苏教版 高考数学 一轮复习 讲义---第11章 学案62 二项式定理
- 格式:docx
- 大小:206.52 KB
- 文档页数:10
学案62 二项式定理导学目标: 1.能用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.自主梳理1.二项式定理的有关概念(1)二项式定理:(a +b )n =C 0n a a n +C 1n a a n -1b 1+…+C r n a a n -r b r +…+C n n a b n (n ∈N *),这个公式叫做__________.①二项展开式:右边的多项式叫做(a +b )n 的二项展开式. ②项数:二项展开式中共有________项.③二项式系数:在二项展开式中各项的系数__________(r =____________)叫做二项式系数.④通项:在二项展开式中的____________________叫做二项展开式的通项,用T r +1表示,即通项为展开式的第r +1项:T r +1=____________________________.2.二项式系数的性质(1)C m n =C n -m n ;(2)C m n +C m -1n =C m n +1;(3)当r <n -12时,______________________;当r >n -12时,C r +1n <C rn ; (4)当n 是偶数时,中间的一项二项式系数________________________________取得最大值;当n 为奇数时,中间的两项二项式系数______________________________、__________________________相等,且同时取得最大值;(5)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =______,C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=______.自我检测1.(2011·福建改编)(1+2x )5的展开式中,x 2的系数等于________.2.(2011·陕西改编)(4x -2-x )6(x ∈R )展开式中的常数项是________.3.(2010·四川)⎝⎛⎭⎪⎫2-13x 6的展开式中的第四项是______.4.(2011·山东)若(x -ax2)6展开式的常数项为60,则常数a 的值为________.5.已知n 为正偶数,且⎝⎛⎭⎫x 2-12x n 的展开式中第4项的二项式系数最大,则第4项的系数是______.(用数字作答)探究点一 二项展开式及通项公式的应用例1 已知在⎝ ⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数;(3)求展开式中所有的有理项.变式迁移1(2010·湖北)在(x+43y)20的展开式中,系数为有理数的项共有________项.探究点二二项式系数的性质及其应用例2(1)求证:C1n+2C2n+3C3n+…+n C n n=n·2n-1;(2)求S=C127+C227+…+C2727除以9的余数.变式迁移2(2010·上海卢湾区质量调研)求C22n+C42n+…+C2k2n+…+C2n2n的值.探究点三求系数最大项例3已知f(x)=(3x2+3x2)n展开式中各项的系数和比各项的二项式系数和大992.(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.变式迁移3 (1)在(x +y )n 的展开式中,若第七项系数最大,则n 的值可能等于________.(2)已知⎝⎛⎭⎫12+2x n ,(ⅰ)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数的最大项的系数;(ⅱ)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.1.二项式系数与项的系数是不同的,如(a +bx )n(a ,b ∈R )的展开式中,第r +1项的二项式系数是C r n ,而第r +1项的系数为C r n an -r b r. 2.通项公式主要用于求二项式的指数,求满足条件的项或系数,求展开式的某一项或系数.在运用公式时要注意:C r n an -r b r 是第r +1项,而不是第r 项. 3.在(a +b )n 的展开式中,令a =b =1,得C 0n +C 1n +…+C n n =2n ;令a =1,b =-1,得C 0n -C 1n +C 2n -C 3n +…=0,∴C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1,这种由一般到特殊的方法是“赋值法”.4.二项式系数的性质有:(1)在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,C 2n =C n -2n ,…,C r n =C n -r n .(2)如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大.5.二项式定理的一个重要作用是近似计算,当n 不是很大,|x |比较小时,(1+x )n ≈1+nx .利用二项式定理还可以证明整除性问题或求余数问题,证题时要注意变形的技巧.(满分:90分)一、填空题(每小题6分,共48分)1.(2010·山东实验中学模拟)在⎝⎛⎭⎪⎫x +13x 24的展开式中,x 的幂指数是整数的项共有________项.2.设(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为________.3.在⎝⎛⎭⎪⎫x 2-13x a n的展开式中,只有第5项的二项式系数最大,则展开式中常数项是________.4.(2010·烟台高三一模)如果⎝⎛⎭⎪⎫3x -13x 2n的展开式中二项式系数之和为128,则展开式中1x3的系数是________.5.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是________.6.(2011·湖北)(x -13x)18的展开式中含x 15的项的系数为________.(结果用数值表示)7.(2010·济南高三一模)(x -12x)6的展开式中的常数项为________.8.⎝⎛⎭⎫1+x +1x 210的展开式中的常数项是________. 二、解答题(共42分)9.(14分)(1)设(3x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4. ①求a 0+a 1+a 2+a 3+a 4; ②求a 0+a 2+a 4; ③求a 1+a 2+a 3+a 4;(2)求证:32n +2-8n -9能被64整除(n ∈N *).10.(14分)利用二项式定理证明对一切n ∈N *,都有2≤⎝⎛⎭⎫1+1n n <3.11.(14分)已知⎝⎛⎭⎫x -2x 2n (n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1.(1)求展开式中各项系数的和; (2)求展开式中含x 32的项;(3)求展开式中系数最大的项和二项式系数最大的项.学案62 二项式定理答案自主梳理1.(1)二项式定理 ②n +1 ③C r n 0,1,2,…,n ④C r n an -r b rC r n a n -r b r 2.(3)C r n <C r +1n(4)C n 2n C n +12n C n -12n(5)2n 2n -1 自我检测 1.40解析 (1+2x )5的第r +1项为T r +1=C r 5(2x )r =2r C r 5x r ,令r =2,得x 2的系数为22·C 25=40.2.15解析 设展开式的常数项是第r +1项,则T r +1=C r 6·(4x )r ·(-2-x )6-r ,即T r +1=C r 6·(-1)6-r ·22rx ·2rx -6x =C r 6·(-1)6-r ·23rx -6x ,∴3rx -6x =0恒成立.∴r =2,∴T 3=C 26·(-1)4=15.3.-160x4.4 解析 (x -a x 2)6展开式的通项为T r +1=C r 6x 6-r (-1)r ·(a )r ·x -2r =C r 6x 6-3r (-1)r ·(a )r . 令6-3r =0,得r =2.故C 26(a )2=60,解得a =4.5.-52解析 n 为正偶数,且第4项二项式系数最大,故展开式共7项,n =6,第4项系数为C 36⎝⎛⎭⎫-123=-52. 课堂活动区例1 解题导引 (1)通项T r +1=C r n an -r b r是(a +b )n 的展开式的第r +1项,而不是第r 项;二项式系数与项的系数是完全不同的两个概念,二项式系数是指C r n ,r =0,1,2,…,n ,与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分.(2)求二项展开式中的有理项,一般是根据通项公式所得到的项,其所有的未知数的指数恰好都是整数的项.解这种类型的问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数,再根据数的整除性来求解.若求二项展开式中的整式项,则其通项公式中同一字母的指数应是非负整数,求解方式与求有理项的方式一致.解 (1)通项公式为T r +1=C r n xn -r 3⎝⎛⎭⎫-12r x -r3=C r n⎝⎛⎭⎫-12r x n -2r 3,因为第6项为常数项,所以r =5时,有n -2r3=0,即n =10.(2)令n -2r 3=2,得r =12(n -6)=12×(10-6)=2, ∴所求的系数为C 210⎝⎛⎭⎫-122=454. (3)根据通项公式,由题意得⎩⎨⎧10-2r3∈Z ,0≤r ≤10,r ∈N .令10-2r 3=k (k ∈Z ),则10-2r =3k ,即r =5-32k ,∵r ∈N ,∴k 应为偶数.∴k 可取2,0,-2,即r 可取2,5,8.所以第3项,第6项与第9项为有理项,它们分别为C 210⎝⎛⎭⎫-122x 2,C 510⎝⎛⎭⎫-125,C 810⎝⎛⎭⎫-128x -2. 变式迁移1 6解析 展开式的通项T r +1=C r 20·x20-r ·(43y )r =C r 20·x 20-r ·y r ·3r 4. 由0≤r ≤20,r4∈Z 得r =0,4,8,12,16,20.所以系数为有理数的项共有6项.例2 解题导引 (1)在有关组合数的求和问题中,经常用到形如C 0n =C n n =C n +1n +1,C k n=C n -k n ,k C k n =n C k -1n -1等式子的变形技巧;(2)利用二项式定理解决整除问题时,关键是进行合理地变形构造二项式.求余数问题时,应明确被除式f (x )、除式g (x )[g (x )≠0]、商式q (x )与余式的关系及余式的范围.(1)证明 方法一 设S =C 1n +2C 2n +3C 3n +…+(n -1)·C n -1n +n C n n , ① ∴S =n C n n +(n -1)C n -1n +(n -2)C n -2n +…+2C 2n +C 1n =n C 0n +(n -1)C 1n +(n -2)C 2n +…+2C n -2n +C n -1n ,②①+②得2S =n (C 0n +C 1n +C 2n +…+C n -1n +C n n )=n ·2n .∴S =n ·2n -1.原式得证. 方法二 ∵k n C k n =k n ·n !k !(n -k )!=(n -1)!(k -1)!(n -k )!=C k -1n -1,∴k C k n =n C k -1n -1.∴左边=n C 0n -1+n C 1n -1+…+n C n -1n -1 =n (C 0n -1+C 1n -1+…+C n -1n -1)=n ·2n -1=右边.(2)解 S =C 127+C 227+…+C 2727=227-1=89-1=(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1 =9(C 09×98-C 19×97+…+C 89)-2 =9(C 09×98-C 19×97+…+C 89-1)+7,显然上式括号内的数是正整数. 故S 被9除的余数为7.变式迁移2 解 (1+x )2n =C 02n +C 12n x +C 22n x 2+C 32n x 3+…+C 2n 2n x 2n . 令x =1得C 02n +C 12n +…+C 2n -12n +C 2n 2n=22n ; 再令x =-1得C 02n -C 12n +C 22n -…+(-1)r C r 2n +…-C 2n -12n +C 2n 2n=0.两式相加,再用C 02n =1,得C 22n +C 42n +…+C 2n2n =22n2-1=22n -1-1.例3 解题导引 (1)求二项式系数最大的项:如果n 是偶数,则中间一项[第⎝⎛⎭⎫n 2+1项]的二项式系数最大;如果n 是奇数,则中间两项[第n +12项与第⎝ ⎛⎭⎪⎫n +12+1项]的二项式系数相等且最大;(2)求展开式系数最大的项:如求(a +bx )n (a ,b ∈R )的展开式中系数最大的项,一般是采用待定系数法.设展开式各项系数分别为A 1,A 2,…,A n +1,且第r +1项系数最大,应用⎩⎪⎨⎪⎧A r ≥A r -1A r ≥A r +1解出r 来,即得系数最大的项. 解 (1)令x =1,则二项式各项系数的和为 f (1)=(1+3)n =4n ,又展开式中各项的二项式系数之和为2n . 由题意知,4n -2n =992.∴(2n )2-2n -992=0,∴(2n +31)(2n -32)=0, ∴2n =-31(舍),或2n =32,∴n =5.由于n =5为奇数,所以展开式中二项式系数最大的项为中间两项,它们分别是T 3=C 25⎝⎛⎭⎫x 233(3x 2)2=90x 6, T 4=C 35⎝⎛⎭⎫x 232(3x 2)3=270x 223. (2)展开式的通项公式为T r +1=C r 53r ·x 23(5+2r ). 假设T r +1项系数最大,则有⎩⎪⎨⎪⎧C r 53r ≥C r -15·3r -1,C r 53r ≥C r +15·3r +1,∴⎩⎪⎨⎪⎧5!(5-r )!r !×3≥5!(6-r )!(r -1)!,5!(5-r )!r !≥5!(4-r )!(r +1)!×3.∴⎩⎪⎨⎪⎧3r ≥16-r,15-r ≥3r +1.∴72≤r ≤92,∵r ∈N ,∴r =4. 故展开式中系数最大的项为T 5=405x 263.变式迁移3 11,12,13(1)解析 分三种情况:①若仅T 7系数最大,则共有13项,n =12;②若T 7与T 6系数相等且最大,则共有12项,n =11;③若T 7与T 8系数相等且最大,则共有14项,n =13,所以n 的值可能等于11,12,13.(2)解 (ⅰ)∵C 4n +C 6n =2C 5n ,∴n 2-21n +98=0.∴n =7或n =14,当n =7时,展开式中二项式系数最大的项是T 4和T 5. ∴T 4的系数为C 37⎝⎛⎭⎫12423=352, T 5的系数为C 47⎝⎛⎭⎫12324=70, 当n =14时,展开式中二项式系数的最大的项是T 8.∴T 8的系数为C 714⎝⎛⎭⎫12727=3 432. (ⅱ)∵C 0n +C 1n +C 2n =79,∴n 2+n -156=0.∴n =12或n =-13(舍去). 设T k +1项的系数最大, ∵⎝⎛⎭⎫12+2x 12=⎝⎛⎭⎫1212(1+4x )12, ∴⎩⎪⎨⎪⎧C k 124k ≥C k -1124k -1,C k 124k ≥C k +1124k +1.∴9.4≤k ≤10.4.∴k =10.∴展开式中系数最大的项为T 11,T 11=⎝⎛⎭⎫1212C 1012410x 10=16 896x 10.课后练习区1.5 2.-2 3.7 4.21 5.-121解析 (1-x )5中x 3的系数为-C 35=-10,(1-x )6中x 3的系数为-C 36=-20,(1-x )7中x 3的系数为-C 37=-35,(1-x )8中x 3的系数为-C 38=-56.所以原式中x 3的系数为-10-20-35-56=-121.6.17解析 二项展开式的通项为T r +1=C r 18x18-r (-13x)r =(-1)r (13)r C r 18x 18-3r2. 令18-3r2=15,解得r =2.∴含x 15的项的系数为(-1)2(13)2C 218=17.7.-52解析 T r +1=C r 6x 6-r ⎝⎛⎭⎫-12r ·x -r =⎝⎛⎭⎫-12r C r 6·x 6-2r , 令6-2r =0,得r =3.∴常数项为T 3+1=⎝⎛⎭⎫-123C 36=-52. 8.4 351解析 ⎝⎛⎭⎫1+x +1x 210=⎣⎡⎦⎤(1+x )+1x 210=C 010(1+x )10+C 110(1+x )91x 2+C 210(1+x )81x 4+C 310(1+x )71x 6+C 410(1+x )61x8+…, 从第五项C 410(1+x )61x8起,后面各项不再出现常数项,前四项的常数项分别是C 010×C 010,C 110×C 29,C 210×C 48,C 310×C 67.故原三项展开式中常数项为C 010C 010+C 110C 29+C 210C 48+C 310C 67=4 351. 9.解 (1)①令x =1,得a 0+a 1+a 2+a 3+a 4=(3-1)4=16. (3分) ②令x =-1得,a 0-a 1+a 2-a 3+a 4=(-3-1)4=256, 而由(1)知a 0+a 1+a 2+a 3+a 4=(3-1)4=16, 两式相加,得a 0+a 2+a 4=136. (6分)③令x =0得a 0=(0-1)4=1,得a 1+a 2+a 3+a 4=a 0+a 1+a 2+a 3+a 4-a 0 =16-1=15.(9分)(2)证明 ∵32n +2-8n -9=32·32n -8n -9 =9·9n -8n -9=9(8+1)n -8n -9=9(C 0n 8n +C 1n 8n -1+…+C n -1n ·8+C n n·1)-8n -9 (12分)=9(8n +C 1n 8n -1+…+C n -2n 82)+9·8n +9-8n -9 =9×82×(8n -2+C 1n ·8n -3+…+C n -2n )+64n =64[9(8n -2+C 1n 8n -3+…+C n -2n )+n ],显然括号内是正整数,∴原式能被64整除. (14分)10.证明 因为⎝⎛⎭⎫1+1n n =C 0n +C 1n ·1n +C 2n ·⎝⎛⎭⎫1n 2+C 3n ·⎝⎛⎭⎫1n 3+…+C n n ·⎝⎛⎭⎫1n a n =1+1+12! ·⎝ ⎛⎭⎪⎫n -1n +13! ·⎝ ⎛⎭⎪⎫n -1n ⎝ ⎛⎭⎪⎫n -2n +…+1n !·⎝ ⎛⎭⎪⎫n -1n ⎝ ⎛⎭⎪⎫n -2n …⎝⎛⎭⎫1n .(4分)所以2≤⎝⎛⎭⎫1+1n n <2+12!+13!+…+1n !(7分)<2+11·2+12·3+…+1(n -1)n=2+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n=3-1n<3,(10分) 仅当n =1时,⎝⎛⎭⎫1+1n n =2;(12分)当n ≥2时,2<⎝⎛⎭⎫1+1n n <3. 故对一切n ∈N *,都有2≤⎝⎛⎭⎫1+1n n <3. (14分)11.解 由题意知,第五项系数为C 4n ·(-2)4,第三项的系数为C 2n ·(-2)2,则有C 4n ·(-2)4C 2n ·(-2)2=101,化简得n 2-5n -24=0, 解得n =8或n =-3(舍去).(2分) (1)令x =1得各项系数的和为(1-2)8=1.(4分)(2)通项公式T r +1=C r 8·(x )8-r ·⎝⎛⎭⎫-2x 2r =C r 8·(-2)r·x 8-r2-2r , 令8-r 2-2r =32,则r =1.故展开式中含x 32的项为T 2=-16x 32.(8分)(3)设展开式中的第r 项,第r +1项,第r +2项的系数绝对值分别为C r -18·2r -1,C r 8·2r ,C r +18·2r +1,若第r +1项的系数绝对值最大,则⎩⎪⎨⎪⎧C r -18·2r -1≤C r 8·2r,C r +18·2r +1≤C r 8·2r ,解得5≤r ≤6.(12分)又T 6的系数为负,∴系数最大的项为T 7=1 792x -11. 由n =8知第5项二项式系数最大. 此时T 5=1 120x -6.(14分)。