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣1,且抛物线与x轴交于A 、B 两点,与y 轴交于C 点,其中A (1,0),C (0,3).(1)若直线y =mx +n 经过B 、C 两点,求直线BC 和抛物的解析式;(2)在抛物线的对称轴x =﹣1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)点Q 为BC 上一动点,过Q 作x 轴垂线交抛物线于点P (点P 在第二象限),求线段PQ 长度最大值.参考答案三.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.答案:D解析:∵函数221m m y mx --=是关于x 的二次函数,∴2212m m --=,且0m ≠,由2212m m --=得,3m =或1m =-,∴m 的值是3或-1,故选择:D .2.答案:A解析:圆的面积公式是2S r π=,原来的圆的面积=2416ππ⋅=,挖去的圆的面积=2x π,∴圆环面积216y x ππ=-.故选择:A .3.答案:A 解析:根据题意得48145a c a c -+=-⎧⎨++=⎩, 解得:21a c =⎧⎨=-⎩, ∴抛物线解析式为y =2x 2+4x ﹣1.故选择:A .4.答案:D解析:由二次函数()2452--=x y 的图象沿x 轴向左平移2个单位长度,再沿y 轴向上平移3个单位长度,得到的函数表达式是()()2133242522--=+-+-=x x y ; 故选择:D.5.答案:B 解析:∵图象的对称轴为直线01,122<-=-=---=a x , ∴在对称轴左侧y 随x 的增大而增大,在对称轴右侧y 随x 的增大而减小,∵图象上有两点A (1,y 1),B (2,y 2),-1<1<2,∴y1>y2,故选择:B.6.答案:D解析:∵抛物线y=(x−1)2−2,a>0∴该抛物线的对称轴为直线x=1,抛物线开口向上,当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵点A(a,2),B(b,2),C(c,7)都在抛物线y=(x−1)2−2上,点A在点B左侧,∴a<b若c<0,则c<a<b,故A、B均不符合题意;若c>0,则a<b<c,故C不符合题意,D符合题意;故选择:D.7.答案:D解析:A、两个函数的开口方向都向上,那么a>0,b>0,可得第一个函数的对称轴是y轴,与y轴交于正半轴,第二个函数的对称轴在y轴的左侧,故本选项错误;B、两个函数的开口方向都向下,那么a<0,b<0,可得第一个函数的对称轴是y轴,与y轴交于负半轴,第二个函数的对称轴在y轴的左侧,故本选项错误;C、D、两个函数一个开口向上,一个开口向下,那么a,b同号,可得第二个函数的对称轴在y轴的右侧,故C错误,D正确,故选择:D.8.答案:C解析:∵抛物线开口向下,∴a<0,∵抛物线交y轴的正半轴,∴c>0,∴ac<0,故①正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②错误;∵抛物线的对称轴为直线x=1,而点(3,0)关于直线x=1的对称点的坐标为(﹣1,0),∴a ﹣b +c =0,故③正确;∵抛物线开口向下,对称轴为直线x =1,∴横坐标是1﹣m 的点的对称点的横坐标为1+m ,∵若m >n >0,∴1+m >1+n ,∴x =1﹣m 时的函数值小于x =1+n 时的函数值,故④正确.故选择:C .9.答案:C解析:①∵二次函数y =ax 2+bx +c (a ≠0)图象的一部分与x 轴的一个交点坐标为(1,0), ∴a +b +c =0,故①正确; ②∵抛物线的对称轴为直线12-=-=a b x , ∴b =2a ,∵抛物线开口向上,与y 轴交于负半轴,∴a >0,c <0,∴a ﹣2b +c =c ﹣3a <0,故②正确;③由对称得:抛物线与x 轴的另一交点为(﹣3,0),∴关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根分别为﹣3和1,故③正确;④∵对称轴为直线x =﹣1,且开口向上,∴离对称轴越近,y 值越小,∵|﹣4+1|=3,||﹣2+1|=1,|3+1|=4,∵点(﹣4,y 1),(﹣2,y 2),(3,y 3)均在二次函数图象上,∴y 2<y 1<y 3,故④不正确;⑤∵x =﹣1时,y 有最小值,∴a ﹣b +c ≤am 2+bm +c (m 为任意实数),∴a ﹣b ≤m (am +b ),故⑤不正确.所以正确的结论有①②③,共3个.故选择:C .10.答案:B解析:在菱形ABCD 中,060=∠A ,∴△ABD 为等边三角形,设a AB =,由图2可知,△ABD 的面积为33, ∴33432==∆a S ABD , 解得:32=a故选择:B四.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.答案:21y x x =-- 解析:把(1,1)与(2,3)分别代入y =x 2+bx +c 得11423b c b c ++=⎧⎨++=⎩,解得11b c =-⎧⎨=⎩; 所以二次函数的解析式为21y x x =--;12.答案:2=x解析:∵抛物线y =ax 2+bx +c 过(﹣1,1)和(5,1)两点,∴对称轴为2251=+-=x , 故答案为:x =2.13.答案:()212++=x y 解析:将抛物线y =x 2﹣2x +3=(x ﹣1)2+2向左平移2个单位长度得到解析式:y =(x +1)2+2, 故答案为:y =(x +1)2+2.14.答案:4解析:∵二次函数y =2x 2﹣4x ﹣1=2(x ﹣1)2﹣3,∴抛物线的对称轴为x =1,顶点(1,﹣3),∴当y =﹣3时,x =1,当y =15时,2(x ﹣1)2﹣3=15,解得x =4或x =﹣2,∵当0≤x ≤a 时,y 的最大值为15,∴a =4,15.答案:121解析:当10≤x ≤20时,设y =kx +b ,把(10,20),(20,10)代入可得: ⎩⎨⎧=+=+10202010b k b k 解得⎩⎨⎧=-=301b k , ∴每天的销售量y (个)与销售价格x (元/个)的函数解析式为y =﹣x +30,设该食品零售店每天销售这款冷饮产品的利润为w 元,w =(x ﹣8)y =(x ﹣8)(﹣x +30)=﹣x 2+38x ﹣240=﹣(x ﹣19)2+121,∵﹣1<0,∴当x =19时,w 有最大值为121,故答案为:121.16.答案:①④,解析:∵抛物线的开口方向向下,∴a <0.∵抛物线的对称轴为直线x =﹣1, ∴12-=-ab , ∴b =2a ,b <0.∵a <0,b <0,∴ab >0,∴①的结论正确;∵抛物线y =ax 2+bx +c 经过点(﹣3,0),∴9a ﹣3b +c =0,∴9a ﹣3×2a +c =0,∴3a +c =0.∴4a +c =a <0,∴②的结论不正确;∵抛物线的对称轴为直线x =﹣∴点(﹣2,y 1)关于直线x =﹣1对称的对称点为(0,y 1), ∵a <0,∴当x >﹣1时,y 随x 的增大而减小. ∵21>0>﹣1, ∴y 1>y 2.∴③的结论不正确;∵抛物线的对称轴为直线x =﹣1,抛物线经过点(﹣3,0), ∴抛物线一定经过点(1,0),∴抛物线y =ax 2+bx +c 与x 轴的交点的横坐标为﹣3,1, ∴方程ax 2+bx +c =0的两根为x 1=﹣3,x 2=1,∴④的结论正确;∵直线y =kx +c 经过点(﹣3,0),∴﹣3k +c =0,∴c =3k .∵3a +c =0,∴c =﹣3a ,∴3k =﹣3a ,∴k =﹣a .∴函数y =ax 2+(b ﹣k )x=ax 2+(2a +a )x =ax 2+3ax =2216923a x a +⎪⎭⎫ ⎝⎛+, ∵a <0,∴当x =﹣23时,函数y =ax 2+(b ﹣k )x 有最大值, ∴⑤的结论不正确.综上,结论正确的有:①④,三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.解析:∵二次函数c x x y +-=42的图象与x 轴只有一个交点,∴方程042=+-c x x 只有一个实数根,∴()044422=--=-=∆c ac b , 4=∴c ,∴0442=+-x x ,解得2=x ,∴二次函数c x x y +-=42的图象与x 轴的交点坐标为(2,0).18.解析:(1)由题意,得y 1=2(x-1)(x-2). 图象的对称轴是直线23=x (2)由题意,得y 1=2x 2-4hx+2h 2-2,∴b+c=2h 2-4h-2,=2(h-1)2-4,∴当h=1时,b+c 的最小值是-4.(3)解:由题意,得y=y 1-y 2=2(x-m)(x-m-2)-(x-m)=(x-m)[2(x-m)-5],∵函数y 的图象经过点(x 0,0),∴(x 0-m)[2(x 0-m)-5]=0,∴x 0-m=0,或x 0-m =25.19.解析:(1)∵x =0时,y =﹣6∴点B 坐标为(0,﹣6)(2)证明:∵二次函数的图象经过点A (4,﹣6)∴16a +4b ﹣6=﹣6∴4a +b =0(3)当a >0时,n +6<0成立,理由如下: ∵a b a b a n 4642422--=--= ∴ab n 462-=+ ∵a >0,4a +b =0即b ≠0∴b 2>0 ∴042<-ab ∴n +6<0成立20.解析:(1)把(0,-3),(-6,-3)代入c bx x y ++-=2,得b =-6,c=-3(2)∵()633622++-=---=x x x y , 又∵-4≤x ≤0,∴当x =-3时,y 有最大值为6.(3)①当-3<m ≤0时,当x =0时,y 有最小值为-3,当x =m 时,y 有最大值为,∴ +(-3)=2, ∴m =-2或m =-4(舍去).②当m ≤-3时,当x =-3时y 有最大值为6,∵y 的最大值与最小值之和为2,∴y 最小值为-4,∴ =-4,∴m =103--或m =103+-(舍去).综上所述,m =-2或 103-- .21.解析:(1)∵ y=a(x+1)2-4(a ≠0)经过点A(1,0),∴0=a ·22-4,∴a=1,∴y=(x+1)2-4.(2)解:∵将L 1的图象向上平移了m 个单位得到L 2 ,∴设L 2的解析式为y=(x+1)2-4+m ,∴顶点坐标为(-1,m-4),∵L 2的顶点关于原点O 的对称点在L 1的图象上,∴(1,4-m )在L 1的图象上,∴4-m=(1+1)2-4,∴m=4.(3)解: ∵抛物线L 1的图象向右平移了n 个单位得到L 3,∴设L 3的解析式为y=(x+1-n )2-4,∴抛物线开口向上,对称轴为x=n-1,∵B (1,y 1),C (3,y 2)都在抛物线L 3上,且y 1>y 2,∴B 、C 两点的中点坐标在对称轴的左侧,∴(1+3)÷2<n-1,∴n >3.22.解析:(1)将M (﹣2,﹣2)代入抛物线解析式得:()()a a +---=-22212, 解得:a =4;(2)①由(1)抛物线解析式()()4241+-=x x y , 当y =0时,得:()()42410+-=x x , 解得:x 1=2,x 2=﹣4,∵点B 在点C 的左侧,∴B (﹣4,0),C (2,0),当x =0时,得:y =﹣2,即E (0,﹣2), ∴62621=⨯⨯=∆BCE S ; ②由抛物线解析式()()4241+-=x x y ,得对称轴为直线x =﹣1, 根据C 与B 关于抛物线对称轴直线x =﹣1对称,连接BE ,与对称轴交于点H ,即为所求, 设直线BE 解析式为y =kx +b ,将B (﹣4,0)与E (0,﹣2)代入得:⎩⎨⎧-==+-204b b k ,解得:⎪⎩⎪⎨⎧-=-=221b k∴直线BE 解析式为221--=x y , 将x =﹣1代入得:23221-=-=y 则H (﹣1,23-).23.解析:(1)依题意得: ⎪⎪⎩⎪⎪⎨⎧==++-=-3012c c b a a b ,解得:⎪⎩⎪⎨⎧=-=-=321c b a ,∴抛物线解析式为y =﹣x 2﹣2x +3,∵对称轴为直线x =﹣1,且抛物线经过A (1,0),∴把B (﹣3,0)、C (0,3)分别代入直线y =mx +n , 得⎩⎨⎧==+-303n n m , 解得:⎩⎨⎧==31n m , ∴直线y =mx +n 的解析式为y =x +3;(2)设直线BC 与对称轴x =﹣1的交点为M ,则此时MA +MC 的值最小. 把x =﹣1代入直线y =x +3得,y =2,∴M (﹣1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(﹣1,2);(3)设Q (a ,a +3),此时P (a ,﹣a 2﹣2a +3),∴PQ =﹣a 2﹣2a +3﹣(a +3)=﹣a 2﹣3a =﹣(a +23)2+49. ∴该抛物线顶点坐标是(﹣23,49),且开口向下, ∴当a =﹣23时,PQ 取最大值49.。
浙教版数学九年级上册第一章二次函数一、选择题1.要得到抛物线y=3(x+2)2+3,可以将抛物线y=3x2( )A.向左平移2个单位长度,再向上平移3个单位长度B.向左平移2个单位长度,再向下平移3个单位长度C.向右平移2个单位长度,再向上平移3个单位长度D.向右平移2个单位长度,再向下平移3个单位长度.2.在平面直角坐标系xOy中,抛物线y=a x2+bx+c如图所示,则关于x的方程a x2+bx+c=0根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法准确判断3.函数y=a x2−2x+1和y=ax+a(a是常数,且a≠0)在同一平面直角坐标系中的图象可能是( )A.B.C.D.4.函数y1=a x2+bx+c与y2=k的图象如图所示,当( )时,y1,y2均随着x的增大而减小.xA.x<−1B.−1<x<0C.0<x<2D.x>15.抛物线y=a x2+bx+c(a≠0)的图象如图所示,则下列四组中正确的是( )A.a>0,b>0,c>0B.a>0,b<0,c>0C.a>0,b>0,c<0D.a>0,b<0,c<06.某厂今年一月份新产品的研发资金为9万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为( )A.y=9(1+x)2B.y=9+9x+x2C.y=9+9(1+x)+9(1+x)2D.y=9(1+x)27.已知x=m是一元二次方程x2+3x−n=0的一个根,则m+n的最小值是( )A.−1B.−2C.3D.−48.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2.下列叙述正确的是( )A.小球的飞行高度不能达到15m B.小球的飞行高度可以达到25mC.小球从飞出到落地要用时4s D.小球飞出1s时的飞行高度为10m9.如图,在矩形ABCD中,AB=3,BC=4,点P在直线AD上运动,以BP为直角边向右作Rt △PBQ ,使得∠BPQ =90°,BP =32PQ ,连接CQ ,则CQ 长的最小值为( )A .1213B .2513C .23913D .5131310.定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.函数y =−x +c (c 为常数,c <0)的图象与x 轴交于点M ,其轴点函数y =a x 2+bx +c 与x 轴的另一交点为N .若ON =14OM ,则b 的值为( )A .±5B .5或−3C .±3D .−5或3二、填空题11.如果函数y =(k−1)x k2−k +2+kx−1是关于x 的二次函数,则k = .12.若抛物线y =x 2−2x +k−2与x 轴有公共点,则k 的取值范围是 .13.已知抛物线y=x 2﹣x ﹣1与x 轴的一个交点为(a ,0),那么代数式a 2﹣a+2016的值为 .14.当0≤x ≤3时,二次函数y =x 2+2ax 的最大值是M ,最小值是m ,若M−m =4,则a 的值是 .15.廊桥是我国古老的文化遗产,如图是某座抛物线形的廊桥示意图.已知抛物线的函数表达式为y =−140x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为6米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是 米.16.二次函数 y =a x 2+bx +3的图象如图所示,其对称轴 x =1,且与x 轴交于(−1,0),点D (0,1),点P 为x 轴上一动点,则2PD +PC 的最小值为 .三、解答题17.如图,已知抛物线y =−x 2+mx +3经过点M (−2,3).(1)求出此抛物线的解析式;(2)当0≤x ≤1时,直接写出y 的取值范围.18.已知二次函数y =x 2+x−m 的部分图象如图所示,(1)求该二次函数图象的对称轴,并利用图象直接写出一元二次方程x 2+x−m =0的解.(2)向上平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.19.如图,正方形纸片ABCD 的边长为4,将它剪去四个全等的直角三角形,得到四边形EFGH .设AE 的长为x ,四边形EFGH 的面积为y .(1)求y 关于x 的函数表达式;(2)四边形EFGH 的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.20.如图所示,在平面直角坐标系Oxy 中,四边形OABC 为正方形,其中点A 、C 分别在x 轴负半轴,y 轴负半轴上,点B 在第三象限内,点A(t,0),点P(1,2)在函数y =kx(k >0,x >0)的图象上.(1)求k的值;(2)连接BP、CP,记△BCP的面积为S,设T=2S−2t2,求T的最大值.21.已知二次函数y=a x2+bx+c(a>0,b>0)的图象与y轴相交于点(0,1).(1)若a=1,b=4,求该二次函数的最小值;(2)若b=4a,点P(−3,y1),Q(3,y2)都在该函数的图象上,比较y1和y2的大小关系;(3)若点M(m,1),N(−m,m2+2)都在该二次函数图象上,分别求a,b的取值范围22.【综合探究】运用二次函数来研究植物幼苗叶片的生长状况在大自然里,有很多数学的奥秘.图1是一片美丽的心形叶片,图2是一棵生长的幼苗都可以看作把一条抛物线的一部分沿直线折叠而形成.【探究一】确定心形叶片的形状(1)如图3建立平面直角坐标系,心形叶片下部轮廓线可以看作是二次函数y=−a x2+4ax+4a+1图象的一部分,且过原点,求抛物线的解析式及顶点D的坐标;【探究二】研究心形叶片的宽度:(2)如图3,心形叶片的对称轴直线y=x+2与坐标轴交于A,B两点,抛物线与x轴交于另一点C,点C,C1是叶片上的一对对称点,C C1交直线AB于点G.求叶片此处的宽度C C1;【探究三】探究幼苗叶片的长度(3)小李同学在观察幼苗生长的过程中,发现幼苗叶片下方轮廓线都可以看作是二次函数y=−a x2+4ax+4a+1图象的一部分;如图4,幼苗叶片下方轮廓线正好对应任务1中的二次函数.已知直线PD (点P为叶尖)与水平线的夹角为45°,求幼苗叶片的长度PD.23.对某一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y的取值范围是m≤y≤n,且满足n−m=t(b−a)则称此函数为“t系郡园函数”(1)已知正比例函数y=ax(1≤x≤4)为“1系郡园函数”,则a的值为多少?(2)已知二次函数y=−x2+2ax+a2,当1≤x≤3时,y是“t系郡园函数”,求t的取值范围;(3)已知一次函数y=kx+1(a≤x≤b且k>0)为“2系郡园函数”,P(x,y)是函数y=kx+1上的一点,若不论m取何值二次函数y=mx2+(m−2)x−2m+1的图象都不经过点P,求满足要求的点P的坐标.答案解析部分1.【答案】A2.【答案】C3.【答案】C4.【答案】D5.【答案】D6.【答案】C7.【答案】D8.【答案】C9.【答案】D10.【答案】D11.【答案】012.【答案】k≤313.【答案】201714.【答案】−1或−215.【答案】81016.【答案】417.【答案】(1)y=−x2−2x+3(2)0≤y≤318.【答案】(1)x=−1,x1=1,x2=−22(2)y=x2+x19.【答案】(1)y=2x2−8x+16;(2)当x=2时,y有最小值8,即四边形EFGH的面积最小为8.20.【答案】(1)解:∵点P(1,2)在函数y=k(k>0,x>0)的图象上,x∴2=k,1∴k=2,即k的值为2;(2)解:∵点A(t,0)在x轴负半轴上,∴OA=−t,∵四边形OABC为正方形,∴OC=BC=OA=−t,BC//x轴,∴△BCP的面积为S=12×(−t)×(2−t)=12t2−t,∴T=2S−2t2=2(12t2−t)−2t2=−t2−2t=−(t+1)2+1,∵−1<0,∴抛物线开口向下,∴当t=−1时,T有最大值,T的最大值是1.21.【答案】(1)−3(2)y1<y2(3)a>12,b≥122.【答案】(1)y=14(x−2)2−1,D坐标为(2,−1);(2)C C1=62;(3)PD=42 23.【答案】(1)±1.(2)t≥1 2(3)(1,3),(−2,−3),(0,1)。
第1章二次函数数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、抛物线y=x2向右平移一个单位得到抛物线()A.y=(x+1)2B.y=(x﹣1)2C.y=(x﹣1)2+1D.y=(x﹣1)2﹣12、在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A. B. C. D.3、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列命题中正确的是()A.a>b>cB.一次函数y=ax+c的图象不经第四象限C.m(am+b)+b <a(m是任意实数)D.3b+2c>04、已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列4个结论:①abc<0;②2a+b =0;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论的个数是()A.1B.2C.3D.45、关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A.图象开口向上B.图象的对称轴是直线x=1C.图象有最低点 D.图象的顶点坐标为(﹣1,2)6、小明从如图所示的二次函数y=ax2+bx+c图象中,观察得出了下面的五条信息:①a<0;②c=0;③函数的最小值为-3;④当x<0时,y>0;⑤当0<x1<x2<2时,y1>y2.A.2B.3C.4D.57、将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的解析式为()A.y=x 2﹣1B.y=x 2+1C.y=(x﹣1)2D.y=(x+1)28、已知函数y=(x﹣a)(x﹣b)(其中a>b)的图象如下面右图所示,则函数y=ax+b的图象可能正确的是()A. B. C. D.9、二次函数y=ax2+bx+c的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③2a﹣b=0;④abc>0,其中正确结论的个数是()A.4个B.3个C.2个D.1个10、关于二次函数,下列说法错误的是()A.若将图象向上平移10个单位,再向左平移2个单位后过点,则B.当时,y有最小值C. 对应的函数值比最小值大7D.当时,图象与x轴有两个不同的交点11、将抛物线y=2(x+1)2﹣2的图象先向左平移1个单位长度,再向上平移3个单位长度,则顶点坐标为()A.(﹣2,1)B.(2,1)C.(0,1)D.(﹣2,﹣5)12、一抛物线的形状、开口方向与相同,顶点为(-2,1).此抛物线的解析式为( )A. B. C. D.13、若抛物线y=x2﹣2x﹣1与x轴的一个交点坐标为(m,0),则代数式m2﹣2m+2017的值为()A.2019B.2018C.2016D.201514、已知某二次函数的图象如图所示,则这个二次函数的解析式为()A. B. C. D.15、二次函数y=ax2+bx+c(a≠0)的图象如图,a,b,c的取值范围()A.a<0,b<0,c<0B.a<0,b>0,c<0C.a>0,b>0,c<0 D.a>0,b<0,c<0二、填空题(共10题,共计30分)16、若函数y=(m+2)是二次函数,则m=________ .</p>17、抛物线与轴有两个交点、,则不等式的解集为________.18、二次函数y=ax2+bx+c的图象如图,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a﹣b=0;④a﹣b+c>0;⑤9a﹣3b+c>0.其中正确的结论有________.19、如图,抛物线y=ax2﹣4和y=﹣ax2+4都经过x轴上的A、B两点,两条抛物线的顶点分别为C、D.当四边形ACBD的面积为40时,a的值为________.20、如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则Q 点的坐标为________.21、已知抛物线y=﹣x2+2,当1≤x≤5时,y的最大值是________.22、如图所示,抛物线y=ax2+bx+c(a 0)与轴的两个交点分别为A(-1,0)和B(2,0),当y<0时,x的取值范围是________.23、已知二次函数及一次函数,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线与新图象有3个交点时,m的值是________.24、已知二次函数y=ax2+bx+c(a≠0),其中自变量x与函数值y之间满足下面的对应关系:x ……3 5 7 ……y ……3.5 3.5 -2 ……则a+b+c=________.25、已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为________三、解答题(共5题,共计25分)26、已知抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),求a,b的值27、如图,在△ABC中,AB=AC=4cm,∠BAC=90°.动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为ts,四边形APQC的面积为ycm2.(1)当t为何值时,△PBQ是直角三角形?(2)①求y与t的函数关系式,并写出t的取值范围;②当t为何值时,y取得最小值?最小值为多少?(3)设PQ的长为xcm,试求y与x的函数关系式.28、用总长为60的篱笆围成的矩形场地,矩形面积S随矩形一边长L的变化而变化,L是多少时,场地的面积S最大?29、已知二次函数y=a(x﹣h)2+k当x=﹣1时,有最小值﹣4,且当x=0时,y=﹣3,求二次函数的解析式.30、某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售200件,售价每提高1元,销售量将减少10件.那么,该服装每件售价是多少元时,商店销售这批服装获利能达到2240元?参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、D5、D6、C8、D9、B10、C11、A12、C13、B14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
浙教版九年级上册第一章二次函数单元测试卷班级__________ 姓名__________ 得分_________一、选择题(本题有10小题,每小题3分,共30分)1.已知抛物线y=(m-1)x2经过点(-1,-2),那么m的值是()A.1 B.-1 C.2 D.-22.抛物线y=-3x2-x+4与坐标轴的交点的个数是()A.3 B.2 C.1 D.03.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2-5 B.y=(x+2)2+5 C.y=(x-2)2-5 D.y=(x-2)2+54.若二次函数y=ax2(a≠0)的图象经过点M(2,-3),则它也经过()A.M'(-2,-3) B.M'(-2,3) C.M'(-3,-2) D.M'(-3,2)5.二次函数y=-x2+1的图象与x轴交于A,B两点,与y轴相交于点C.下列说法中,错误的是()A.△ABC是等腰三角形B.点C的坐标是(0,1)C.AB的长为2 D.y随x的增大而减小6.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+27.将二次函数y=-(x-k)2+k+1的图象向右平移1个单位,再向上平移2个单位后,顶点在直线y=2x+1上,则k的值为()A.2 B.1 C.0 D.-18.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.-3 B.3 C.-6 D.99.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c-3=0,有两个不相等的实数根二、填空题(本题有8小题,每小题3分,共24分)11.已知二次函数y=x2-2x-3与y轴交点坐标是__________.12.如图所示的抛物线是二次函数y=ax2-3x+a2-1的图象,那么a的值是__________.13.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数表达式为__________.14.请写出一个对称轴为直线x=1,且图象开口向上的二次函数表达式:__________.15.把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的表达式为__________.16.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是__________.17.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是__________.18.已知二次函数y=x2-mx-1,当x<4时,函数值y随x的增大而减小,则m的取值范围是__________.三、解答题(本题有6题,共46分)19.(本题6分)如图所示,已知二次函数y=x2-4x+3.(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况.(2)求函数图象与x轴的交点A,B的坐标及△ABC的面积.20.(本题6分)已知二次函数图象的顶点坐标为(1,-1),且过原点(0,0),求该函数表达式.21.(本题8分)课本中有一个例题.有一个窗户形状如图①,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6 m,如何设计这个窗户能使透光面积最大?这个例题的答案是当窗户半圆的半径约为0.35 m时,透光面积的最大值约为1.05 m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图②,材料总长仍为6 m,利用图③,解答下列问题:(1)若AB为1 m,求此时窗户的透光面积;(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.①②③22.(本题8分)一列火车在A城的正北240 km处,以120 km/h的速度驶向A城.同时,一辆汽车在A 城的正东120 km处,以120 km/h速度向正西方向行驶.假设火车和汽车的行驶方向和速度都保持不变,问何时火车与汽车之间的距离最近?当火车与汽车距离最近时,汽车是否已过铁路与公路的交叉口?(火车与汽车的长度忽略不计)23.(本题8分)学校计划用地面砖铺设教学楼前矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如果铺白色地面砖的费用为每平方米30元,铺绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?24点C,E.(1)求抛物线的函数表达式;(2)若点C为OA的中点,求BC的长;(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.第一章二次函数单元测试·答案一、选择题(本题有10小题,每小题3分,共30分)1.已知抛物线y=(m-1)x2经过点(-1,-2),那么m的值是()A.1 B.-1 C.2 D.-2【答案】B2.抛物线y=-3x2-x+4与坐标轴的交点的个数是()A.3 B.2 C.1 D.0【答案】A3.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2-5 B.y=(x+2)2+5 C.y=(x-2)2-5 D.y=(x-2)2+5【答案】A【解析】根据“左加右减,上加下减”的规律可知,将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为y=(x+2)2-5,故选A.4.若二次函数y=ax2(a≠0)的图象经过点M(2,-3),则它也经过()A.M'(-2,-3) B.M'(-2,3) C.M'(-3,-2) D.M'(-3,2)【答案】A【解析】二次函数y=ax2的图象关于y轴对称.关于y轴对称的点的横坐标互为相反数,纵坐标相同,故选A.5.二次函数y=-x2+1的图象与x轴交于A,B两点,与y轴相交于点C.下列说法中,错误的是()A.△ABC是等腰三角形B.点C的坐标是(0,1)C.AB的长为2 D.y随x的增大而减小【答案】D6.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+2【答案】D【解析】y=x2-2x+3=x2-2x+1+2=(x-1)2+2.7.将二次函数y=-(x-k)2+k+1的图象向右平移1个单位,再向上平移2个单位后,顶点在直线y=2x+1上,则k的值为()A.2 B.1 C.0 D.-1【答案】C8.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.-3 B.3 C.-6 D.9【答案】B9.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()【答案】A【解析】连结AF,由题意EC=4-x,FD=4-y,在Rt △AEF 中,AE 2+EF 2=AF 2,即x 2+42+y 2+(4-x )2=42+(4-y )2, 化简得y =-14x 2+x =-14(x -2)2+1,∵0≤x ≤4,∴选A .10.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论正确是( ) A .abc >0 B .2a +b <0 C .3a +c <0D .ax 2+bx +c -3=0,有两个不相等的实数根【答案】C【解析】由二次函数图象开口向下可知,a <0,由“左同右异”可知b >0,由图象与y 轴交于正半轴可知c >0,故abc <0,故A 选项错误;由图象可知,对称轴为直线x =1,即-b2a =1,则b =-2a ,故2a +b =0,故B 选项错误;当x =-1时,y =a -b +c =a +2a +c =3a +c ,由图象与x 轴交于x 轴下方可知,当x =-1时,y <0,即3a +c <0,故C 选项正确;当y =3时,ax 2+bx +c =3,即ax 2+bx +c -3=0,由图象可知,当y =3时,x =1,故ax 2+bx +c -3=0有两个相等的实数根,故D 选项错误.故选C .二、填空题(本题有8小题,每小题3分,共24分)11.已知二次函数y =x 2-2x -3与y 轴交点坐标是__________.【答案】(0,-3)12.如图所示的抛物线是二次函数y =ax 2-3x +a 2-1的图象,那么a 的值是__________.【答案】-1【解析】由图象可知,抛物线经过原点(0,0),∴a2-1=0,解得a=±1.∵图象开口向下,∴a<0,∴a=-1.13.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数表达式为__________.【答案】y=-x2+4x-3【解析】设抛物线的函数表达式为y=a(x-2)2+1(a≠0),将B(1,0)代入y=a(x-2)2+1,得a=-1.∴函数表达式为y=-(x-2)2+1,即y=-x2+4x-3.14.请写出一个对称轴为直线x=1,且图象开口向上的二次函数表达式:__________.【答案】y=x2-2x15.把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的表达式为__________.【答案】y=-(x+1)2-2【解析】二次函数y=(x-1)2+2的顶点坐标为(1,2),开口向上,绕原点旋转180°后得到的二次函数图象的顶点坐标为(-1,-2),开口向下,所以旋转后的新函数图象的表达式为y=-(x+1)2-2.16.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx +n>ax2+bx+c的解集是__________.【答案】x<-1或x>4【解析】由函数图象可知:在点A的左侧和点B的右侧,一次函数的函数值都大于二次函数的函数值,∵A(-1,p),B(4,q),∴关于x的不等式mx+n>ax2+bx+c的解集是x<-1或x>4.17.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是__________.【答案】-2 【解析】由抛物线y =ax 2+bx可知,点C 的横坐标为-b 2a ,纵坐标为-b 24a.∵四边形ABOC 是正方形, ∴-b 2a =-⎝⎛⎭⎫-b 24a .∴b =-2.18.已知二次函数y =x 2-mx -1,当x <4时,函数值y 随x 的增大而减小,则m 的取值范围是__________. 【答案】m ≥8三、解答题(本题有6题,共46分)19.(本题6分)如图所示,已知二次函数y =x 2-4x +3.(1)用配方法求其图象的顶点C 的坐标,并描述该函数的函数值随自变量的增减而变化的情况. (2)求函数图象与x 轴的交点A ,B 的坐标及△ABC 的面积.【答案】解:(1)y =x 2-4x +3=x 2-4x +4-4+3=(x -2)2-1. ∴顶点C 的坐标是(2,-1).当x ≤2时,y 随x 的增大而减小;当x ≥2时,y 随x 的增大而增大. (2)令x 2-4x +3=0,解得x 1=3,x 2=1. ∴点A 的坐标是(1,0),点B 的坐标是(3,0). ∴S △ABC =12AB ×h =12×2×1=1.20.(本题6分)已知二次函数图象的顶点坐标为(1,-1),且过原点(0,0),求该函数表达式.【答案】解:∵二次函数图象的顶点坐标为(1,-1), ∴可设为y =a (x -1)2-1(a ≠0).∵当x =0时,y =0,∴0=a ×(0-1)2-1,解得a =1. ∴该函数表达式为y =(x -1)2-1. 21.(本题8分)课本中有一个例题.有一个窗户形状如图①,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6 m ,如何设计这个窗户能使透光面积最大?这个例题的答案是当窗户半圆的半径约为0.35 m 时,透光面积的最大值约为1.05 m 2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图②,材料总长仍为6 m ,利用图③,解答下列问题:(1)若AB 为1 m ,求此时窗户的透光面积;(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.①②③【答案】解:(1)由题意,得AD =54 m ,∴S =54 m 2;(2)设AB =x (m ),则AD =12×⎝⎛⎭⎫6-3x -x 2=⎝⎛⎭⎫3-74x m , ∵3-74x >0,∴0<x <127.设窗户面积为S (m 2),由题意,得S =AB ·AD =x ⎝⎛⎭⎫3-74x =-74x 2+3x =-74⎝⎛⎭⎫x -672+97, 当x =67 m 时,S 最大值=97m 2>1.05 m 2.∴与课本中的例题比较,现在窗户透光面积的最大值变大.22.(本题8分)一列火车在A 城的正北240 km 处,以120 km /h 的速度驶向A 城.同时,一辆汽车在A城的正东120 km 处,以120 km /h 速度向正西方向行驶.假设火车和汽车的行驶方向和速度都保持不变,问何时火车与汽车之间的距离最近?当火车与汽车距离最近时,汽车是否已过铁路与公路的交叉口?(火车与汽车的长度忽略不计) 【答案】解:如答图,设经过t h ,火车到达B 处,汽车到达C 处,则AB =|240-120t |, AC =|120-120t |, 在Rt △ABC 中, BC =AB 2+AC 2=(240-120t )2+(120-120t )2 =1202(2-t )2+1202(1-t )2 =1202t 2-6t +5=1202⎝⎛⎭⎫t -322+12. 当t =32 h 时,BC 之间的距离最小,此时BC =12012=602, ∵当t =32 h 时,汽车运动的距离为120×32=180(km )>120(km ),∴汽车已过铁路与公路的交叉口.答:当经过32h 时汽车与火车的距离最近,此时汽车已过铁路与公路的交叉口.23.(本题8分)学校计划用地面砖铺设教学楼前矩形广场的地面ABCD ,已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米? (2)如果铺白色地面砖的费用为每平方米30元,铺绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?【答案】解:(1)设矩形广场四角的小正方形的边长为x米,根据题意,得4x2+(100-2x)(80-2x)=5200,整理,得x2-45x+350=0,解得x1=35,x2=10.经检验,x1=35,x2=10均符合题意.所以,要使铺白色地面砖的面积为5200平方米,则矩形广场四角的小正方形的边长为35米或10米.(2)设铺矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,则y=30×[4x2+(100-2x)(80-2x)]+20×[2x(100-2x)+2x(80-2x)],即y=80x2-3600x+240000,配方,得y=80(x-22.5)2+199500.当x=22.5时,y的值最小,最小值为199500元.所以,当矩形广场四角的小正方形的边长为22.5米时,所铺广场地面的总费用最少,最少费用为24点C,E.(1)求抛物线的函数表达式;(2)若点C为OA的中点,求BC的长;(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.【答案】解:(1)∵点A(a,12)在直线y=2x上,∴12=2a,解得:a=6,又∵点A是抛物线y=12x2+bx上的一点,将点A(6,12)代入y=12x2+bx,可得b=-1,∴抛物线表达式为y=12x2-x.(2)∵点C是OA的中点,∴点C的坐标为(3,6),把y=6代入y=12x2-x,解得:x1=1+13,x2=1-13(舍去),故BC=1+13-3=13-2.(3)∵直线OA的表达式为:y=2x,点D的坐标为(m,n),∴点E的坐标为(12n,n),点C的坐标为(m,2m),∴点B的坐标为(12n,2m),把点B(12n,2m)代入y=12x2-x,可得m=116n2-14n,。
浙教版九年级数学上册第一章二次函数单元检测(附答案)一、单选题(共10题;共20分)1.如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是( )A. B. C. D.2.二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b+c,N=a-b+c,P=4a+2b则()A. M>0,N>0,P>0B. M>0,N<0,P>0C. M<0,N>0,P>0D. M<0,N>0,P<03.如图,在正方形ABCD中,AB=,P为对角线AC上的动点,PQ⊥AC交折线A﹣D﹣C于点Q,设AP =x,△APQ的面积为y,则y与x的函数图象正确的是()A. B. C. D.4.已知函数,则使y=k成立的x值恰好有三个,则k的值为()A. 0B. 1C. 2D. 35.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是()A. ①②③B. ①③④C. ①②③⑤D. ①③⑤6.抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是()A. m≤2或m≥3B. m≤3或m≥4C. 2<m<3D. 3<m<47.已知:如图,直线y=kx+b(k,b为常数)分别与x轴、y轴交于点A(﹣4,0),B(0,3),抛物线y=﹣x2+4x+1与y轴交于点C,点E在抛物线y=﹣x2+4x+1的对称轴上移动,点F在直线AB上移动,CE+EF的最小值是()A. 2B. 4C. 2.5D. 38.如图正方形ABCD的边长为2,点E,F,G,H分别在AD,AB,BC,CD上,且EA=FB=GC=HD,分别将△AEF,△BFG,△CGH,△DHE沿EF,FG,GH,HE翻折,得四边形MNKP,设AE=x(0<x<1),S四边形MNKP=y,则y关于x的函数图象大致为()A. B. C. D.9.一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(-2,0),则下列结论中,正确的是()A. b=2a+kB. a=b+kC. a>b>0D. a>k>010.二次函数的图象如图,若一元二次方程有实数解,则k的最小值为( )A. -4B. -6C. -8D. 0二、填空题(共6题;共12分)11.已知抛物线y=x2﹣2x﹣3与x轴相交于A、B两点,其顶点为M,将此抛物线在x轴下方的部分沿x轴翻折,其余部分保持不变,得到一个新的图象.如图,当直线y=﹣x+n与此图象有且只有两个公共点时,则n的取值范围为________.12.如图,一段抛物线y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;…如此进行下去,得到一条“波浪线”.若点P(37,m)在此“波浪线”上,则m的值为________.13.如图,将二次函数y=x2﹣m(其中m>0)的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,形成新的图象记为y1,另有一次函数y=x+b的图象记为y2,则以下说法:①当m=1,且y1与y2恰好有三个交点时b有唯一值为1;②当b=2,且y1与y2恰有两个交点时,m>4或0<m<;③当m=﹣b时,y1与y2一定有交点;④当m=b时,y1与y2至少有2个交点,且其中一个为(0,m).其中正确说法的序号为________.14.如图抛物线y=-x2-2x+3与x轴交于A,B,与y轴交于点C,点P为顶点,线段PA上有一动点D,以CD 为底边向下作等腰三角形△CDE,且∠DEC=90°,则AE的最小值为________ 。
2018-2019学年第一章二次函数单元测试卷一、选择题:(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A、y=(x-1)2+2B、y=(x+1)2+2C、y=(x-1)2-2D、y=(x+1)2-22、已知二次函数y=ax2的图象开口向上,则直线y=ax-1经过的象限是()A、第一、二、三象限B、第二、三、四象限C、第一、二、四象限D、第一、三、四象限3、将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为()A、y=(x+1)2+4B、y=(x-1)2+4C、y=(x+1)2+2D、y=(x-1)2+24、设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A、c=3B、c≥3C、1≤c≤3D、c≤35、已知二次函数y=a(x-2)2+c(a>0),当自变量x分别取、3、0时,对应的函数值分别:y1,y2,y3,则y1,y2,y3的大小关系正确的是( )A、y3<y2<y1B、y1<y2<y3C、y2<y1<y3D、y3<y1<y26、已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是()A、有最小值0,有最大值3B、有最小值﹣1,有最大值0C、有最小值﹣1,有最大值3D、有最小值﹣1,无最大值7、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A、B、C、D、8、如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C 的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为A、B、C、D、二、填空题(共5题;共20分)9、函数y=(x﹣1)2+3的最小值为 ________.10、已知二次函数,当时,y有最小值1,则a=________.11、如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为________ .12、抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是________ .13、老师给出一个二次函数,甲,乙,丙三位同学各指出这个函数的一个性质:甲:函数的图象经过第一、二、四象限;乙:当x<2时,y随x的增大而减小.丙:函数的图象与坐标轴只有两个交点.已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数________.三、解答题(共6题;共56分)14、已知二次函数y=2x2﹣8x.(1)用配方法将y=2x2﹣8x化成y=a(x﹣h)2+k的形式;(2)求出该二次函数的图象与x轴的交点A,B的坐标(A在B的左侧);(3)将该二次函数的图象沿x轴向左平移2个单位,再沿y轴向上平移3个单位,请直接写出得到的新图象的函数表达式.15、已知关于x的一元二次方程x2+2x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,求关于x的二次函数y=x2+2x+k﹣1的图象的对称轴和顶点坐标.16、拱桥的形状是抛物线,其函数关系式为,当水面离桥顶的高度为m时,水面的宽度为多少米?17、抛物线y=-与y轴交于(0,3),⑴求m的值;⑵求抛物线与x轴的交点坐标及顶点坐标;⑶当x取何值时,抛物线在x轴上方?⑷当x取何值时,y随x的增大而增大?18、某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1)求y与x的关系式;(2)当x取何值时,y的值最大?(3)如果公司想要在这段时间内获得2 250元的销售利润,销售单价应定为多少元?19、如图,二次函数的图象与x轴交于点A(-3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)请直接写出点D的坐标:(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.答案解析一、单选题1、【答案】A【考点】二次函数图象与几何变换【解析】【分析】根据函数图象右移减、左移加,上移加、下移减,可得答案.【解答】将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是y=(x-1)2+2,故选:A.2、【答案】D【考点】二次函数的性质,一次函数的性质【解析】【分析】二次函数图象的开口向上时,二次项系数a>0;一次函数y=kx+b(k≠0)的一次项系数k>0、b<0时,函数图象经过第一、三、四象限.【解答】∵二次函数y=ax2的图象开口向上,∴a>0;又∵直线y=ax-1与y轴交于负半轴上的-1,∴y=ax-1经过的象限是第一、三、四象限.故选D.3、【答案】D【考点】二次函数的三种形式【解析】【分析】本题是将一般式化为顶点式,由于二次项系数是1,只需加上一次项系数的一半的平方来凑成完全平方式即可.【解答】y=x2-2x+3=x2-2x+1-1+3=(x-1)2+2.故选:D.【点评】二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).4、【答案】B【考点】二次函数的性质,二次函数与不等式(组),二次函数图象上点的坐标特征【解析】【分析】因为当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,所以函数图象过(1,0)点,即1+b+c=0①,由题意可知当x=3时,y=9+3b+c≤0②,所以①②联立即可求出c的取值范围.【解答】∵当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,∴函数图象过(1,0)点,即1+b+c=0①,∵当1≤x≤3时,总有y≤0,∴当x=3时,y=9+3b+c≤0②,①②联立解得:c≥3,故选B.5、【答案】B【考点】二次函数的性质,二次函数图象上点的坐标特征【解析】【分析】根据抛物线的性质,开口向上的抛物线,其上的点离对称轴越远,对应的函数值就越大,x取0时所对应的点离对称轴最远,x取时所对应的点离对称轴最近,即可得到答案.【解答】∵二次函数y=a(x-2)2+c(a>0),∴该抛物线的开口向上,且对称轴是x=2.∴抛物线上的点离对称轴越远,对应的函数值就越大,∵x取0时所对应的点离对称轴最远,x取时所对应的点离对称轴最近,∴y3>y2>y1.故选B.【点评】本题考查了二次函数图象上点的坐标特征.解题时,需熟悉抛物线的有关性质:抛物线的开口向上,则抛物线上的点离对称轴越远,对应的函数值就越大.6、【答案】C【考点】二次函数的性质,二次函数的最值【解析】【分析】根据函数图象自变量取值范围得出对应y的值,即是函数的最值.【解答】根据图象可知此函数有最小值-1,有最大值3.故选C.【点评】此题主要考查了根据函数图象判断函数的最值问题,结合图象得出最值是利用数形结合,此知识是部分考查的重点.7、【答案】C【考点】一次函数的图象,二次函数的图象【解析】【解答】解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx 来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.8、【答案】B【考点】二次函数的图象【解析】【分析】分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:∵等边三角形ABC的边长为3,N为AC的三等分点,∴AN=1。
∴当点M位于点A处时,x=0,y=1。
①当动点M从A点出发到AM=的过程中,y随x的增大而减小,故排除D;②当动点M到达C点时,x=6,y=3﹣1=2,即此时y的值与点M在点A处时的值不相等,故排除A、C。
故选B。
二、填空题9、【答案】3【考点】二次函数的最值【解析】【解答】解:根据非负数的性质,(x﹣1)2≥0,于是当x=1时,函数y=(x﹣1)2+3的最小值y等于3.故答案为:3.【分析】根据顶点式得到它的顶点坐标是(1,3),再根据其a>0,即抛物线的开口向上,则它的最小值是3.10、【答案】【考点】二次函数的最值【解析】【解答】解:∵y = x2−2ax+3 =(x-a)2-a2+3,∴抛物线对称轴为直线x=a,开口向上,①当-1a2时,即对称轴在− 1 ≤ x≤ 2之间,y的最小值是顶点的纵坐标值,即-a2+3=1,解得:a1=,a2=(与-1a2矛盾,舍去).②当a-1时,即对称轴在− 1 ≤ x≤ 2左侧,则当x=-1时,y有最小值,即(-1-a)2-a2+3=1,解得:a=.③当a2时,即对称轴在− 1 ≤ x≤ 2右侧,则当x=2时,y有最小值,即(2-a)2-a2+3=1,解得:a=(与a2矛盾,舍去).综上,a=或.故答案为:或.【分析】把二次函数解析式整理成顶点式,然后得出对称轴为直线x=a,再分①当-1a2时,②当a-1时,③当a2时三种情况,利用二次函数增减性讨论求解.11、【答案】【考点】正比例函数的图象和性质,反比例函数的性质,二次函数的图象,概率公式,一次函数的性质【解析】【解答】解:∵4张卡片中只有第2个经过第四象限,∴取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为,故答案为:.【分析】用不经过第四象限的个数除以总个数即可确定答案.12、【答案】y=﹣2x2﹣4x﹣3【考点】二次函数图象与几何变换【解析】【解答】解:将y=2x2﹣4x+3化为顶点式,得y=2(x﹣1)2+1,抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2(x+1)2﹣1,化为一般式,得y=﹣2x2﹣4x﹣3,故答案为:y=﹣2x2﹣4x﹣3【分析】根据旋转的性质,可得a的绝对值不变,根据中心对称,可得答案.13、【答案】y=(x﹣2)2【考点】二次函数的性质【解析】【解答】解:∵当x<2时,y随x的增大而减小.当x<2时,y>0.∴可以写一个对称轴是x=2,开口向上的二次函数就可以.∵函数的图象经过第一、二、四象限,函数的图象与坐标轴只有两个交点.∴所写的二次函数的顶点可以在x轴上,顶点是(2,0),并且二次项系数大于0的二次函数,就满足条件.如y=(x﹣2)2,答案不唯一.【分析】当x<2时,y随x的增大而减小,对称轴可以是x=2,开口向上的二次函数.函数的图象经过第一、二、四象限,函数的图象与坐标轴只有两个交点,则顶点坐标为(2,0)二次函数的顶点在x轴上.顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标.三、解答题14、【答案】解:(1)y=2x2﹣8x=2(x2﹣4x+4﹣4)=2(x﹣2)2﹣8;(2)在y=2x2﹣8x中令y=0,则2x2﹣8x=0,解得:x1=0,x2=4,则A的坐标是(0,0),B的坐标是(4,0);(3)y=2(x﹣2)2﹣8沿x轴向左平移2个单位,再沿y轴向上平移3个单位后的解析式是:y=2x2﹣5.【考点】二次函数图象与几何变换,抛物线与x轴的交点【解析】【分析】(1)利用配方法即可直接求解;(2)在解析式中令y=0,求得x即可求得A和B的横坐标;(3)根据二次函数的平移法则即可直接写出平移后的解析式.15、【答案】解:(1)∵关于x的一元二次方程x2+2x+k﹣1=0有实数根,∴△=4﹣4(k﹣1)≥0.∴k≤2.∵k为正整数,∴k=1,2;(2)设方程x2+2x+k﹣1=0的两根为x1,x2,则x1+x2=﹣2,x1•x2=k﹣1,当k=1时,方程x2+2x+k﹣1=0有一个根为零;当k=2时,方程x2+2x+k﹣1=0有两个相同的非零实数根﹣1.k=2符合题意.二次函数y=x2+2x+1=(x+1)2,对称轴是x=﹣1,顶点坐标是(﹣1,0).【考点】根的判别式,二次函数的性质【解析】【分析】(1)根据一元二次方程x2+2x+k﹣1=0有实数根,可推△≥0,求出k的取值范围,得出k的数值即可;(2)分别把k的值代入方程2x2+4x+k﹣1=0,解得结果根据方程有两个非零的整数根进行分析,确定k的值,进一步利用二次函数的性质确定对称轴和顶点坐标.16、【答案】解:以桥顶为坐标原点建立直角坐标系,如图示:水面和y轴的交点坐标是(0,-)水面和拱桥的交点的纵坐标也是-,当y=-时,-=-=25 或水面的宽度:5-(-5)=10(米)【考点】二次函数图象与几何变换,二次函数图象上点的坐标特征【解析】【分析】根据题意,把y=直接代入求解即可.本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.17、【答案】(1)由抛物线y=-x2+(m-1)x+m与y轴交于(0,3)得:m=3.∴抛物线为y=-x2+2x+3=-(x-1)2+4.列表得:X-1 0 1 2 3y0 3 4 3 0图象如图:(2)由-x2+2x+3=0,得:x1=-1,x2=3.∴抛物线与x轴的交点为(-1,0),(3,0).∵y=-x2+2x+3=-(x-1)2+4∴抛物线顶点坐标为(1,4).(3)由图象可知:当-1<x<3时,抛物线在x轴上方.(4)由图象可知:当x>1时,y的值随x值的增大而减小.【考点】二次函数的性质,二次函数与不等式(组),二次函数图象上点的坐标特征【解析】【分析】(1)直接把点(0,3)代入抛物线解析式求m,确定抛物线解析式,根据解析式确定抛物线的顶点坐标,对称轴,开口方向,与x轴及y轴的交点,画出图象.(2)、(3)、(4)可以通过(1)的图象及计算得到.18、【答案】解:(1)y=(x-50)•w=(x-50)•(-2x+240)=-2x2+340x-12000,因此y与x的关系式为:y=-2x2+340x-12000.(2)y=-2x2+340x-12000=-2(x-85)2+2450,∴当x=85时,在50<x≤90内,y的值最大为2450.(3)当y=2250时,可得方程-2(x-85)2+2450=2250,解这个方程,得x1=75,x2=95;根据题意,x2=95不合题意应舍去.答:当销售单价为75元时,可获得销售利润2250元.【考点】二次函数的最值,二次函数的应用【解析】【分析】(1)利用每千克销售利润×销售量=总销售利润列出函数关系式,整理即可解答;(2)利用配方法可求最值;(3)把函数值代入,解一元二次方程解决问题.19、【答案】(1)(﹣3,4);(2)设PA=t,OE=l由∠DAP=∠POE=∠DPE=90°得△DAP∽△POE∴∴l=﹣∴当t=时,l有最大值即P为AO中点时,OE的最大值为;(3)存在.①点P点在y轴左侧时,P点的坐标为(﹣4,0)由△PAD∽△OEG得OE=PA=1∴OP=OA+PA=4∵△ADG∽△OEG∴AG:GO=AD:OE=4:1∴AG=,∴重叠部分的面积=;②当P点在y轴右侧时,P点的坐标为(4,0),此时重叠部分的面积为.【考点】二次函数的最值【解析】【分析】(1)将点A的坐标代入二次函数的解析式求得其解析式,然后求得点B的坐标即可求得正方形ABCD的边长,从而求得点D的纵坐标;(2)PA=t,OE=l,利用△DAP∽△POE得到比例式,从而得到有关两个变量的二次函数,求最值即可;(3)分点P位于y轴左侧和右侧两种情况讨论即可得到重叠部分的面积.。