第1讲 分子动理论 内能教案
- 格式:doc
- 大小:210.50 KB
- 文档页数:14
高一物理教案分子动理论9篇分子动理论 1专题讨论:哪些现象说明了分子在不停地做无规则运动?专题调查研究活动:有哪些方法可以帮助我们观察到微小事物?可上网或图书馆查询相关资料,或请教专家,将这些方法的原理、特征及优、缺点写成科技小文章相互交流.教材分析教学目标知识与技能通过观察和实验,初步了解分子动理论的基本特点,并能用其解释某些热现象。
过程与方法通过观察和实验,学会运用想象和类比等研究方法,培养学生的观察和分析概括信息的能力。
情感态度与价值观培养学生敢于表达自己的想法,随时关注周围的人和事以及有关现象。
教学重点通过观察和实验,了解分子热运动,并能用其解释某些热现象。
教学难点分子热运动剧烈程度与温度的关系,学情分析学生在第十章“多彩的物质世界中,已经对物质的组成及分子运动情况有了大致的了解,在化学课中已经知道了扩散现象,对生活中一些常见的扩散现象也有了较深的印象,但对于分子的运动快慢与什么因素有关的问题并不十分清楚。
方法运用整节课运用“讨论·实验·探究·创造·反思”五位一体的教学模式,在进行“分子运动剧烈程度与温度的关系”的探究中运用类比、推理、论证的方法。
教具和媒体教师:多媒体、一杯大米、三杯小鱼、两只温度计学生:一杯凉水、一杯热水、一把药匙、少量品红等--说明1.本节课作为本章的第一节内容,是学生在学完宏观物体的有关知识后,对微观世界的知识进一步探究学习,为后面研究物体内能及其有关知识做好铺垫。
但由于分子的运动无法直接观察探究,所以本节课主要采用类比的方法组织教学。
2.为加深学生对扩散这个常见现象的探究兴趣,设计了学生熟悉的品红在水中扩散的实验。
同时为实现物理源于生活,服务于生活,同时了解和分子热运动有关的现代科技,所以在最后让学生列举扩散现象在生活中的有关实例及其应用。
3.本节需要考察的知识与技能要求较低但内容抽象,在学习过程中,主要充分调动学生的学习积极性,以学生讨论为主,在教师引导的基础上,运用“讨论·实验·探究·创造·反思”五位一体的教学模式,以“提出问题──进行类比──形成假说──分析推断──实验检验──得出结论”为主线的思维程度进行教学,利于培养学生逻辑思维能力和归纳总结的能力。
高中物理分子动理论教案教学目标:1. 了解分子动理论的基本概念和原理2. 掌握分子动理论在物质状态变化中的应用3. 能够解释气体压强、温度、体积之间的关系教学重点:1. 分子动理论的概念和原理2. 气体状态方程中的分子动理论应用教学难点:1. 理解分子运动对物质性质的影响2. 掌握气体状态方程的推导过程和应用教学过程:一、导入(5分钟)1. 引入分子动理论的概念,让学生思考物质是由什么组成的。
2. 提出问题:为什么物质会呈现不同的状态?二、讲解分子动理论(15分钟)1. 讲解分子动理论的基本内容:分子间的运动和碰撞对物质性质的影响。
2. 讲解分子速度、能量与温度的关系。
三、实验展示(10分钟)1. 进行实验,展示不同状态的分子之间运动的差异。
2. 利用模型演示分子间的碰撞和能量传递过程。
四、气体状态方程的应用(15分钟)1. 讲解气体分子动理论和气体状态方程之间的关系。
2. 分析气体压强、体积和温度之间的关系。
五、课堂练习(10分钟)1. 学生做练习,加深对分子动理论和气体状态方程的理解。
2. 点评答案,纠正错误。
六、概括总结(5分钟)1. 总结分子动理论的重要性和应用。
2. 强化气体的分子动理论与状态方程的联系。
七、课堂作业(5分钟)1. 布置作业:阅读相关资料,了解更多有关分子动理论的内容。
2. 提醒学生复习本节课所学内容。
教学反思:本节课内容较抽象,需要借助实验和模型来直观展示分子运动的过程。
教师应注重引导学生思考,在理解概念的基础上进行延伸和应用。
同时,要注重与学生的互动,及时解答他们提出的问题,帮助他们更好地理解和掌握知识。
分⼦动理论-教案⼀、分⼦动理论的三个观点 1.物体是有⼤量的分⼦组成的这⾥的分⼦是指构成物质的单元,可以是原⼦、离⼦,也可以是分⼦。
在热运动中它们遵从相同的规律,所以统称为分⼦。
⼀般情况来说,除有机物质的⼤分⼦外,分⼦直径的数量级均为10-10m .(1)这⾥建⽴了⼀个理想化模型:把分⼦看作是⼩球,所以求出的数据只在数量级上是有意义的。
⼀般认为分⼦直径⼤⼩的数量级为10-10m 。
(2)固体、液体被理想化地认为各分⼦是⼀个挨⼀个紧密排列的,每个分⼦的体积就是每个分⼦平均占有的空间。
分⼦体积=物体体积/分⼦个数。
(3)⽓体分⼦仍视为⼩球,但分⼦间距离较⼤,不能看作⼀个挨⼀个紧密排列,所以⽓体分⼦的体积远⼩于每个分⼦平均占有的空间。
每个⽓体分⼦平均占有的空间看作以相邻分⼦间距离为边长的正⽴⽅体。
(4)阿伏加德罗常数N A =6.02×1023mol -1,是联系微观世界和宏观世界的桥梁。
它把物质的摩尔质量、摩尔体积这些宏观物理量和分⼦质量、分⼦体积这些微观物理量联系起来了。
(纳⽶技术1nm =10-9m)2.分⼦的热运动物体⾥的分⼦永不停息地做⽆规则运动,这种运动跟温度有关,所以通常把分⼦的这种运动叫做热运动。
扩散现象和布朗运动都可以很好地证明分⼦的热运动。
⑴扩散现象是两种不同物质接触时,没有受到外⼒影响⽽能彼此进⼊到对⽅⾥去的现象。
扩散现象是分⼦的直接运动形式。
⽓体、液体和固体都有扩散现象。
扩散快慢除和温度有关外,还和物体的密度差、溶液的浓度有关。
物体的密度差(或浓度差)越⼤,扩散进⾏得越快。
⽽布朗运动是悬浮在液体(或⽓体)中的微粒所做的⽆规则运动,其运动的激烈程度与微粒的⼤⼩和液体(或⽓体)的温度有关,微粒越⼩,液体温度越⾼,布朗运动越明显。
注意:微粒的尺⼨⼀般在710-~610-m ,只有在显微镜下才能观察到布朗运动,⽤眼睛直接看到的微⼩颗粒(如灰尘)则不做布朗运动。
(2)布朗运动与扩散现象是不同的现象,但也有相同之处。
物理组教学设计年级高二物理备课组审阅(备课组长)审阅(学科校长)组别主备使用人高二物理组授课时间人课5.内能课型新授课题课标子热运动平均动能的标志知道分子势能跟物体体积有关知道什么是内能,知道物体的内能跟温要求度和体积有关1、知道分子热运动动能跟温度有关。
知道温度是分子热运动平均动能的标志。
知识与技能教学目标能力目标2、知道什么是分子势能,改变分子间的距离必须克服分子力做功。
知道分子势能跟物体体积有关3、知道什么是内能,知道物体的内能跟温度和体积有关4、能够区别内能和机械能1、通过阅读书本关于内能知识的介绍,培养学生的阅读能力、语言表达能力。
2、通过阅读、讨论、交流、动手实验,使学生学会分析分子势能的变化情感、态度与价值观1、通过主动参与学习活动,激发学生学习物理的兴趣,2、通过实验活动,培养学生的团队合作精神、实事求是的科学态度。
教学理解分子势能随分子间距离变化的势能曲线重点教学理解分子势能随分子间距离变化的势能曲线难点教学自主学习,合作完成、教师讲解()()90()1()方法教学程序设计教环节一明标自学学过程设计二次备课过导读】阅读教材P14-16,完成下列任务程1、分子的动能是指及2、物体中热运动的速率大小不一,在热现象的,我们关心的是组成系方统的大量分子整体表现出来的热学性质,因而重要的不是系统中某个分子法的动能大小,而是所有分子的动能的平均值。
这个平均值叫做3、扩散现象和布朗运动表明,温度升高时,,因而可以得出结论:一种物质温度升高时分子热运动的平均动能。
物质的是分子热运动的标志。
4、回顾必修 2 中学过的势能概念:5、分子间存在着分子力,而且分子之间一定的距离,因此分子组成的系统也具有6、当分子间的力对分子做正功时,分子势能,当分子间的力对分子做负功,或说克服分子力做功时,分子势能。
7、当分子间的距离为r0 时,合力为 0。
当r>r0 时合力表现为引力,这时要增大分子间的距离必须克服引力做功,因此分子势能随分子间的距离增大而。
初三物理第一讲:内能教学目的1、理解掌握分子动理论2、学习内能及其概念3、注意区分内能与机械能之间的不同知识讲解1、分子动理论——物质组成1、物质是由大量分子组成的,如果把分子看成球形,它的直径大约只有10-10m,因此,在一个物体中,分子的数目是巨大的。
0℃,一标准大气压下,1cm3的空气中大约有2.7×1019个分子,如果每秒可以数数到100亿,那么,把这些分子数完需要80年的时间。
2、常见物质组成2、分子动理论——分子热运动1、扩散现象如图1所示,打开一盒香皂,很快就会闻到香味,这是为什么?是什么跑到了我们的鼻子里了?图1解答:一些带有香味的分子,从香皂中挥发出来,进入空气,向各个方向散步开来,当它们到达你的鼻子里,你就会闻到香味。
实验观察:(1)在装着红棕色二氧化氮气体的瓶子上面倒扣一个空瓶子,使两个瓶口相对,之间用一块玻璃板隔开,抽掉玻璃板后,让学生观察有什么变化发生?(2)将CuSO4溶液注入清水中,放置30天后。
观察现象。
① 扩散:不同的物质在相互接触时,彼此进入对方的现象。
② 说明:气体、液体、固体都能发生扩散现象。
③ 结论:扩散现象表明,一切物质的分子都在不停地做无规则的运动,分子间有间隙。
④ 扩散现象的实例ⅰ:擦香水时,周围的人都能闻到;ⅱ:花开时,花香满园;ⅲ:长时期放煤的墙角变黑;ⅳ:糖放在水中,水变甜了(3)对同样一个扩散实验,能否改变一个条件,从而改变扩散进行的快慢呢?如图所示,将一滴红墨水分别滴入热水和冷水中,观察扩散快慢的情况。
分析:在实验中热水温度高,扩散进行的快,说明温度高时,分子运动得快。
冷水温度低,扩散进行的慢,说明温度低时分子运动的慢。
2、热运动由于分之的运动跟温度有关,所以把分子的无规则运动叫做分子的热运动。
3、分子动理论——分子间的作用力1、分子间作用力:引力与斥力铅块是由铅分子组成的,组成它的分子在不停地运动,那么为什么铅块没有飞散开?是什么原因使它们聚合在一起呢?【实验】如图所示,将两个铅柱的底面削平,削干净,然后紧紧地压在一起,两块铅就会结合起来,甚至下面吊一个重物都不能把它们拉开。
第一讲分子动理论内能一、分子动理论1.物体是由大量分子组成的(1)分子的大小①分子的直径(视为球模型):数量级为10-10 m;②分子的质量:数量级为10-26 kg.(2)阿伏加德罗常数①1 mol的任何物质都含有相同的粒子数.通常可取N A=6.02×1023 mol-1;②阿伏加德罗常数是联系宏观物理量和微观物理量的桥梁.2.分子永不停息地做无规则运动(1)扩散现象①定义:不同物质能够彼此进入对方的现象;②实质:扩散现象并不是外界作用引起的,也不是化学反应的结果,而是由分子的无规则运动产生的物质迁移现象,温度越高,扩散现象越明显.(2)布朗运动①定义:悬浮在液体中的小颗粒的永不停息地无规则运动;②实质:布朗运动反映了液体分子的无规则运动;③特点:颗粒越小,运动越明显;温度越高,运动越剧烈.(3)热运动①分子永不停息地做无规则运动叫做热运动;②特点:分子的无规则运动和温度有关,温度越高,分子运动越激烈.3.分子间同时存在引力和斥力(1)物质分子间存在空隙,分子间的引力和斥力是同时存在的,实际表现出的分子力是引力和斥力的合力;(2)分子力随分子间距离变化的关系:分子间的引力和斥力都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力比引力变化得快;图1(3)分子力与分子间距离的关系图线由分子间的作用力与分子间距离关系图线(如图1所示)可知:①当r=r0时,F引=F斥,分子力为零;②当r>r0时,F引>F斥,分子力表现为引力;③当r<r0时,F引<F斥,分子力表现为斥力;④当分子间距离大于10r0(约为10-9 m)时,分子力很弱,可以忽略不计.[深度思考]当两个分子之间的距离大于r0时,分子间只有引力,当小于r0时,分子间只有斥力,这种说法是否正确?二、温度和内能1.温度一切达到热平衡的系统都具有相同的温度.2.两种温标摄氏温标和热力学温标.关系:T=t+273.15 K.3.分子的动能(1)分子动能是分子热运动所具有的动能;(2)分子热运动的平均动能是所有分子热运动动能的平均值,温度是分子热运动的平均动能的标志;(3)分子热运动的总动能是物体内所有分子热运动动能的总和.4.分子的势能(1)意义:由于分子间存在着引力和斥力,所以分子具有由它们的相对位置决定的能.(2)分子势能的决定因素①微观上:决定于分子间距离和分子排列情况;②宏观上:决定于体积和状态.5.物体的内能(1)概念理解:物体中所有分子热运动的动能和分子势能的总和,是状态量;(2)决定因素:对于给定的物体,其内能大小由物体的温度和体积决定,即由物体内部状态决定;(3)影响因素:物体的内能与物体的位置高低、运动速度大小无关;(4)改变物体内能的两种方式:做功和热传递.[深度思考]当两个分子从无穷远逐渐靠近时,分子力大小如何变化,分子力做功情况如何?分子势能如何变化?1.(人教版选修3-3P7第2题改编)以下关于布朗运动的说法正确的是()A.布朗运动就是分子的无规则运动B.布朗运动证明,组成固体小颗粒的分子在做无规则运动C.一锅水中撒一点胡椒粉,加热时发现水中的胡椒粉在翻滚.这说明温度越高布朗运动越激烈D.在显微镜下可以观察到煤油中小粒灰尘的布朗运动,这说明煤油分子在做无规则运动2.关于温度的概念,下列说法中正确的是()A.温度是分子平均动能的标志,物体温度高,则物体的分子平均动能大B.物体温度高,则物体每一个分子的动能都大C.某物体内能增大时,其温度一定升高D.甲物体温度比乙物体温度高,则甲物体的分子平均速率比乙物体的大3.对内能的理解,下列说法正确的是()A.系统的内能是由系统的状态决定的B.做功可以改变系统的内能,但是单纯地对系统传热不能改变系统的内能C.不计分子之间的分子势能,质量和温度相同的氢气和氧气具有相同的内能D.1 g 100 ℃水的内能小于1 g 100 ℃水蒸气的内能4.根据分子动理论,下列说法正确的是()A.一个气体分子的体积等于气体的摩尔体积与阿伏加德罗常数之比B.显微镜下观察到的墨水中的小炭粒所做的不停地无规则运动,就是分子的运动C.分子间的相互作用的引力和斥力一定随分子间的距离增大而增大D.分子势能随着分子间距离的增大,可能先减小后增大5.(人教版选修3-3P9第4题)如图2所示,把一块洗净的玻璃板吊在橡皮筋的下端,使玻璃板水平地接触水面.如果你想使玻璃板离开水面,向上拉橡皮筋的力必须大于玻璃板的重量.请解释为什么.图2.命题点一分子动理论和内能的基本概念例1下列说法正确的是()A.只要知道水的摩尔质量和水分子的质量,就可以计算出阿伏加德罗常数B.悬浮微粒越大,在某一瞬间撞击它的液体分子数就越多,布朗运动越明显C.在使两个分子间的距离由很远(r>10-9m)减小到很难再靠近的过程中,分子间作用力先减小后增大;分子势能不断增大D.温度升高,分子热运动的平均动能一定增大,但并非所有分子的速率都增大E.物体内热运动速率大的分子数占总分子数比例与温度有关1.下列说法正确的是()A.布朗运动是液体分子的运动,它说明分子永不停息地做无规则运动B.扩散现象表明,分子在永不停息地运动C.当分子间距离增大时,分子间引力增大,分子间斥力减小D .当分子间距等于r 0时,分子间的引力和斥力都为零 2.关于分子力,下列说法中正确的是( ) A .碎玻璃不能拼合在一起,说明分子间斥力起作用 B .将两块铅压紧以后能连在一块,说明分子间存在引力C .水和酒精混合后的体积小于原来体积之和,说明分子间存在引力D .固体很难被拉伸,也很难被压缩,说明分子间既有引力又有斥力E .分子间的引力和斥力同时存在,都随分子间距离的增大而减小 命题点二 微观量估算的两种建模方法1.求解分子直径时的两种模型(对于固体和液体) (1)把分子看成球形,d = 36V 0π.(2)把分子看成小立方体,d =3V 0.提醒:对于气体,利用d =3V 0算出的不是分子直径,而是气体分子间的平均距离. 2.宏观量与微观量的相互关系(1)微观量:分子体积V 0、分子直径d 、分子质量m 0.(2)宏观量:物体的体积V 、摩尔体积V mol 、物体的质量m 、摩尔质量M 、物体的密度ρ. (3)相互关系①一个分子的质量:m 0=M N A =ρV molN A.②一个分子的体积:V 0=V mol N A =MρN A (注:对气体,V 0为分子所占空间体积);③物体所含的分子数:N =V V mol ·N A =m ρV mol ·N A 或N =m M ·N A =ρVM ·N A.例2 已知常温常压下CO 2气体的密度为ρ,CO 2的摩尔质量为M ,阿伏加德罗常数为N A ,则在该状态下容器内体积为V 的CO 2气体含有的分子数为________.在3 km 的深海中,CO 2浓缩成近似固体的硬胶体,此时若将CO 2分子看做直径为d 的球,则该容器内CO 2气体全部变成硬胶体后体积约为________.3.(2015·海南单科·15(1))已知地球大气层的厚度h 远小于地球半径R ,空气平均摩尔质量为M ,阿伏加德罗常数为N A ,地面大气压强为p 0,重力加速度大小为g .由此可估算得,地球大气层空气分子总数为________,空气分子之间的平均距离为________.4.空调在制冷过程中,室内水蒸气接触蒸发器(铜管)液化成水,经排水管排走,空气中水分越来越少,人会感觉干燥.某空调工作一段时间后,排出液化水的体积V=1.0×103 cm3.已知水的密度ρ=1.0×103 kg/m3、摩尔质量M=1.8×10-2 kg/mol,阿伏加德罗常数N A=6.0×1023 mol-1.试求:(结果均保留一位有效数字)(1)该液化水中含有水分子的总数N;(2)一个水分子的直径d.命题点三布朗运动与分子热运动1.布朗运动(1)研究对象:悬浮在液体或气体中的小颗粒;(2)运动特点:无规则、永不停息;(3)相关因素:颗粒大小,温度;(4)物理意义:说明液体或气体分子做永不停息地无规则的热运动.2.扩散现象:相互接触的物体分子彼此进入对方的现象.产生原因:分子永不停息地做无规则运动.3.扩散现象、布朗运动与热运动的比较现象扩散现象布朗运动热运动活动主体分子微小固体颗粒分子区别分子的运动,发生在固体、液体、气体任何两种物质之间比分子大得多的微粒的运动,只能在液体、气体中发生分子的运动,不能通过光学显微镜直接观察到共同点①都是无规则运动;②都随温度的升高而更加激烈联系扩散现象、布朗运动都反映分子做无规则的热运动例3关于布朗运动,下列说法中正确的是()A.布朗运动就是热运动B.布朗运动的激烈程度与悬浮颗粒的大小有关,说明分子的运动与悬浮颗粒的大小有关C.布朗运动虽不是分子运动,但它能反映分子的运动特征D.布朗运动的激烈程度与温度有关,这说明分子运动的激烈程度与温度有关5.(2015·课标Ⅱ·33(1))关于扩散现象,下列说法正确的是()A.温度越高,扩散进行得越快B.扩散现象是不同物质间的一种化学反应C.扩散现象是由物质分子无规则运动产生的D.扩散现象在气体、液体和固体中都能发生E.液体中的扩散现象是由于液体的对流形成的6.下列哪些现象属于热运动()A.把一块平滑的铅板叠放在平滑的铝板上,经相当长的一段时间再把它们分开,会看到与它们相接触的面都变得灰蒙蒙的B.把胡椒粉末放入菜汤中,最后胡椒粉末会沉在汤碗底,但我们喝汤时尝到了胡椒的味道C.含有泥沙的水经一定时间会变澄清D.用砂轮打磨而使零件温度升高命题点四分子动能、分子势能和内能1.分子力、分子势能与分子间距离的关系:分子力F、分子势能E p与分子间距离r的关系图线如图3所示(取无穷远处分子势能E p=0).图3(1)当r>r0时,分子力表现为引力,当r增大时,分子力做负功,分子势能增加.(2)当r<r0时,分子力表现为斥力,当r减小时,分子力做负功,分子势能增加.(3)当r=r0时,分子势能最小.2.内能和机械能的区别能量定义决定量值测量转化内能物体内所有分由物体内部分子微观任何物体都无法测量.其变在一子的动能和势能的总和运动状态决定,与物体整体运动情况无关具有内能,恒不为零化量可由做功和热传递来量度定条件下可相互转化机械能物体的动能及重力势能和弹性势能的总和与物体宏观运动状态、参考系和零势能面选取有关,和物体内部分子运动情况无关可以为零可以测量例4关于分子间相互作用力与分子间势能,下列说法正确的是()A.在10r0距离范围内,分子间总存在着相互作用的引力B.分子间作用力为零时,分子间的势能一定是零C.当分子间作用力表现为引力时,分子间的距离越大,分子势能越小D.分子间距离越大,分子间的斥力越小E.两个分子间的距离变大的过程中,分子间引力变化总是比斥力变化慢例5以下说法正确的是()A.温度低的物体内能一定小B.温度低的物体分子运动的平均速率小C.温度升高,分子热运动的平均动能一定增大,但并非所有分子的速率都增大D.外界对物体做功时,物体的内能不一定增加判断分子动能变化的两种方法1.利用分子力做功判断仅受分子力作用时,分子力做正功,分子势能减小,分子动能增加;分子力做负功,分子势能增加,分子动能减小.图42.利用分子势能E p与分子间距离r的关系图线判断如图4所示,仅受分子力作用时,分子动能和势能之和不变,根据E p变化可判知E k变化.而E p变化根据图线判断.但要注意此图线和分子力与分子间距离的关系图线形状虽然相似,但意义不同,不要混淆.7.关于分子间的作用力,下列说法正确的是()A.分子之间的斥力和引力同时存在B.分子之间的斥力和引力大小都随分子间距离的增大而减小C.分子之间的距离减小时,分子力一定做正功D.分子之间的距离增大时,分子势能一定减小E.分子之间的距离增大时,可能存在分子势能相等的两个点8.两分子间的斥力和引力的合力F与分子间距离r的关系如图5中曲线所示,曲线与r轴交点的横坐标为r0.相距很远的两分子在分子力作用下,由静止开始相互接近.若两分子相距无穷远时分子势能为零,下列说法正确的是()图5A.在r>r0阶段,F做正功,分子动能增加,势能减小B.在r<r0阶段,F做负功,分子动能减小,势能也减小C.在r=r0时,分子势能最小,动能最大D.在r=r0时,分子势能为零E.分子动能和势能之和在整个过程中不变题组1分子动理论的理解1.(2015·山东·37(1))墨滴入水,扩而散之,徐徐混匀.关于该现象的分析正确的是() A.混合均匀主要是由于碳粒受重力作用B.混合均匀的过程中,水分子和碳粒都做无规则运动C.使用碳粒更小的墨汁,混合均匀的过程进行得更迅速D.墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的2.(2016·北京理综·20)雾霾天气是对大气中各种悬浮颗粒物含量超标的笼统表述,是特定气候条件与人类活动相互作用的结果.雾霾中,各种悬浮颗粒物形状不规则,但可视为密度相同、直径不同的球体,并用PM10、PM2.5分别表示球体直径小于或等于10 μm、2.5 μm的颗粒物(PM是颗粒物的英文缩写).某科研机构对北京地区的检测结果表明,在静稳的雾霾天气中,近地面高度百米的范围内,PM10的浓度随高度的增加略有减小,大于PM10的大悬浮颗粒物的浓度随高度的增加明显减小,且两种浓度分布基本不随时间变化.据此材料,以下叙述正确的是()A.PM10表示直径小于或等于1.0×10-6 m的悬浮颗粒物B.PM10受到的空气分子作用力的合力始终大于其受到的重力C.PM10和大悬浮颗粒物都在做布朗运动D.PM2.5的浓度随高度的增加逐渐增大3.关于分子动理论的规律,下列说法正确的是()A.扩散现象说明物质分子在做永不停息的无规则运动B.压缩气体时气体会表现出抗拒压缩的力是由于气体分子间存在斥力的缘故C.两个分子距离减小时,分子间引力和斥力都在增大D.如果两个系统分别与第三个系统达到热平衡,那么这两个系统彼此之间也必定处于热平衡,用来表征它们所具有的“共同热学性质”的物理量是内能E.已知某种气体的密度为ρ,摩尔质量为M,阿伏加德罗常数为N A,则该气体分子之间的平均距离可以表示为3MρN A题组2 分子力、分子势能和内能4.下列关于温度及内能的说法中正确的是()A.温度是分子平均动能的标志,所以两个动能不同的分子相比,动能大的温度高B.两个不同的物体,只要温度和体积相同,内能就相同C.质量和温度相同的冰和水,内能是相同的D.一定质量的某种物质,即使温度不变,内能也可能发生变化5.两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近.在此过程中,下列说法正确的是()A.分子力先增大,后一直减小B.分子力先做正功,后做负功C.分子动能先增大,后减小D.分子势能先增大,后减小E.分子势能和动能之和不变6.对于分子动理论和物体内能的理解,下列说法正确的是()A.温度高的物体内能不一定大,但分子平均动能一定大B.外界对物体做功,物体内能一定增加C.温度越高,布朗运动越显著D.当分子间的距离增大时,分子间作用力就一直减小E.当分子间作用力表现为斥力时,分子势能随分子间距离的减小而增大7.以下说法中正确的是()A.物体运动的速度越大,其内能越大B.分子的热运动是指物体内部分子的无规则运动C.微粒的布朗运动的无规则性,反映了液体内分子运动的无规则性D.若外界对物体做正功,同时物体从外界吸收热量,则物体的内能必增加E.温度低的物体,其内能一定比温度高的物体小8.下列四幅图中,能正确反映分子间作用力F和分子势能E p随分子间距离r变化关系的图线是()题组3 微观量的估算9.石墨烯是目前发现的最薄、最坚硬、导电导热性能最强的一种新型纳米材料.已知1 g石墨烯展开后面积可以达到2 600 m2,试计算每1 m2的石墨烯所含碳原子的个数.(阿伏加德罗常数N A=6.0×1023 mol-1,碳的摩尔质量M=12 g/mol,计算结果保留两位有效数字)10.很多轿车为了改善夜间行驶时的照明问题,在车灯的设计上选择了氙气灯,因为氙气灯灯光的亮度是普通灯灯光亮度的3倍,但是耗电量仅是普通灯的一半,氙气灯使用寿命则是普通灯的5倍,很多车主会选择含有氙气灯的汽车.若氙气充入灯头后的容积V=1.6 L,氙气密度ρ=6.0 kg/m3,氙气摩尔质量M=0.131 kg/mol,阿伏加德罗常数N A=6×1023 mol-1.试估算:(结果保留一位有效数字)(1)灯头中氙气分子的总个数N;(2)灯头中氙气分子间的平均距离.。
第一章分子动理论与内能第一节:分子动理论教学目标一、知识与技能1.知道一切物质的分子都在不停地作无规则运动和分子热运动。
2.知道分子间存在相互作用力。
3.能识别扩散现象,能用分子运动论的观点进行解释。
二、过程与方法1.通过演示扩散现象的实验说明一切分子都在不停作无规则运动,并使学生知道物体的温度越高分子热运动越剧烈。
2.通过演示“铅块吸引和空气压缩”实验以及与弹簧的弹力类比使学生了解分子之间既存在斥力又存在引力。
三、情感态度与价值观1.通过演示扩散现象实验激发学生对大千世界的兴趣,使学生了解通过直接感知的现象,可以认识无法直接感知的事实。
2. 通过演示“铅块吸引和空气压缩”实验,激发学生的学习兴趣以及对科学的求知欲望,使学生乐于探索微观世界和日常生活中的物理学道理。
教学重点通过对演示实验的观察、分析、推理,了解分子动理论的初步知识。
教学难点指导学生从对演示实验的观察、分析、推理,用宏观的物理现象揭示物质的微观结构。
课时安排1课时教具选择教师:香水、盛有二氧化氮的广口瓶2个、空广口瓶、硫酸铜溶液、试管、冷水、热水、滴管、墨水、演示分子引力的铅柱2个、中间用弹簧链接的小球。
学生:有水的小烧杯。
教学过程一、创设问题情境,引入新课引入1:我们生活的物质世界中,充满着各种各样的物质。
在远古时代,人们就猜想物质是由很多很小的颗粒组成的。
现代的科学技术已证实古人的猜想,请看投影。
投影图片:各种物质在电子显微镜下的形态:水、石头、微生物……表面上看起来连成一片的水,其实是由一个个的水分子组成,我们所有的物质都是由分子构成的,这是多么的神奇。
我已经充满好奇心了,从今天起,我们就要进入物质内部去进行探索发现,你准备好了吗?引入2:【师】当妈妈在厨房里炒菜的时候,我们离得很远但为什么会闻到菜的香味呢?二、师生共同活动,进行新课1.扩散现象图片展示:一粒米和一个分子的对比图。
【师】组成物质的分子是极小的微粒,如果把分子看做球形,它的直径大约是10-10米,这个长度,人的肉眼是无法看到。
第一讲分子动理论内能适用学科高中物理适用年级高三适用区域全国人教版课时时长(分钟)120知识点 1.扩散现象 2.布朗运动 3.热运动4.分子间的作用力5.分子动理论6.分子间的作用力与分子距离的关系7.分子动能 8.分子势能 9.物体的内能教学目标一、知识与技能1.了解扩散现象是由分子的热运动产生的.2.知道什么是布朗运动,通过实验和分析、逻辑推理的过程,使学生理解布朗运动的成因.培养学生勤于观察、勇于探究、善于思考的良好学习习惯.3.知道什么是热运动及决定热运动激烈程度的因素.4.知道分子间存在空隙;且同时存在着引力和斥力,实际表现出来的分子力是引力和斥力的合力。
5.了解分子力为零时,分子间距离r0的数量级。
6.知道分子间的距离r<r0时,实际表现的分子力为斥力,这个斥力随r的减小而迅速增大。
7.知道分子间的距离r>r0时,实际表现的分子力为引力,这个引力随r的增大而减小。
8.了解r增大到什么数量级时,分子引力已很微弱,可忽略不计。
9.知道分子热运动的动能跟温度有关,知道温度是分子热运动平均动能的标志.10.知道什么是分子势能;知道改变分子间的距离必须涉及分子力做功,因而分子势能发生变化;知道分子势能跟物体体积有关.11.知道什么是内能,知道物体的内能跟温度和体积有关.二、过程与方法1.通过扩散现象和布朗运动,让学生认识分子的无规则运动,掌握分子热运动的概念.2.通过实验探究从而认识分子动理论的基本观点.3.建立:分子动能、分子平均动能、分子势能、物体内能、热量等五个以上物理概念4.知道三个物理规律:温度与分子平均动能关系,分子势能与分子间距离关系,做功与热传递在改变物体内能上的关系。
三、情感、态度与价值观1.注重理论联系实际,勤观察、多思考,养成良好的学习习惯。
2.物理离不开生活,能用分子力解释日常生活中一些常见的现象。
培养学生物理就在身边的发现精神。
3.在分子平均动能与温度关系的讲授中,渗透统计的方法。
在分子间势能与分子间距离的关系上和做功与热传递关系上都要渗透归纳推理方法。
教学中着重培养学生对物理概念和规律的理解能力。
教学重点 1.了解扩散现象和布朗运动.2.理解布朗运动的成因和分子热运动.3.分子间的作用力和分子间作用力的变化.4.分子的平均动能与温度的关系.5.分子势能的概念.7.内能的概念及物体的内能与哪些因素有关.教学难点 1.布朗运动和分子热运动的区别.2.用分子动理论解释有关现象。
3.分子势能与分子力做功、分子间距离的关系.教学过程一、复习预习提出问题:飞机从地面起飞,随后在高空做高速航行,有人说:“在这段时间内,飞机中乘客的势能、动能都增大了,他们身上所有分子的动能和势能也都增大了,因此乘客的内能也增大了”.这种说法对吗?为什么?二、知识讲解课程引入:我们知道做机械运动的物体具有机械能,那么热现象发生过程中,也有相应的能量变化。
另一方面,我们又知道热现象是大量分子做无规律热运动产生的。
那么热运动的能量与大量的无规律运动有什么关系呢?这是今天学习的问题。
考点/易错点1、扩散现象(1)定义:扩散现象是指不同物质能够彼此进入对方的现象.(2)产生原因:扩散现象不受外界影响,也不是化学反应的结果,而是由物质分子的无规则运动产生的.(3)应用:生产半导体器材时,在纯净半导体材料中掺入其他元素,就是在高温条件下通过分子的扩散来完成的.(4)意义:反映分子在永不停息的做无规则运动.(5)影响扩散现象的因素:①扩散现象发生时,气态物质的扩散现象最快、最显著,液态次之,固态物质的扩散现象最慢,短时间内非常不明显.②在两种物质一定的前提下,扩散现象发生的明显程度与物质的温度有关,温度越高,扩散现象越显著.③扩散现象发生的明显程度还受到“已进入对方”的分子浓度的限制,当浓度低时,扩散现象较为显著.(6)扩散现象的本质:扩散现象不是外界作用引起的,而是分子无规则运动的直接结果,是分子无规则运动的宏观反映.(7)对分子运动两个特点的理解:①永不停息即分子不分白天和黑夜,不分季节,永远在运动.②无规则是指单个分子运动无规则,但大量分子运动又具有统计规律性,如总体上分子由浓度大的地方向浓度小的方向运动.注意:1.扩散现象在任何情况下都可以发生,与外界因素无关.2.当两部分的分子分布浓度相同时,浓度不再变化,宏观上扩散停止,但分子运动并没有停止,因此这种状态是一种动态平衡.考点/易错点2、布朗运动1.布朗运动→⎪⎪⎪⎪⎪⎪ →概念:是悬浮在液体或气体中的微粒 不停的无规则运动→产生的原因:大量液体气体分子对悬浮微粒撞击的不平衡造成的→布朗运动的特点:永不停息、无规则→影响因素:微粒越小,布朗运动越明显 温度越高,布朗运动越激烈→意义:布朗运动反映了液体气体分子2.对布朗运动的认识 (1)布朗运动的无规则性.悬浮微粒受到液体分子撞击不平衡是形成布朗运动的原因,由于液体分子的运动是无规则的,使微粒受到较强撞击的方向也不确定,所以布朗运动是无规则的.(2)微粒越小,布朗运动越明显.悬浮微粒越小,某时刻与它相撞的分子数越少,来自各方向的冲击力越不平衡;另外微粒越小,其质量也就越小,相同冲击力下产生的加速度越大,因此微粒越小,布朗运动越明显.(3)温度越高,布朗运动越激烈.温度越高,液体分子的运动(平均)速率越大,对悬浮于其中的微粒的撞击作用也越大,产生的加速度也越大,因此温度越高,布朗运动越激烈.(4)布朗运动不是分子的运动,而是固体微粒的运动.布朗运动的无规则性反映了液体分子运动的无规则性;布朗运动与温度有关,表明液体分子的运动与温度有关.3.布朗运动与热运动的区别与联系1.任何固体微粒悬浮在液体内,只要足够小,在任何温度下都会做布朗运动.2.布朗运动只能在气体、液体中发生.扩散现象可以发生在固体、液体、气体任何两种物质之间.3.布朗运动不是液体分子的无规则运动,也不是固体颗粒分子的无规则运动,而是固体小颗粒的无规则运动.4.布朗运动产生的原因不是外界因素造成的,如加热对流、重力等都不能形成布朗运动,布朗运动是液体分子无规则运动撞击小颗粒形成的.5.布朗运动是永不停息的无规则运动,实验中的折线是固体颗粒的位置连线,不代表颗粒运动的轨迹.考点/易错点3、热运动(1)定义分子永不停息的无规则运动.(2)宏观表现布朗运动和扩散现象.(3)特点①永不停息.②运动无规则.③温度越高,分子的热运动越激烈.考点/易错点4、分子间的作用力(1)分子间有空隙①气体很容易被压缩,说明气体分子间有很大的空隙.②水和酒精混合后总体积减小,说明液体分子之间存在着空隙.③压在一起的金片和铅片的分子,能扩散到对方的内部,说明固体分子之间有空隙.(2)分子间的相互作用①分子间同时存在着相互作用的引力和斥力.大量分子能聚集在一起形成固体或液体,说明分子间存在着引力;用力压缩物体,物体内要产生反抗压缩的弹力,说明分子间存在着斥力.②当两个分子的距离为r0时,分子所受的引力与斥力大小相等,此时分子所受的合力为零.当分子间的距离小于r0时,作用力的合力表现为斥力;当分子间的距离大于r0时,作用力的合力表现为引力.考点/易错点5、分子动理论(1)内容:物体是由大量分子组成的,分子在做永不停息的无规则运动,分子之间存在着引力和斥力.(2)统计规律①微观方面:各个分子的运动都是不规则的,带有偶然性.②宏观方面:大量分子的运动有一定的规律,叫做统计规律.大量分子的集体行为受统计规律的支配.(3)由分子动理论分析物体三种状态分子间的距离不同,分子间的作用力表现也不一样,物体的状态特征也不相同.(3)可在较大范围做无规则振动气体(1)分子间距较大(2)分子力可忽略,只有相互碰撞或与器壁碰撞时有相互作用(1)没有一定体积(2)没有一定形状(3)总充满容器注意:1.宏观现象的特征是大量分子间分子合力的表现,分子与分子间的相互作用力较小,但大量分子力的宏观表现合力却很大.2.物体状态不同,分子力的宏观特征也不同,如固体难压缩是分子间斥力的表现,气体难压缩是气体压强的表现.考点/易错点6、分子间的作用力与分子距离的关系1.分子力与分子引力、斥力的关系在任何情况下,分子间总是同时存在着引力和斥力,而实际表现出来的是分子力,分子力是分子引力和斥力的合力.2.分子力与分子间距离变化的关系(1)平衡位置分子间距离r=r0时,引力与斥力大小相等,分子力为零.分子间距离等于r0(数量级为10-10 m)的位置即为平衡位置.(2)分子间的引力和斥力随分子间距离r的变化关系分子间的引力和斥力都随分子间距离r的增大而减小,但斥力减小得更快.3.F随r变化的关系图象当r<r0时,合力随距离的增大而减小;当r>r0时,合力随距离的增大先增大后减小.注意:1.分子间距为r0时,引力与斥力大小相等.分子力为零并不是无引力和斥力,且此时分子并不是静止不动而是在平衡位置附近振动.2.分析分子间作用力,应掌握分子力随分子间距离r的变化关系图象.考点/易错点7、分子动能(1)分子动能做热运动的分子跟运动的物体一样也具有动能,这就是分子动能.(2)分子的平均动能热现象研究的是大量分子运动的宏观表现,重要的不是系统中某个分子的动能大小,而是所有分子的动能的平均值,叫做分子平均动能.(3)温度的微观解释温度是物体分子热运动平均动能的标志.(4)单个分子的动能①物体由大量分子组成,每个分子都有分子动能且不为零.②分子在永不停息地做无规则热运动,每个分子动能大小不同并且时刻在变化.③热现象是大量分子无规则运动的统计结果,个别分子动能没有实际意义.(5)分子的平均动能①温度是大量分子无规则热运动的宏观表现,具有统计意义.温度升高,分子平均动能增大,但不是每一个分子的动能都增大.个别分子动能可能增大也可能减小,个别分子甚至几万个分子热运动的动能大小与温度是没有关系的.但总体上所有分子的动能之和一定是增加的.②理想气体的分子平均动能大小只由温度决定,与物质种类、质量、压强、体积无关,即只要温度相同,任何分子的平均动能都相同.由于不同物质的分子质量不尽相同,所以同一温度下,不同物质的分子运动平均速率大小一般不相同.注意:1.温度是分子平均动能的“标志”或者说“量度”,温度只与物体内大量分子热运动的统计意义上的平均动能相对应,与单个分子的动能没有关系.2.温度高的物体,分子的平均速率不一定大,还与分子质量有关.考点/易错点8、分子势能(1)分子势能由于分子间存在着相互作用力,所以分子间也有相互作用的势能,这就是分子势能.(2)影响分子势能大小的因素微观上,分子势能的大小由分子间距离决定;宏观上,分子势能的大小跟物体的体积有关.(3)分子势能的变化规律①当分子间的距离r>r0时,分子间的作用力表现为引力,分子间的距离增大时,分子力做负功,因此分子势能随分子间的距离增大而增大.②当分子间的距离r<r0时,分子间的作用力表现为斥力,分子间的距离减小时,分子力做负功,因此分子势能随分子间的距离减小而增大.③如果取两个分子间相距无限远时(此时分子间作用力可忽略不计)的分子势能为零,分子势能E p与分子间距离r的关系可用图所示的曲线表示.从图线上看出,当r=r0时,分子势能最小.(4)影响因素①宏观上:分子势能的大小与体积有关.②微观上:分子势能与分子之间的相对位置有关.注意:1.分子势能最小与分子势能为零不是一回事.分子势能的正负代表大于或小于零势能点的分子势能,如E p=-10 J,E p′=0,则E p<E p′.2.体积越大,分子势能不一定越大,如相同质量的0 ℃的水与0 ℃的冰,冰体积大,但水的分子势能大于冰的分子势能.考点/易错点9、物体的内能(1)定义物体中所有分子热运动动能与分子势能的总和,叫做物体的内能.(2)决定因素①分子总个数由物体物质的量决定.②分子热运动的平均动能由温度决定.③分子势能宏观上与物体的体积有关.④物体的内能由物质的量、温度、体积共同决定.(3)内能的决定因素①从宏观上看:物体内能的大小由物体的摩尔数、温度和体积三个因素决定.②从微观上看:物体内能的大小由组成物体的分子总数、分子热运动的平均动能和分子间的距离三个因素决定.(4)内能与机械能的区别内能是由大量分子的热运动和分子间的相对位置所决定的能;机械能是物体做机械运动和物体形变所决定的能.物体具有内能的同时又具有机械能.物体的机械能在一定的条件下可以等于零,但物体的内能不可能等于零,这是因为组成物体的分子在永不停息地做着无规则的热运动,分子之间彼此有相互作用.在热现象的研究中,一般不考虑物体的机械能.(5)内能与热量的区别内能是一个状态量,一个物体在不同的状态下有不同的内能,而热量是一个过程量,它表示由于热传递而引起的内能变化过程中转移的能量,即内能的改变量.如果没有热传递,就无所谓热量,但此时物体仍有一定的内能.例如,我们不能说“某物体在某温度时具有多少热量”.注意:1.研究热现象时,一般不考虑机械能,在机械运动中有摩擦时,有可能发生机械能转化为内能.2.物体温度升高,内能不一定增加;温度不变,内能可能改变;温度降低,内能可能增加.三、例题精析【例题1】【题干】下列说法正确的是A. 分子间距离增大时,分子间的引力和斥力都减小B. 布朗运动就是气体或液体分子的无规则运动C. 分子a从无穷远处由静止开始接近固定不动的分子b,只受分子力作用,当a受到分子力为0时,a的动能一定最大D. 大量气体分子对容器壁的持续性作用形成气体的压强E. 破碎的玻璃不能重新拼接在一起是因为其分子间存在斥力【答案】ACD【解析】随着分子间距离增大,分子间的引力和斥力都减小,A正确;布朗运动是悬浮在液体中的固体小颗粒的无规则运动,是液体分子热运动的体现,B错误;分子a只在分子力作用下从远处由静止开始靠近固定不动的分子b,当a受到的分子力为零时,加速度为零,再接近表现为斥力,故此时动能最大,C正确;根据气体的压强的微观意义可知,气体的压强是由大量的气体分子对容器壁的碰撞引起的,故D正确;破碎的玻璃不能把它们拼接在一起是因为其分子间距离较大,分子间不存在作用力,并不是存在斥力作用的,故E错误.【例题2】【题干】下列说法正确的是________A. 布朗运动就是液体分子的无规则运动B. 空气的相对湿度定义为空气中所含水蒸气压强与同温度水的饱和蒸汽压的比值C. 尽管技术不断进步,热机的效率仍不能达到100%,制冷机却可以使温度降至热力学零度D. 将一个分子从无穷远处无限靠近另一个分子,则这两个分子间分子力先增大后减小最后再增大,分子势能是先减小再增大E. 附着层内分子间距离小于液体内部分子间距离时,液体与固体间表现为浸润【答案】BDE【解析】布朗运动是悬浮在液体表面的固体颗粒的无规则运动,是液体分子的无规则运动的表现,选项A错误;空气的相对湿度定义为空气中所含水蒸气压强与同温度水的饱和蒸汽压的比值,选项B正确;尽管技术不断进步,热机的效率仍不能达到100%,制冷机也不可以使温度降至热力学零度,选项C错误;将一个分子从无穷远处无限靠近另一个分子,则这两个分子间分子力先增大后减小最后再增大,分子势能是先减小再增大,选项D正确;附着层内分子间距离小于液体内部分子间距离时,液体与固体间表现为浸润,选项E正确;故选BDE. 【例题3】【题干】下列说法准确的是.(填正确答案标号.选对1个得2分,选对2个得4分,选对3个得5分,每选错1个扣3分,最低得分为0分)A. 显微镜下观察到墨水中的小炭粒在不停的做无规则运动,这反映了小炭粒分子运动的无规则性B. 气体对容器壁的压强,是由气体分子对容器壁的频繁碰撞造成的C. 分子势能随着分子间距离的增大,可能先减小后增大D. 不可能从单一热源吸收热量使之完全转化为有用的功而不产生其他影响E. 当温度升高时,物体内每一个分子热运动的速率一定都增大【答案】BCD【解析】布朗运动是悬浮在液体中的固体小颗粒的运动,用显微镜只能观测到固体小颗粒的运动,反映了液体分子运动的无规则性,A错误;气体对容器壁的压强,是由气体分子对容器壁的频繁碰撞造成的,B正确;分子力做正功时分子势能减小,分子力做负功时分子势能增加,当分子间距从小于平衡间距开始增加时,分子势能先减小后增加,故C正确;根据热力学第二定律可得不可能从单一热源吸收热量使之完全转化为有用的功而不产生其他影响,D正确;当温度升高时,分子热运动平均动能增加,故平均速度也增加,但不是每个分子的速度都增加,E错误.【例题4】【题干】下列关于分子运动和热现象的说法正确的是A. 一定量100 ℃的水变成100 ℃的水蒸气,其分子间势能增加B. 气体如果失去了容器的约束就会散开,这是因为气体分子之间存在斥力的缘故C. 一定量气体的内能等于其所有分子热运动动能和分子势能的总和D. 如果气体温度升高,那么所有分子的速率都增加【答案】AC【解析】一定量100℃的水变成100℃的水蒸汽,内能增加,平均动能不变,其分子之间的势能增加,A正确;气体如果失去了容器的约束就会散开,这是因为气体分子在做永不停息的无规则运动,B错误;一定量气体的内能等于其所有分子热运动动能和分子之间势能的总和,C正确;如果气体温度升高,分子平均动能增加,不一定所以分子动能都增加,D错误.【例题5】【题干】下面所列举的现象,哪些能说明分子是不断运动着的( )A.将香水瓶盖打开后能闻到香味B.汽车开过后,公路上尘土飞扬C.洒在地上的水,过一段时间就干了D.悬浮在水中的花粉做无规则的运动【答案】ACD【解析】扩散现象和布朗运动都能说明分子在不停地做无规则运动.香水的扩散、水分子在空气中的扩散以及悬浮在水中花粉的运动都说明了分子是不断运动的,故A、C、D均正确;而尘土不是单个分子,是颗粒,所以尘土飞扬不是分子的运动.【例题6】【题干】下列关于布朗运动的说法,正确的是( )A.布朗运动是液体分子的无规则运动B.布朗运动是指悬浮在液体中的固体分子的无规则运动C.布朗运动说明了液体分子与悬浮颗粒之间存在着相互作用力D.观察布朗运动会看到,悬浮的颗粒越小,温度越高,布朗运动越剧烈【答案】D【解析】布朗运动是悬浮在液体中的固体小颗粒的无规则运动,小颗粒由许多分子组成,所以布朗运动不是分子的无规则运动,也不是指悬浮颗粒内固体分子的无规则运动,故A、B 选项错误;布朗运动虽然是由液体分子与悬浮颗粒间相互作用引起的,但其重要意义是反映了液体分子的无规则运动,而不是反映了分子间的相互作用,故C选项错误;观察布朗运动会看到固体颗粒越小、温度越高,布朗运动越明显,故D选项正确.【例题7】【题干】以下说法正确的是()A.热量只能由高温物体传递给低温物体B.物体温度不变,其内能一定不变C.对大量事实的分析表明:热力学零度不可能达到D.如果两个系统分别与第三个系统达到热平衡,那么这两个系统彼此之间也必定处于热平衡,用来表征它们所具有的“共同热学性质”的物理量叫做内能【答案】C【解析】试题分析:A、热量只能自发地由高温物体传递给低温物体,但在有其他因素的影响下,也可以由低温物体传递到高温物体,如冰箱制冷,故A错误.B、物体的内能与物体的体积、体积和物质的量有关,则物体温度不变时,其内能也可能变化.故B错误.C、根据热力学第三定律知,热力学零度不可能达到,故C正确.D、如果两个系统分别与第三个系统达到热平衡,那么这两个系统彼此之间也必定处于热平衡,用来表征它们所具有的“共同热学性质”的物理量叫做温度,不是内能,故D错误.故选:C【例题8】【题干】当两个分子间的距离为r0时,正好处于平衡状态,下列关于分子间作用力与分子间距离的关系的说法正确的是( )A.当分子间的距离r<r0时,它们之间只有斥力作用B.当分子间距离r=r0时,分子处于平衡状态,不受力C.当分子间的距离从0.5r0增大到10r0的过程中,分子间的引力和斥力都在减小,且斥力比引力减小得快D.当分子间的距离从0.5r0增大到10r0的过程中,分子间相互作用力的合力在逐渐减小【答案】C【解析】分子间同时存在着相互作用的引力和斥力.当r=r0时,引力和斥力的大小相等,分子力表现为零,当分子间距离减小时,斥力增大较快,当分子间距离增大时,斥力减小较快.分子间相互作用的引力和斥力是同时存在的,当r=r0时,F引=F斥,每个分子所受的合力为零,并非不受力;当r<r0,F斥>F引合力为斥力,并非只受斥力,故A、B错误.当分子间的距离从0.5r0增大到10r0的过程中,分子间的引力和斥力都减小,而且斥力比引力减小得快,分子间作用力的合力先减小到零,再增大再减小到零,故C正确,D错误.【例题9】【题干】在弹性限度内,弹力的大小跟弹簧伸长或缩短的长度成正比,从分子间相互作用力跟分子间距离的关系图象来看,最能反映这种规律的是图中的( )A.ab段B.bc段C.de段 D.ef段【答案】B【解析】当r=r0时,分子间作用力为零;当r>r0时,分子间作用力表现为引力,对应弹簧被拉长;当r<r0时,分子间作用力表现为斥力,对应弹簧被压缩;由于bc段近似为直线,分子间的作用力与距离增大量或减小量成正比,因此选B.【例题10】【题干】下列说法正确的是( )A.水的体积很难被压缩,这是分子间存在斥力的宏观表现B.气体总是很容易充满容器,这是分子间存在斥力的宏观表现C.两个相同的半球壳吻合接触,中间抽成真空(马德堡半球),用力很难拉开,这是分子间存在引力的宏观表现D.用力拉铁棒的两端,铁棒没有断,这是分子间存在引力的宏观表现【答案】AD【解析】解答本题应把握以下三点:(1)气体分子运动特点决定气体体积特点.(2)马德堡半球实验原理.(3)分子间相互作用的常见表现.本题考查分子间作用力的有关知识.液体体积很难压缩,说明分子间存在斥力,固体很难被拉断,说明分子间存在引力,故选项A、D正确.气体容易充满容器是分子热运动的结果,抽成真空的马德堡半球很难分开是大气压强作用的结果,故选项B、C错误.。