函数的单调性与极值
- 格式:doc
- 大小:172.00 KB
- 文档页数:4
函数的单调性及其极值单调性是函数的重要性态之一,它既决定着函数递增和递减的状况,又能帮助我们研究函数的极值,还能证明某些不等式和分析函数的图形。
本节将以导数为工具,给出函数单调性的判别法及极值的求法。
一、函数的单调性1、函数单调性的判定为利用导数研究函数的单调性,我们首先来看图133--)(a 、)(b 。
图133--)(a 中函数)(x f y =的图像在),(b a 内沿x 轴的正向上升,除点))(,(ξξf 处的切线平行于x 轴外,)(a )(b 图133--曲线上其余点处的切线与x 轴的夹角均为锐角,即曲线)(x f y =在区间),(b a 内除个别点外切线的斜率为正;而图133--)(b 中函数)(x f y =的图像在),(b a 内沿x 轴的正向下降,除个别点外,曲线上其余点处的切线与x 轴的夹角均为钝角,即曲线)(x f y =在区间),(b a 内除个别点外切线的斜率为负。
由此可见函数的单调性与导数的符号有着密切的联系。
反过来,能否用导数的符号来判定函数的单调性呢?下面我们利用拉格朗日中值定理来讨论。
设函数)(x f 在区间I 内可导,在I 内任取两点1x 和2x (21x x <),在区间],[21x x 上应用拉格朗日中值定理,得)()()()(1212x x f x f x f -'=-ξ (21x x <<ξ) (1)由于在(1)式中012>-x x ,因此,若在I 内导数)(x f '的符号保持为正,即0)(>'x f ,那么也有0)(>'ξf ,于是0)()()()(1212>-'=-x x f x f x f ξ即 )()(21x f x f <表明函数)(x f 在区间I 上单调增加。
同理,若在I 内导数)(x f '的符号保持为负,即0)(<'x f ,那么也有0)(<'ξf ,于是0)()()()(1212<-'=-x x f x f x f ξ即 )()(21x f x f > 表明函数)(x f 在区间I 上单调减少。
第四节函数单调性的判定法要求⑴会用导数求函数的单调区间。
⑵会利用单调性证明不等式。
1.用导数求函数的单调区间前面已经介绍了函数在区间上单调的概念,下面利用导数来对函数的单调性进行研究。
如果函数)(x f y =在[a,b ]上单调增加(单调减少),那末它的图形是一条沿x 轴正向上升(下降)的曲线。
这时,曲线上各点处的切线斜率是非负的(是非正的),即)0)((0)(≤'='≥'='x f y x f y 。
由此可见,函数的单调性与导数的符号有着密切的联系。
反过来,能否用导数的符号来判定函数的单调性呢?下面我们利用拉格朗日中值定理来进行讨论。
设函数)(x f 在[a,b ]上连续,在(a,b )内可导,在[a,b ]上任取两点1x 、2x (1x <2x ),应用拉格朗日中值定理,得到)( ))(()()(211212x x x x f x f x f <<-'=-ξξ由于在上式中,012>-x x ,因此,如果在(a,b )内导数)(x f '保持正号,即0)(>'x f ,那末也有0)(>'ξf ,于是))(()()(1212>-'=-x x f x f x f ξ即)()(21x f x f <表明函数)(x f y =在[a,b ]上单调增加。
同理,如果在(a,b )内导数)(x f '保持负号,即0)(<'x f ,那末0)(<'ξf ,于是0)()(12<-x f x f ,即)()(21x f x f >,表明函数)(x f y =在[a,b ]上单调减少。
归纳以上讨论,即得函数单调性的判定法设函数)(x f y =在[a,b ]上连续,在(a,b )内可导。
(1)如果在(a,b )内0)(>'x f ,那末函数)(x f y =在[a,b ]上单调增加;(2)如果在(a,b )内0)(<'x f ,那末函数)(x f y =在[a,b ]上单调减少。
1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A,如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间I上是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性,区间I叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为A,如果存在x0∈A,使得条件对于任意的x∈A,都有f(x)≤f(x0)对于任意的x∈A,都有f(x)≥f(x0)结论f(x0)为最大值f(x0)为最小值【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个值x1,x2”改为“存在两个值x1,x2”.()(2)对于函数f(x),x∈D,若x1,x2∈D且(x1-x2)·[f(x1)-f(x2)]>0,则函数f(x)在D上是增函数.()(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(5)所有的单调函数都有最值.( )(6)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( )1.下列函数中,①y =1x -x ;②y =x 2-x ;③y =ln x -x ;④y =e x -x ,在区间(0,+∞)内单调递减的是__________.2.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为________. 3.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________. 4.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为_____________.题型一 确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性例1 (1)下列函数中,①y =ln(x +2);②y =-x +1;③y =(12)x ;④y =x +1x ,在区间(0,+∞)上为增函数的是________.(2)函数f (x )=log 12(x 2-4)的单调递增区间是____________.(3)函数y =-x 2+2|x |+3的单调增区间为_________________________.命题点2 解析式含参函数的单调性例2 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.引申探究若本题中的函数变为f (x )=axx 2-1 (a >0),则f (x )在(-1,1)上的单调性如何?思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连结.已知a >0,函数f (x )=x +ax(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.题型二 函数的最值例3 已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞),a ∈(-∞,1].(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.思维升华 求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在[12,2]上的值域为[12,2],则a =________.题型三 函数单调性的应用命题点1 比较大小 例4 已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则f (x 1)________0,f (x 2)________0.(判断大小关系)命题点2 解不等式例5 已知函数f (x )为R 上的减函数,则满足f ⎪⎪⎭⎫ ⎝⎛x 1<f (1)的实数x 的取值范围是______________.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是__________. (2)已知⎩⎨⎧≥<+-=1,1,1)2()(x a x x a x f x满足对任意x 1≠x 2,都有0)()(2121>--x x x f x f 成立,那么a 的取值范围是________.思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x的取值范围是__________.(2)若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是减函数,则a的取值范围是__________.1.确定抽象函数单调性解函数不等式典例(14分)函数f(x)对任意的m、n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.思维点拨(1)对于抽象函数的单调性的证明,只能用定义.应该构造出f(x2)-f(x1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”是本题的切入点.要构造出f(M)<f(N)的形式.解函数不等式问题的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒本题对函数的单调性的判断是一个关键点.不会运用条件x>0时,f(x)>1,构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视了M、N的取值范围,即忽视了f(x)所在单调区间的约束.[方法与技巧]1.利用定义证明或判断函数单调性的步骤 (1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法. [失误与防范]1.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连结,不要用“∪”.A 组 专项基础训练 (时间:40分钟)1.下列函数f (x )中,①f (x )=1x ;②f (x )=(x -1)2;③f (x )=e x ;④f (x )=ln(x +1),满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.(填序号)2.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是__________.3.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎪⎭⎫⎝⎛-21,b =f (2),c =f (3),则a ,b ,c 的大小关系为______________.4.若函数f (x )=x 2-2x +m 在 [3,+∞)上的最小值为1,则实数m 的值为________.5.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是__________.6.函数f (x )=⎪⎩⎪⎨⎧<≥1,21,log 21x x x x的值域为________.7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.8.函数f (x )=x⎪⎭⎫⎝⎛31-log 2(x +2)在区间[-1,1]上的最大值为________.9.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.10.设函数y =f (x )是定义在(0,+∞)上的函数,并且满足下面三个条件:①对任意正数x ,y ,都有f (xy )=f (x )+f (y );②当x >1时,f (x )<0;③f (3)=-1. (1)求f (1),f (19)的值;(2)如果不等式f (x )+f (2-x )<2成立,求x 的取值范围.B 组 专项能力提升(时间:20分钟)11.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.12.定义新运算:当a ≥b 时,a b =a ;当a <b 时,a b =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于________.13.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为_________.14.已知函数f (x )=lg(x +ax -2),其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.。
函数的单调性与最值一、知识梳理1.增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则 有:(1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格 的)单调性,区间D 叫做y =f (x )的单调区间. 3.函数的最值注意:1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间 只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集 符号“∪”联结,也不能用“或”联结.2.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但 f (x )·g (x ),()1f x 等的单调性与其正负有关,切不可盲目类比. [试一试]1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2)B .y =-x +1C .12xy ⎛⎫= ⎪⎝⎭D .y =x +1x解析:选A 选项A 的函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.函数f (x )=x 2-2x (x ∈[-2,4])的单调增区间为______;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8二、方法归纳1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论;(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数; (3)图像法:如果f (x )是以图像形式给出的,或者f (x )的图像易作出,可由图像的直观性 判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性. 2.求函数最值的五个常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不 等式求出最值.(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 提醒:在求函数的值域或最值时,应先确定函数的定义域. [练一练]1.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =e -x C .y =-x 2+1 D. y =lg|x |答案:C2.函数f (x )=1x 2+1在区间[2,3]上的最大值是________,最小值是________.答案:15 110三、考点精练考点一 求函数的单调区间1、函数()()5log 21f x x =+的单调增区间是________. 解析:要使()5log 21y x =+有意义,则210x +>,即12x >-,而5log y u =为()0,+∞ 上的增函数,当12x >-时,u =2x +1也为R 上的增函数,故原函数的单调增区间是 1,2⎛⎫-+∞ ⎪⎝⎭.答案:1,2⎛⎫-+∞ ⎪⎝⎭2.函数y =x -|1-x |的单调增区间为________.解析:y =x -|1-x |=1,121,1x x x ≥⎧⎨-<⎩作出该函数的图像如图所示.由图像可知,该函数的单调增区间是(-∞,1]. 答案:(-∞,1]3.设函数y =f (x )在(),-∞+∞内有定义.对于给定的正数k ,定义函数()()()(),,k f x f x k f x k f x k⎧≤⎪=⎨>⎪⎩取函数()2xf x -=,当k =12时,函数()k f x 的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析:选C 由f (x )>12,得-1<x <1.由f (x )≤12,得x ≤-1或x ≥1.所以()122,11,1122,1x x x f x x x -⎧≥⎪⎪=-<<⎨⎪⎪≤-⎩,故()12f x 的单调递增区间为(-∞,-1).[解题通法]求函数单调区间的方法与判断函数单调性的方法相同即: (1)定义法;(2)复合法;(3)图像法;(4)导数法.考点二 函数单调性的判断 [典例] 试讨论函数()()0kf x x k x=+>的单调性. [解] 法一:由解析式可知,函数的定义域是()(),00,-∞⋃+∞.在(0,+∞)内任取1x ,2x ,令12x x <,那么()()()()122121212121211211x x k k k f x f x x x x x k x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为120x x <<,所以210x x ->,120x x >.故当)12,x x ∈+∞时,()()12f x f x <,即函数在)+∞上单调递增.当(12,x x ∈时,()()12f x f x >,即函数在(上单调递减. 考虑到函数()()0kf x x k x=+>是奇函数,在关于原点对称的区间上具有相同的单调性,故在(,-∞单调递增,在()上单调递减. 综上,函数f (x )在(,-∞和)+∞上单调递增,在()和(上单调递减. [解题通法]1.利用定义判断或证明函数的单调性时,作差后要注意差式的分解变形彻底. 2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确. [针对训练]判断函数g (x )=-2xx -1在 (1,+∞)上的单调性.解:任取x 1,x 2∈(1,+∞),且x 1<x 2, 则()()()()()12121212122221111x x x x g x g x x x x x ----=-=----, 由于1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0, 因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数. 考点三 函数单调性的应用 角度一 求函数的值域或最值1.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0, f (1)=-23.(1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值和最小值. 解:(1)证明:∵函数f (x )对于任意x ,y ∈R , 总有f (x )+f (y )=f (x +y ),∴令x =y =0,得f (0)=0. 再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0, f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2). 又∵当x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2). 因此f (x )在R 上是减函数.(2)∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数, ∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,f (-3)=-f (3)=2. ∴f (x )在[-3,3]上的最大值为2,最小值为-2. 角度二 比较两个函数值或两个自变量的大小2.已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞) 时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0. 角度三 解函数不等式3.已知函数()2243,023,0x x x f x x x x ⎧-+≤⎪=⎨--+>⎪⎩则不等式f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:选B 作出函数f (x )的图像,如图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4,所以不等式的解集为(-1,4).角度四 求参数的取值范围或值4.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为( )A .(-∞,2)B.13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D.13,28⎡⎫⎪⎢⎣⎭解析:选B 函数f (x )是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤- ⎪⎪⎝⎭⎩,由此解得a ≤138, 即实数a 的取值范围是13,8⎛⎤-∞ ⎥⎝⎦. [解题通法]1.含“f ”不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.2.比较函数值大小的思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图像法求解.巩固练习一、选择题1.“a =1”是“函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件答案:A 解析:f (x )对称轴x =a ,当a ≤1时f (x )在[1,+∞)上单调递增.∴“a =1”为 f (x )在[1,+∞)上递增的充分不必要条件.2.已知函数()224,04,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)答案:C 解析:由题知f (x )在R 上是增函数,由题得2-a 2>a ,解得-2<a <1. 3.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为 ( ) A .4B .5C .6D .7答案:C解析:由题意知函数f (x )是三个函数y 1=2x ,y 2=x +2,y 3=10-x 中的较小者,作出三个函数在同一坐标系之下的图象(如图中实线部分为f (x )的图象)可知A (4,6)为函数f (x )图 象的最高点.4.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-1,0)∪(0,1] C .(0,1)D .(0,1]答案:D 解析:f (x )在[a ,+∞)上是减函数,对于g (x ),只有当a >0时,它有两个减区 间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f (x )和g (x )的减区间的子集即可,则a 的取值范围是0<a ≤1.5.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能答案:A 解析:∵f (-x )+f (x )=0,∴f (-x )=-f (x ).又∵x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,∴x 1>-x 2,x 2>-x 3,x 3>-x 1. 又∵f (x 1)>f (-x 2)=-f (x 2),f (x 2)>f (-x 3)=-f (x 3),f (x 3)>f (-x 1)=-f (x 1), ∴f (x 1)+f (x 2)+f (x 3)>-f (x 2)-f (x 3)-f (x 1). ∴f (x 1)+f (x 2)+f (x 3)>0.] 二、填空题6.函数y =-(x -3)|x |的递增区间是________.7.设f (x )是增函数,则下列结论一定正确的是________(填序号). ①y =[f (x )]2是增函数;②y =1f (x )是减函数;③y =-f (x )是减函数;④y =|f (x )|是增函数. 答案:[0,32]解析:()()()()3030x x x y x x x ⎧--≥⎪=⎨-<⎪⎩画图象如图所示:可知递增区间为[0,32].8.设0<x <1,则函数y =1x +11-x 的最小值是________.答案:4解析 y =1x +11-x =1x (1-x ),当0<x <1时,x (1-x )=-(x -12)2+14≤14,∴y ≥4.三、解答题9.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. (1)证明:当x ∈(0,+∞)时,f (x )=a -1x ,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0.f (x 1)-f (x 2)=(a -1x 1)-(a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2),即f (x )在(0,+∞)上是增函数. (2)解:由题意a -1x <2x 在(1,+∞)上恒成立,设h (x )=2x +1x ,则a <h (x )在(1,+∞)上恒成立.∵h ′(x )=2-1x 2,x ∈(1,+∞),∴2-1x 2>0,∴h (x )在(1,+∞)上单调递增.故a ≤h (1),即a ≤3. ∴a 的取值范围为(-∞,3].10.已知f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围. 解:设f (x )的最小值为g (a ),则只需g (a )≥0,由题意知,f (x )的对称轴为-a2.(1)当-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73.又a >4,故此时的a 不存在.(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=f (-a 2)=3-a -a 24≥0得-6≤a ≤2.又-4≤a ≤4,故-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0得a ≥-7.又a <-4,故-7≤a <-4.综上得所求a 的取值范围是-7≤a ≤2.11.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时, 有()()0f a f b a b+>+成立.(1)判断f (x )在[-1,1]上的单调性,并证明它; (2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围. 解:(1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数, ∴()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-由已知得()()()12120f x f x x x +->+-,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在[-1,1]上单调递增. (2)∵f (x )在[-1,1]上单调递增,∴112111121111x x x x ⎧+<⎪-⎪⎪-≤+≤⎨⎪⎪-≤<⎪-⎩∴-32≤x <-1.(3)∵f (1)=1,f (x )在[-1,1]上单调递增. ∴在[-1,1]上,f (x )≤1.问题转化为m2-2am+1≥1,即m2-2am≥0,对a∈[-1,1]成立.下面来求m的取值范围.设g(a)=-2m·a+m2≥0.①若m=0,则g(a)=0≥0,自然对a∈[-1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[-1,1]恒成立,必须g(-1)≥0,且g(1)≥0,∴m≤-2,或m≥2.∴m的取值范围是m=0或|m|≥2.。
1
函数的单调性与极值
(5月10日)
教学目标:正确理解利用导数判断函数的单调性的原理;
掌握利用导数判断函数单调性的方法;
教学重点:利用导数判断函数单调性;
教学难点:利用导数判断函数单调性
教学过程:
一 引入:
以前,我们用定义来判断函数的单调性.在假设x1
来判断函数的单调性就比较简单.
二 新课讲授
1 函数单调性
我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.从函数
342xxy
的图像可以看到:在区间(2,)内,切线的斜率为正,函数y=f(x)的值随着x的增大
而增大,即/y>0时,函数y=f(x) 在区间(2,)内为增函数;在区间(,2)内,
切线的斜率为负,函数y=f(x)的值随着x的增大而减小,即/y0时,函数y=f(x) 在区间
(,2)内为减函数.
定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y>0,那么函数
y=f(x) 在为这个区间内的增函数;,如果在这个区间内/y<0,那么函数y=f(x) 在为这个区
间内的减函数。
例1 确定函数422xxy在哪个区间内是增函数,哪个区间内是减函数。
例2 确定函数76223xxy的单调区间。
x
0
2
y
2
)(4xf
)(1xf
o
a
X
1
X
2
X3 X
4
b
x
y
2 极大值与极小值
观察例2的图可以看出,函数在X=0的函数值比它附近所有各点的函数值都大,我
们说f(0)是函数的一个极大值;函数在X=2的函数值比它附近所有各点的函数值都小,我
们说f(0)是函数的一个极小值。
一般地,设函数y=f(x)在0xx及其附近有定义,如果)(0xf的值比0x附近所有各点的函
数值都大,我们说f(0x)是函数y=f(x)的一个极大值;如果)(0xf的值比0x附近所有各点
的函数值都小,我们说f(0x)是函数y=f(x)的一个极小值。极大值与极小值统称极值。
在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注
意以下几点:
(ⅰ)极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比
较是最大或最小。并不意味着它在函数的整个的定义域内最大或最小。
(ⅱ)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以
不止一个。
(ⅲ)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,
如下图所示,1x是极大值点,4x是极小值点,而)(4xf>)(1xf。
(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点。而使函数取
得最大值、最小值的点可能在区间的内部,也可能在区间的端点。
由上图可以看出,在函数取得极值处,如果曲线有切线的话,则切线是水平的,从而有
0)(xf
。但反过来不一定。如函数3xy,在0x处,曲线的切线是水平的,但这点
的函数值既不比它附近的点的函数值大,也不比它附近的点的函数值小。假设0x使
3
o
a X0 b x y )(0xf 0)(xf 0)(xf o a X0 b
x
y
)(0xf
0)(xf
0)(xf
x
o
y
0)(0xf
,那么0x在什么情况下是的极值点呢?
如上左图所示,若0x是)(xf的极大值点,则0x两侧附近点的函数值必须小于)(0xf。因
此,0x的左侧附近)(xf只能是增函数,即0)(xf。0x的右侧附近)(xf只能是减函数,
即0)(xf,同理,如上右图所示,若0x是极小值点,则在0x的左侧附近)(xf只能是减
函数,即0)(xf,在0x的右侧附近)(xf只能是增函数,即0)(xf,从而我们得出结论:
若0x满足0)(0xf,且在0x的两侧)(xf的导数异号,则0x是)(xf的极值点,
)(0xf
是极值,并且如果)(xf在0x两侧满足“左正右负”,则0x是)(xf的极大值点,)(0xf是
极大值;如果)(xf在0x两侧满足“左负右正”,则0x是)(xf的极小值点,)(0xf是极小
值。
例3 求函数44313xxy的极值。
4
三 小结
1求极值常按如下步骤:
① 确定函数的定义域;
② 求导数;
③ 求方程/y=0的根,这些根也称为可能极值点;
④ 检查在方程的根的左右两侧的符号,确定极值点。(最好通过列表法)
四 巩固练习
1 确定下列函数的单调区间:
(1)7522xxy (2)33xxy
2 求下列函数的极值
(1)672xxy (2)xxy522
(3)xxy273 (4)323xxy
五 课堂作业
1 确定下列函数的单调区间:
(1)24xy (2)2)1(xy
(3)522xxy (4)xxxy23
2 求下列函数的极值
(1)1042xxy (2)7422xxy
(3)1323xxy (4)3126xxy
(5)xxxy63423 (6)422xxy