泰勒公式与极值问题.
- 格式:ppt
- 大小:1.28 MB
- 文档页数:37
§ 4 Taylor 公式和极值问题(一) 教学目的:掌握二元函数的高阶偏导数与泰勒公式的定义,掌握二元函数的极值的必要条件与充分条件. (二) 教学内容:二元函数的高阶偏导数;中值定理与泰勒公式;二元函数的极值的必要条件与充分条件. 基本要求:(1)掌握二元函数的高阶偏导数与泰勒公式的定义,能够根据二元函数的极值的必要条件与充分条件寻找二元函数的极值与最大(小)值.(2) 较高要求:掌握混合偏导数与求导次序无关的定理的证明以及二元函数的极值的必要条件充分条件定理的证明.(三) 教学建议:(1) 布置适量的求二元函数的高阶偏导数和求二元函数的极值与最值的习题. (2) 讨论混合偏导和与求导次序无关的多种定理证明的习题有一定的难度,只对较好学生布置有关习题.————————————————————一. 高阶偏导数:1. 高阶偏导数的定义、记法:例9 ,2yx ez += 求二阶偏导数和23xy z ∂∂∂.例10 xy arctg z =. 求二阶偏导数.上面两个例子中,关于y x 和,的不同顺序的两个二阶偏导数都相等,,但是这个结论并不对任何函数都成立,例如⎪⎩⎪⎨⎧=≠+-=)0,0(),(,0)0,0(),(,),(2222y x y x yx yx xy y x f ⎪⎩⎪⎨⎧=≠+-+=)0,0(),(,0)0,0(),(,)(4(),(2224224y x y x y x y y x x y y x f x⎪⎩⎪⎨⎧=≠+--=)0,0(),(,0)0,0(),(,)(4(),(2224224y x y x y x y y x x x y x f y1lim)0,0(),0(lim)0,0(00-=∆∆-=∆-∆=→∆→∆yy yf y f f y x x y xy1lim)0,0()0,(lim)0,0(0=∆∆=∆-∆=→∆→∆xx xf x f f y y y x yx由此可知,),(y x f 关于y x 和,的不同顺序的两个二阶混合偏导数与求次序有关。
浅谈泰勒公式及其应用摘要:大学泰勒公式在数学分析中是极其重要的公式,并且在经济领域中也占有一席之地。
泰勒公式是研究函数极限和估计误差等方面不可或缺的数学工具,在近似计算上有着独特的优势,在微积分的各个方面有着重要的应用。
本文主要对泰勒公式在求极限、估计误差、证明求解积分、经济学计算等几个方面的应用给予举例说明进行研究。
关键词:泰勒公式 求极限 不等式 行列式泰勒公式的应用1、利用泰勒公式求极限对于待定型的极限问题,一般可以采用洛比达法则来求,但是,对于一些求导比较繁琐,特别是要多次使用洛比达法则的情况,泰勒公式往往是比洛比达法则更为有效的求极限工具。
利用泰勒公式求极限,一般用麦克劳林公式形式,并采用佩亚诺型余项。
当极限式为分式时,一般要求分子分母展成同一阶的麦克劳林公式,通过比较求出极限。
例1 求2240cos limx x x e x -→-分析:此题分母为4x ,如果用洛比达法则,需连用4次,比较麻烦.而用带佩亚诺余项的泰勒公式解求较简单。
解: 因为2211()2!x e x x o x =+++ 将x 换成22x -有222222211()()(())22!22x x x x eo -=+-+-+-又244cos 1()2!4!x x x o x =-++所以 24442111cos ()()()2484x x ex o x o x --=-+-441()12x o x =-+ 故2442441()cos 112limlim 12x x x x o x x e x x -→∞→∞-+-==- 例2 求极限2240cos limsin x x x ex-→-解: 因为分母的次数为4,所以只要把cos x ,22x e -展开到x 的4次幂即可。
24411cos 1()2!4!x x x o x =-++ 22224211()()22!2x x x eo x -=-+-+故 2240cos limsin x x x e x-→-444011()()4!8lim x x o x x →-+=112=-带有佩亚诺型余项的泰勒公式是求函数极限的一个非常有力的工具 ,运用得当会使求函数的极限变得十分简单。
泰勒公式与函数极值——极值判定的充分条件泰勒公式是利用多项式函数在某一点处的极限,展开它(函数)成无穷多个加和,使得函数值在这一点变得更加精确,或让这一点附近的计算更加容易,从而计算出更接近函数真实值的近似值。
泰勒公式是在多项式函数中提出来的极大极小值判定的一种常用充分条件。
一、泰勒公式泰勒公式通常用来计算多项式函数在某一特定点处的极限值,也可以用来估计函数的值。
它由物理学家、数学家泰勒提出,展开它一般有两种形式,即展开到第n项,前n项和后n项各自构成一种展开形式。
1. 展开到第n项:f(x)=f(a)+[f'(a)](x-a)+[f”(a)]/2!(x-a)2+……+[f(n)(a)]/n!(x-a)n。
2. 前n项展开:f(x)=f(a)+f'(a)(x-a)+f"/2!(x-a)2+……+f(n)(a)(x-a)n-o(x-a)n+1。
二、极值判定的充分条件极值判定的充分条件是当函数的一阶导数或二阶导数等于零时,函数就可能有极值。
根据极值的定义,可以得出三类极值判定充要条件:1. 一阶导数判定:f′(x)=0或无限大无限小,则此点可能是极大值点,或者极小值点。
2. 二阶导数判定:当二阶导数f″(x)存在,若此点是极大值点,则f″(x)<0,反之,若此点是极小值点,则f″(x)>0。
3. 三阶导数判定:当函数的三阶导数f‴(x)存在,若此点是极大值点,则f‴(x)>0;反之,若此点是极小值点,则f‴(x)<0。
总结:1. 泰勒公式是一种可以解决多项式函数某一特定点处极限值的计算方法,展开形式有展开到第n项和前n项展开两种形式。
2. 极值判定的充分条件是函数的一阶导数或双阶导数等于零时,函数就可能有极值,根据此定义,可以得出判定极值的一阶,二阶及三阶导数判定条件。
第三节 泰勒定理,函数极值判定§3.1 泰勒定理当一个函数给出了具体表达式后,有的函数值并不是很容易计算,例如f(x)=e x,f(0.312)=e0^312,若用十进制表示,如果不借助计算器或查表是很难计算出来的。
如何解决这一难题,多项式函数是各类函数中最简单的一种,因为它只需用到四则运算,从而使我们想到能否用多项式近似表达一般函数,实际上这是近似计算与理论分析的一个重要内容。
若函数为n 次多项式f(x)=a 0+a 1(x-x 0)+a 2(x-x0)2+……+a n (x-x 0)n (1) 逐次求它在x=x 0处的各阶导数,有f(x 0)=a 0,f ′(x 0)=a 1,f ″(x 0)=2!,a2,……,f(n) (x 0)=n!a n即 a 0=f(x 0),a 1=f ′(x 0),a 2=!2)x ("f 0……,a n =!n )x (f 0)n ( 因而(1)式可写为f(x)=f(x 0)+f ′(x 0)(x -x 0)+!2)x ("f 0 (x -x 0)2+……+!n )x (f 0)n ( (x -x 0)n(2)所以多项式f(x)的各项系数由其各阶导数值唯一确定对一般函数f(x),若存在直到n 阶导数,则按(2)式右端也可以相应地写出一个多项式,记作P n (x),则P n (x)=f(x 0)+!1)x ('f 0 (x-x 0)+!2)x ("f 0 (x-x 0)2+……+!n )x (f 0)n ( (x-x 0)n那么f(x)与P n (x)之间有什么关系呢, 由拉格朗日定理知,若f(x)在x 0的邻域内存在一阶导数,则f(x)-f(x 0)=f ′(ζ)(x -x 0) 即 f(x)=f(x 0)+f ′(ζ)(x -x 0) 若f(x)在x 0的邻域内存在n+1阶导数,则 f(x)=P n (x)+K(x -x 0)n +1 k 与f(n+1)(ζ)有关,因此,我们猜想f(x)=P n (x)+)!1n ()(f )1n (+ξ+ (x-x 0)n+1因此,有定理(泰勒( Taloyr )定理) 设函数f(x)在区间X 上存在n +1阶导数,对每一个x 0∈X ,则任给x ∈X,有f(x)=P n (x)+)!1n ()(f )1n (+ξ+ (x -x 0)n=f(x 0)+f ′(x 0)(x -x 0)+!2)x ("f 0 (x -x0)2+……+!n )x (f 0)n ( (x -x 0)n +)!1n ()(f )1n (+ξ+ (x-x 0)n (1)ζ介与x 0,x 之间的某一点。
泰勒公式极限泰勒公式极限数学中,泰勒公式是一种重要的公式,在微积分和数学分析中被广泛地应用。
其本质是利用函数在某个点的各阶导数与函数在该点的极限值之间的关系,来近似表示函数在该点附近的值。
而泰勒公式的极限是一个有趣的话题。
泰勒公式的类型泰勒公式分为多项式型和幂级数型两种类型。
多项式型泰勒公式是指用n 阶多项式近似表示函数的值,具体表示为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! + … + f⁽ⁿ⁾(a)(x-a)ⁿ/n!。
当 n 取值较大时,该近似表示的精度越高。
而一阶泰勒公式时,相当于是对函数做一次线性近似。
幂级数型泰勒公式是指利用某个点的无限阶导数来表示函数的无限项幂级数。
在数学分析中,幂级数是一种连续的函数。
具体的幂级数公式为:f(x) = Σf⁽ⁿ⁾(a)(x-a)ⁿ/n!。
泰勒公式的极限极限是微积分的一个关键概念,泰勒公式的极限即为函数在某个点处的极限值。
当在某个点a 处用多项式或幂级数来近似表示函数f(x) 时,通过取极限可以得到函数在该点a 的精确值。
对于多项式型泰勒公式,当 n 取无穷大时,其极限即为 f(a)。
而对于幂级数型泰勒公式,在无限项求和的情况下,如果幂级数在某个范围内收敛,那么极限即为函数在该点的值。
泰勒公式的应用泰勒公式是微积分和数学分析的重要工具,并且在理论和实际应用中都有广泛的用途,如:1. 极值问题:通过泰勒公式,可以求得函数在某个点的各阶导数,进而计算函数在该点处的极值。
2. 近似计算:利用泰勒公式,可以将函数在某个点处的值近似为一阶或多阶导数的线性组合。
3. 系数计算:幂级数型泰勒公式将函数展开成无限项幂级数,提供了一种求函数系数的重要方法。
4. 函数逼近:泰勒公式可以在不需要求解函数在某个点的极限值的情况下,通过对各项导数的计算,逼近函数在该点的值。
总结泰勒公式是微积分和数学分析的重要工具,其极限是近似表示函数在某个点的精确值。