必修二 2.2.1直线与平面平行的判定
- 格式:ppt
- 大小:2.92 MB
- 文档页数:38
二数学必修二第一章空间几何体的结构青岛天龙中学高二数学备课组二数学必修二第一章空间几何体的结构青岛天龙中学高二数学备课组第1页共2 页第 2 页共2 页`````````````````````````````````````````````````````````````````````````2.2.1 直线与平面平行的判定导学案学习目标1. 准确理解线面平行的判定定理并能熟练应用,提高推理论证能力。
2. 自主学习、合作交流,探究利用判定定理证明线面平行的规律和方法。
3. 激情投入、高效学习,形成良好的数学思维品质,体会转化思想。
一、预习内容1、直线与平面平行的判定定理:_______________________________________________________________________________________ _______________________________________________________________________________________ _______________________图形为:符号表示:二、学习探究问题1 直线与平面有哪几种位置关系?(画出相应的图形)问题2 根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。
问题3动手实践①当门扇绕着一边转动时,门扇转动的一边所在直线与门框所在平面具有什么样的位置关系?②将课本放在桌面上,翻动书的封面,封面边缘所在直线与桌面所在平面具有什么样的位置关系?所以,平面α外的直线a平行平面α内的直线b简单概括:(内外)线线平行线面平行符号表示:问题4 判定定理有什么作用?问题5 一条直线平行于一个平面,这条直线平行于这个平面内的所有直线吗?有哪些位置关系?例1如图,空间四边形ABCD中,,E F分别是,AB AD的中点,求证:EF∥平面BCD.巩固训练如图,四棱锥A-DBCE中,O为底面正方形DBCE对角线交点,F为AE的中点,求证:AB//平面DCF.当堂检测1、下列说法正确的是()A.若直线a在平面α外,则a//α.B.若直线a//b,b⊂α,则a//α.C. 若直线a//b,a⊄α, b⊂α,则a//αD.若直线a平行于平面α内的无数条直线,则a//α.2、若AB、BC、CD是不在同一平面内的三线段,则经过它们中点的平面和直线AC的位置关系是()A、平行B、相交C、AC在此平面内D、平行或相交3、如图,正方形ABCD与正方形ABEF交于AB,M和N分别为AC和BF的中MN BEC【课堂小结】柱、锥、台的表面积与体积公式【课堂评价】把你对本节课的评价写出来(“满意”“比较满意”、“不满意”、)_______.Eαba。
§2.2 直线、平面平行的判定及其性质2.2.1直线与平面平行的判定【课时目标】1.理解直线与平面平行的判定定理的含义.2.会用图形语言、文字语言、符号语言准确描述直线与平面平行的判定定理,并知道其地位和作用.3.能运用直线与平面平行的判定定理证明一些空间线面关系的简单问题.1.直线与平面平行的定义:直线与平面______公共点.2.直线与平面平行的判定定理:______________一条直线与________________的一条直线平行,则该直线与此平面平行.用符号表示为____________________________.一、选择题1.以下说法(其中a,b表示直线,α表示平面)①若a∥b,b⊂α,则a∥α;②若a∥α,b∥α,则a∥b;③若a∥b,b∥α,则a∥α;④若a∥α,b⊂α,则a∥b.其中正确说法的个数是()A.0 B.1 C.2 D.32.已知a,b是两条相交直线,a∥α,则b与α的位置关系是()A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交3.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是()A.平行B.相交C.平行或相交D.AB⊂α4.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在内D.不能确定5.过直线l外两点,作与l平行的平面,则这样的平面()A.不存在B.只能作出一个C.能作出无数个D.以上都有可能6.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有()A.4条B.6条C.8条D.12条二、填空题7.经过直线外一点有________个平面与已知直线平行.8.如图,在长方体ABCD-A1B1C1D1的面中:(1)与直线AB平行的平面是________;(2)与直线AA1平行的平面是______;(3)与直线AD平行的平面是______.9.在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与过点A,E,C的平面的位置关系是______.三、解答题10.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱BC、C1D1的中点.求证:EF∥平面BDD1B1.11.如图所示,P是▱ABCD所在平面外一点,E、F分别在P A、BD上,且PE∶EA=BF∶FD.求证:EF∥平面PBC.能力提升12.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥面MNP的图形的序号是________.(写出所有符合要求的图形序号)13.正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证PQ∥平面BCE.(用两种方法证明)直线与平面平行的判定方法(1)利用定义:证明直线a与平面α没有公共点.这一点直接证明是很困难的,往往借助于反证法来证明.(2)利用直线和平面平行的判定定理:a⊄α,a∥b,b⊂α,则a∥α.使用定理时,一定要说明“不在平面内的一条直线和平面内的一条直线平行”,若不注明和平面内的直线平行,证明过程就不完整.因此要证明a∥平面α,则必须在平面α内找一条直线b,使得a∥b,从而达到证明的目的.证明线线平行时常利用三角形中位线、平行线分线段成比例定理等.§2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定答案知识梳理1.无2.平面外此平面内a⊄α,b⊂α,且a∥b⇒a∥α作业设计1.A[①a⊂α也可能成立;②a,b还有可能相交或异面;③a⊂α也可能成立;④a,b 还有可能异面.]2.D3.C4.A5.D6.D[如图所示,与BD平行的有4条,与BB1平行的有4条,四边形GHFE的对角线与面BB1D1D平行,同等位置有4条,总共12条,故选D.]7.无数8.(1)平面A1C1和平面DC1(2)平面BC1和平面DC1(3)平面B1C和平面A1C19.平行解析 设BD 的中点为F ,则EF ∥BD 1. 10.证明 取D 1B 1的中点O , 连接OF ,OB .∵OF 綊12B 1C 1,BE 綊12B 1C 1,∴OF 綊BE .∴四边形OFEB 是平行四边形, ∴EF ∥BO . ∵EF ⊄平面BDD 1B 1, BO ⊂平面BDD 1B 1, ∴EF ∥平面BDD 1B 1.11.证明 连接AF 延长交BC 于G ,连接PG .在▱ABCD 中, 易证△BFG ∽△DFA . ∴GF FA =BF FD =PE EA , ∴EF ∥PG . 而EF ⊄平面PBC , PG ⊂平面PBC , ∴EF ∥平面PBC . 12.①③13.证明 方法一 如图(1)所示,作PM ∥AB 交BE 于M ,作QN ∥AB 交BC 于N ,连接MN .∵正方形ABCD 和正方形ABEF 有公共边AB , ∴AE =BD .又∵AP =DQ ,∴PE =QB .又∵PM ∥AB ∥QN ,∴PM AB =PE AE ,QN DC =BQBD .∴PM 綊QN .∴四边形PQNM 是平行四边形.∴PQ ∥MN .又MN ⊂平面BCE ,PQ ⊄平面BCE ,∴PQ ∥平面BCE .方法二 如图(2)所示,连接AQ 并延长交BC(或其延长线)于K ,连接EK .∵KB ∥AD ,∴DQ BQ =AQQK .∵AP =DQ ,AE =BD ,∴BQ =PE . ∴DQ BQ =AP PE .∴AQ QK =APPE.∴PQ ∥EK . 又PQ ⊄面BCE ,EK ⊂面BCE ,∴PQ ∥面BCE .。
§2.2.1 直线与平面平行的判定一、学习目标:(1)理解并掌握直线与平面平行的判定定理;(2)进一步培养学生观察、发现的能力和空间想象能力;二、学习重点与难点重点:直线与平面平行的判定定理及应用。
难点:直线与平面平行的判定定理的探索及应用。
三、教学过程(一)知识准备、新课引入α提问2:今天我们针对直线与平面平行的位置关系进行探究。
根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。
(二)探求判定定理1、直观感知提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?2、动手实践教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以的感觉,当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象是3、探究思考(1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?(2)如果平面外的直线a与平面α内的一条直线b平行,那么直线a与平面α平行吗?4、归纳确认:直线和平面平行的判定定理: 文字语言:图形语言:符号语言:简单概括:(内外)线线平行 线面平行 温馨提示:作用:判定或证明线面平行。
关键:在平面内找(或作)出一条直线与面外的直线平行。
思想:空间问题转化为平面问题5、思考:你能否尝试证明一下线面平行判定定理?(三)应用定理,巩固与提高例1:已知:空间四边形ABCD 中,E 、F 分别是AB 、AD试判断EF 与平面BCD 的关系,并予以证明变式:空间四边形ABCD 中,E 、F 分别是AB 、AD 上的点,且AE=31AB ,AF=31AD 求证:EF ∥平面BCD .ABCDEFB1例2、正方体ABCD —A 1B 1C 1D 1中,有为DD 1的中点,试判断BD 1与平面AEC 的位置关系,并说明理由。
(学生独立完成)(四)课堂总结四、课堂练习1、 判定下列说法是否正确(1)直线a 与平面α不平行,即a 与平面α相交.( ) (2)若直线a 在平面α外,则a//α( ) (3)若直线a//b ,b ⊂α,则a//α( ) (4) 若直线a//b ,a ⊄α, b ⊂α,则a//α;( )(5)若直线a 平行于平面α内的无数条直线,则a//α( ) 2、长方体ABCD —A 1B 1C 1D 1中,①与AB 平行的平面是_______________②与AA 1平行的平面是________________ ③与AD 平行的平面是__________________3、空间四边形ABCD 中,E,F,G,H 分别是AB,BC,CD,AD 的重点,试找出图中满足线面平行位置关系的所有情况。
2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定●知识梳理1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:a αb β => a∥αa∥b●知能训练一.选择题1.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n2.若直线l不平行于平面α,且l⊄α,则()A.α内存在直线与l异面B.α内存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交3.如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列命题①过M点有且只有一条直线与直线AB、B1C1都相交;②过M点有且只有一条直线与直线AB、B1C1都垂直;③过M点有且只有一个平面与直线AB、B1C1都相交;④过M点有且只有一个平面与直线AB、B1C1都平行.其中真命题是()A.②③④B.①③④C.①②④D.①②③4.正方体ABCD-A1B1C1D1中M,N,Q分别是棱D1C1,A1D1,BC的中点.P在对角线BD1上,且BP=BD1,给出下面四个命题:(1)MN∥面APC;(2)C1Q∥面APC;(3)A,P,M三点共线;(4)面MNQ∥面APC.正确的序号为()A.(1)(2)B.(1)(4)C.(2)(3)D.(3)(4)5.在正方体ABCD-A1B1C1D1的各个顶点与各棱中点共20个点中,任取两点连成直线,所连的直线中与A1BC1平行的直线共有()A.12条B.18条C.21条D.24条6.直线a∥平面α,P∈α,那么过P且平行于a的直线()A.只有一条,不在平面α内B.有无数条,不一定在平面α内C.只有一条,且在平面α内D.有无数条,一定在平面α内7.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交8.如图在正方体ABCD-A1B1C1D1中,与平面AB1C平行的直线是()A.DD1B.A1D1C.C1D1D.A1D9.如图,在三棱柱ABC-A1B1C1中,点D为AC的中点,点D1是A1C1上的一点,若BC1∥平面AB1D1,则等于()A.1/2B.1 C.2 D.310.下面四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A.①②B.①④C.②③D.③④11.如图,正方体的棱长为1,线段B′D′上有两个动点E,F,EF=,则下列结论中错误的是()A.AC⊥BEB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值二.填空题12.如图,在正方体ABCD-A1B1C1D1中,E,F,G,H,M分别是棱AD,DD1,D1A1,A1A,AB的中点,点N在四边形EFGH的四边及其内部运动,则当N只需满足条件时,就有MN⊥A1C1;当N只需满足条件时,就有MN∥平面B1D1C.13.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于.三.解答题14.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2.(1)求证:AB 1∥平面BC1D;(2)若BC=3,求三棱锥D-BC1C的体积.2.2.2 平面与平面平行的判定●知识梳理1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
2.2.1 直线与平面平行的判定学习目标(1)以立体几何的定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行的判定;(2)掌握直线与平面平行判定定理,掌握转化思想“线线平行⇒线面平行” . 一、学前准备预习教材5554P P -的内容.1. 直线与平面平行的定义 .2. 书平放在桌面上,翻动封面,边缘与桌面关系如何?3. 下面直线a 与平面α都平行吗?如何去确定这种关系呢?二、体验探究1.定理:平面外一条直线与此平面内的一条直线 ,则该直线与此平面 .(即:线线平行⇒线面平行.) 图形语言符号语言: . 三、师生互动【例1】求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面。
【例2】已知P 是平行四边形ABCD 所在平面外一点,E 、F 分别为AB 、PD 的中点,求证:AF ∥平面PEC【例3】已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别是AB 、PC 的中点(1)求证:M N//平面PAD ;(2)若PA AD ⊥,4MN BC ==,PA =PA 与MN 所成的角的大小.ABCDEFPD CBAPMN四、反馈练习1.已知直线1l 、2l , 平面α, 1l ∥2l , 1l ∥α, 那么2l 与平面α的关系是 ( ) A . 1l ∥α B . 2l ⊂α C .2l ∥α或2l ⊂α D . 2l 与α相交 2.以下说法(其中a ,b 表示直线,α表示平面)中,正确说法的个数是 ( ) ①若a ∥b ,b ⊂α,则a ∥α ②若a ∥α,b ∥α,则a ∥b ③若a ∥b ,b ∥α,则a ∥α ④若a ∥α,b ⊂α,则a ∥bA . 0个B . 1个C . 2个D .3个3.已知a ,b 是两条相交直线,a ∥α,则b 与α的位置关系是 ( ) A . b ∥α B . b 与α相交 C .b ⊂α D . b ∥α或b 与α相交4.如果点M 是两条异面直线外的一点,则过点M 且与a ,b 都平行的平面 ( )A . 只有一个B . 恰有两个C . 或没有,或只有一个D . 有无数个5. 如果平面α外有两点A 、B ,它们到平面α的距离都是a ,则直线AB 和平面α的位置关系是 .6. 长方体1111ABCD A BC D -中,与AB 平行的平面是 ; 与1AA 平行的平面是 ;与AD 平行的平面是 。
直线与平面平行的判定一、教材分析:本节教材选自人教版高中数学必修2第二章第2节2.2.1,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。
本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。
本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用很大。
二、学生学习情况分析:学生已经学习了两直线位置关系和直线与平面平行的判定和性质,有了“通过观察、操作并抽象概括等活动获得数学结论”的体会,也有一定的空间想象能力、几何直观能力、推理论证能力以及运用图形语言进行交流的能力,具备学习本节课所需的知识。
但学习立体几何所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。
三、教学重点与难点重点:判定定理的引入与理解;难点:判定定理的应用及立体几何空间感、空间观念的形成与逻辑思维能力的培养。
四、教学目标知识与技能目标:能够准确使用数学符号语言、文字语言表述判定定理,利用定理会求相关的简单问题。
过程与方法目标:在探索直线与平面垂直判定定理的过程中树立空间观念,发展合情推理能力和一定的推理论证能力,同时体验和感悟转化的数学思想方法;情感态度与价值观目标:在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
五、教学过程设计(一)知识准备、新课引入提问1:根据公共点的情况,空间中直线a和平面 有哪几种位置关系?并完成下表:(多媒体幻灯片演示)位置关系公共点符号表示图形表示我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a⊄α提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。
[设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。