直线与平面平行的判定
- 格式:ppt
- 大小:443.50 KB
- 文档页数:16
一、直线、平面平行的判定与其性质知识点一、直线与平面平行的判定ii .思考:如图,设直线b在平面a内,直线a在平面a外,猜测在什么条件下直线a与平面a 平行.〔a|| b〕※判定定理的证明特别提示证明直线和平面的平行通常采用如下两种方法:①利用直线和平面平行的判定定理,通过“线线平行,证得“线面〃平行;②利用两平面平行的性质定理,通过“面面〃平行,证得“线面〃平行. 知识点三、平面与平面平行的判定、直线、平面垂直的判定与其性质知识点一、直线和平面垂直的定义与判定要点诠释:定义中“平面-内的任意一条直线"就是指“平面二:内的所有直线",这与“无数条直线〃不同〔线线垂直线面垂直〕知识点二、二面角I.二面角::从一条直线出发的两个半平面所组成的图形叫二面角〔dihedral angle 〕.这条直线叫做二面角的棱,这两个半平面叫做二面角的面•记作二面角一AB —.〔简记P —AB —Q〕.面角的平面角的三个特征:i .点在棱上ii.线在面内iii.与棱垂直n .二面角的平面角:在二面角一I —的棱I上任取一点O ,以点O为垂足,在半平面,内分别作垂直于棱丨的射线OA和0B,如此射线OA和0B构成的AOB叫做二面角的平面角• 作用:衡量二面角的大小;X 围:0°180°.2能保证直线 a 与平面a 平行的条件是〔A 〕 A.a a ,b a ,a / bB .b a ,a / b知识点四、平面和平面垂直的定义和判定定义 判定文字描述 两个平面相交,如果它们所成的二面角是 直二面角,就说这两个平面垂直 .一个平面过另一个平面的垂线,如此这两 个平面垂直 图形 k z结果aAp = l a -l- B =90° 戸 a 丄 B 1 丄 cxj c a:丄 0〔垂直问题中要注意题目中的文字表述,特别是“任何〃“随意〃“无数〃等字眼〕 知识点五、平面和平面垂直的性质面面垂直 '线面垂直〔如果两个平面垂直,那么一个平面内垂直于它们交线的直线与一个面平垂直〕例题1.如图,假如 是长方体ABCD-ABCQ 被平面EFGH 截去几何体 EFGHBD 后得到的几 何体,其中E 为线段A i B i 上异于B i 的点,F 为线段BB 上异于B 的点,且EH// A i D i , 如此如下结论中不正确的答案是A. EH // FGB. 四边形EFGH 是矩形C. 是棱柱D.是棱台 C. b a ,c / a ,a / b,a / cD. b a ,A € a,B € a,C € b ,D € b 且 AC = BD3如下命题正确的答案是〔 DF 〕A. 平行于同一平面的两条直线平行B. 假如直线a / a ,如此平面a 内有且仅有一条直线与a 平行 C. 假如直线a / a ,如此平面a 内任一条直线都与a 平行 D. 假如直线a / a ,如此平面a 内有无数条直线与 a 平行E. 如果a 、b 是两条直线,且 a / b ,那么a 平行于经过b 的任何平面F. 如果直线a 、b 和平面a 满足 a / b , a / a ,b a,那么b /a4在空间,如下命题正确的答案是〔A 〕平行直线的平行投影重合〔B 〕平行于同一直线的两个平面平行〔C〕垂直于同一平面的两个平面平行A. m , n〔D〕垂直于同一平面的两条直线平行5m n为两条不同的直线,a、B为两个不同的平面,如此如下命题中正确的答案是B. a m , nm// nC. ml a,m 丄n n / aD. n / m,n丄a m± a〔A〕如果平面丄平面,那么平面内一定直线平行于平面〔B〕如果平面垂直于平面,那么平面内一定不存在直线垂直于平面〔C〕如果平面丄平面,平面丄平面,丨,那么丨丄平面〔D〕如果平面丄平面,那么平面内所有直线都垂直于平面设盘上是悔条直线, 血是两个平酣则a Lb的一个充分条件是(A) a ± a.bll(i.Q1 /J (B) □丄a少丄p(C) a c a,b丄(D)a c a.bll丄08. 求证:空间四边形相邻两边中点的连线,平行于经过另外两边的平面:空间四边形ABCD中, E、F分别是AB AD的中点求证:EF”平面BCD9. 如图,在椎体P-ABCD中,ABCD1边长为1的棱形,且/ DAB=60, ,PB=2,E,F分别是BC,PC的中点.⑴证明:AD丄平面DEF;(2)求二面角P-AD-B的余弦值.课堂练习A组1已知砌理是两条不冋宜线,a t j8,y是三个不同平面'下列命题中正确的是()A•若fn\\ ay/II a,则加“舟 B.若c(一丁』丄人则口"0C*若卅队则伉//爪 D.若仍丄丄<7,则朋“料4.已拓两荼直线,阳个平和。
直线与平面平行的判定、平面与平面平行的判定[新知初探]1.直线与平面平行的判定[点睛]用该定理判断直线a和平面α平行时,必须同时具备三个条件:(1)直线a在平面α外,即a⊄α;(2)直线b在平面α内,即b⊂α;(3)两直线a,b平行,即a∥b.2.平面与平面平行的判定[点睛](1)平面与平面平行的判定定理中的平行于一个平面内的“两条相交直线”是必不可少的.(2)面面平行的判定定理充分体现了等价转化思想,即把面面平行转化为线面平行.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若直线l上有两点到平面α的距离相等,则l∥平面α()(2)若直线l与平面α平行,则l与平面α内的任意一条直线平行()(3)两条平行线中的一条直线与一个平面平行,那么另一条也与这个平面平行()答案:(1)× (2)× (3)×2.能保证直线a 与平面α平行的条件是( ) A .b ⊂α,a ∥bB .b ⊂α,c ∥α,a ∥b ,a ∥cC .b ⊂α,A ,B ∈a ,C ,D ∈b ,且AC ∥BD D .a ⊄α,b ⊂α,a ∥b解析:选D 由线面平行的判定定理可知,D 正确.3.若一个平面内的两条直线分别平行于另一个平面内的两条直线,则这两个平面的位置关系是( )A .一定平行B .一定相交C .平行或相交D .以上判断都不对解析:选C 可借助于长方体判断两平面对应平行或相交.直线与平面平行的判定[典例] 如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别是BC ,CC 1,BB 1的中点,求证:EF ∥平面AD 1G .[证明] 连接BC 1,则由E ,F 分别是BC ,CC 1的中点,知EF ∥BC 1. 又AB 綊A 1B 1綊D 1C 1,所以四边形ABC 1D 1是平行四边形, 所以BC 1∥AD 1,所以EF ∥AD 1. 又EF ⊄平面AD 1G ,AD 1⊂平面AD 1G , 所以EF ∥平面AD 1G .利用直线和平面平行的判定定理证明线面平行的关键是在平面内找一条直线与已知直线平行,常利用平行四边形、三角形中位线、平行公理等.已知有公共边AB 的两个全等的矩形ABCD 和ABEF 不同在一个平面内,P ,Q 分别是对角线AE ,BD 上的点,且AP =DQ .求证:PQ ∥平面CBE .证明:如图,作PM ∥AB 交BE 于点M ,作QN ∥AB 交BC 于点N ,连接MN ,则PM ∥QN ,PM AB =EP EA ,QN CD =BQ BD .∵EA =BD ,AP =DQ ,∴EP =BQ . 又∵AB =CD ,∴PM 綊QN ,∴四边形PMNQ 是平行四边形,∴PQ ∥MN . 又∵PQ ⊄平面CBE ,MN ⊂平面CBE , ∴PQ ∥平面CBE .平面与平面平行的判定[典例] 已知,点P 是△ABC 所在平面外一点,点A ′,B ′,C ′分别是△PBC ,△PAC ,△PAB 的重心.(1)求证:平面A ′B ′C ′∥平面ABC . (2)求A ′B ′∶AB 的值.[解] (1)证明:如图,连接PA ′,并延长交BC 于点M ,连接PB ′,并延长交AC 于点N ,连接PC ′,并延长交AB 于点Q ,连接MN ,NQ .∵A ′,B ′,C ′分别是△PBC ,△PAC ,△PAB 的重心, ∴M ,N ,Q 分别是△ABC 的边BC ,AC ,AB 的中点,且PA ′A ′M =PB ′B ′N =2,∴A ′B ′∥MN .同理可得B ′C ′∥NQ .∵A ′B ′∥MN ,MN ⊂平面ABC ,A ′B ′⊄平面ABC , ∴A ′B ′∥平面ABC . 同理可证B ′C ′∥平面ABC .又∵A ′B ′∩B ′C ′=B ′,A ′B ′⊂平面A ′B ′C ′,B ′C ′⊂平面A ′B ′C ′, ∴平面A ′B ′C ′∥平面ABC .(2)由(1)知A ′B ′∥MN ,且A ′B ′MN =PA ′PM =23,即A ′B ′=23MN .∵M ,N 分别是BC ,AC 的中点,∴MN =12AB .∴A ′B ′=23MN =23×12AB =13AB ,∴A ′B ′AB =13,即A ′B ′∶AB 的值为13.两个平面平行的判定定理是确定面面平行的重要方法.解答问题时一定要寻求好判定定理所需要的条件,特别是相交的条件,即与已知平面平行的两条直线必须相交,才能确定面面平行.如图,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别 是AB ,AC ,A 1B 1,A 1C 1的中点. 求证:(1)B ,C ,H ,G 四点共面; (2)平面EFA 1∥平面BCHG .证明:(1)∵GH 是△A 1B 1C 1的中位线, ∴GH ∥B 1C 1.又B 1C 1∥BC ,∴GH ∥BC , ∴B ,C ,H ,G 四点共面.(2)∵E ,F 分别为AB ,AC 的中点,∴EF ∥BC . ∵EF ⊄平面BCHG ,BC ⊂平面BCHG , ∴EF ∥平面BCHG .∵A 1G 綊EB ,∴四边形A 1EBG 是平行四边形, ∴A 1E ∥GB .∵A 1E ⊄平面BCHG ,GB ⊂平面BCHG , ∴A 1E ∥平面BCHG .∵A 1E ∩EF =E ,∴平面EFA 1∥平面BCHG .平行中探索存在性问题[典例] 在三棱柱ABC -A 1B 1C 1中,D ,E 分别是线段BC ,CC 1的中点,在线段AB 上是否存在一点M ,使直线DE ∥平面A 1MC ?请证明你的结论.[解] 如图,取线段AB 的中点M ,连接A 1M ,MC ,A 1C ,AC 1,设O 为A 1C ,AC 1的交点.由已知,O 为AC 1的中点.连接MD ,OE ,则MD ,OE 分别为△ABC ,△ACC 1的中位线, 所以MD 綊12AC ,OE 綊12AC ,因此MD 綊OE .连接OM ,从而四边形MDEO 为平行四边形,则DE ∥MO . 因为直线DE ⊄平面A 1MC ,MO ⊂平面A 1MC , 所以直线DE ∥平面A 1MC .即线段AB 上存在一点M (线段AB 的中点),使直线DE ∥平面A 1MC .平行中探索存在性问题的判定是高考的常考内容,多出现在解答题中.证明线面平行的关键是找线线平行,注意利用所给几何体中隐含的线线位置关系,当题目中有中点时,一般考虑先探索中点,再用中位线定理找平行关系.[活学活用]如图所示,在正方体ABCD-A1B1C1D1中,E,F,G,H分别为CC1,C1D1,DD1,CD的中点.N为BC的中点.试在E,F,G,H四个点中找两个点,使这两个点与点N确定一个平面α,且平面α∥平面BB1D1D.解:由面面平行的判定定理,若使平面α∥平面BB1D1D,只需在平面α内有两条相交直线平行于平面BB1D1D,或在平面α内有两条相交直线平行于平面BB1D1D内的两条相交直线即可.连接HN,HF,NF,易知HN∥BD,HF∥DD1,所以平面NHF∥平面BB1D1D,即在E,F,G,H四个点中,由H,F两点与点N确定的平面α满足条件.层级一学业水平达标1.下列选项中,一定能得出直线m与平面α平行的是()A.直线m在平面α外B.直线m与平面α内的两条直线平行C.平面α外的直线m与平面内的一条直线平行D.直线m与平面α内的一条直线平行解析:选C选项A不符合题意,因为直线m在平面α外也包括直线与平面相交;选项B与D不符合题意,因为缺少条件m⊄α;选项C中,由直线与平面平行的判定定理,知直线m与平面α平行,故选项C符合题意.2.已知α,β是两个不重合的平面,下列选项中,一定能得出平面α与平面β平行的是()A.平面α内有一条直线与平面β平行B.平面α内有两条直线与平面β平行C.平面α内有一条直线与平面β内的一条直线平行D.平面α与平面β不相交解析:选D选项A、C不正确,因为两个平面可能相交;选项B不正确,因为平面α内的这两条直线必须相交才能得到平面α与平面β平行;选项D正确,因为两个平面的位置关系只有相交与平行两种.故选D.3.在三棱锥A-BCD中,E,F分别是AB和BC上的点,若AE∶EB=CF∶FB=2∶5,则直线AC与平面DEF的位置关系是()A.平行B.相交C.直线AC在平面DEF内D.不能确定解析:选A∵AE∶EB=CF∶FB=2∶5,∴EF∥AC.又EF⊂平面DEF,AC⊄平面DEF,∴AC∥平面DEF.4.已知a,b,c,d是四条直线,α,β是两个不重合的平面,若a∥b∥c∥d,a⊂α,b⊂α,c⊂β,d⊂β,则α与β的位置关系是()A.平行B.相交C.平行或相交D.以上都不对解析:选C根据图1和图2可知α与β平行或相交.5.如图,下列正三棱柱ABC-A1B1C1中,若M,N,P分别为其所在棱的中点,则不能得出AB∥平面MNP的是()解析:选C在图A、B中,易知AB∥A1B1∥MN,所以AB∥平面MNP;在图D中,易知AB∥PN,所以AB∥平面MNP.故选C.6.已知l,m是两条直线,α是平面,若要得到“l∥α”,则需要在条件“m⊂α,l∥m”中另外添加的一个条件是________.解析:根据直线与平面平行的判定定理,知需要添加的一个条件是“l⊄α”.答案:l⊄α7.已知A,B两点是平面α外两点,则过A,B与α平行的平面有________个.解析:当A,B两点在平面α异侧时,不存在这样的平面.当A,B两点在平面同侧时,若直线AB∥α,则存在一个,否则不存在.答案:0或18.如图,在五面体FE-ABCD中,四边形CDEF为矩形,M,N分别是BF,BC的中点,则MN与平面ADE的位置关系是________.解析:∵M,N分别是BF,BC的中点,∴MN∥CF.又四边形CDEF为矩形,∴CF∥DE,∴MN∥DE.又MN⊄平面ADE,DE⊂平面ADE,∴MN∥平面ADE.答案:平行9.如图所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD.E,F,G分别为线段PC,PD,BC的中点,现将△PDC折起,使点P∉平面ABCD.求证:平面PAB∥平面EFG.证明:∵PE=EC,PF=FD,∴EF∥CD,又∵CD∥AB,∴EF∥AB.又EF⊄平面PAB,∴EF∥平面PAB.同理可证EG∥平面PAB.又∵EF∩EG=E,∴平面PAB∥平面EFG.10.已知正方形ABCD,如图(1)E,F分别是AB,CD的中点,将△ADE沿DE折起,如图(2)所示,求证:BF∥平面ADE.证明:∵E,F分别为AB,CD的中点,∴EB=FD.又∵EB∥FD,∴四边形EBFD为平行四边形,∴BF∥ED.∵DE⊂平面ADE,而BF⊄平面ADE,∴BF∥平面ADE.层级二应试能力达标1.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交解析:选B若在平面α内存在与直线l平行的直线,因l⊄α,故l∥α,这与题意矛盾.2.在正方体EFGH-E1F1G1H1中,下列四对截面彼此平行的一对是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G解析:选A画出相应的截面如图所示,即可得答案.3.已知P是正方体ABCD-A1B1C1D1的棱DD1上任意一点(不是端点),则在正方体的12条棱中,与平面ABP平行的有()A.3个B.6个C.9个D.12个解析:选A因为棱AB在平面ABP内,所以只要与棱AB平行的棱都满足题意,即A1B1,D1C1,DC.4.A,B是直线l外的两点,过A,B且和l平行的平面有()A.0个B.1个C.无数个D.以上都有可能解析:选D若AB与l平行,则和l平行的平面有无数个;若AB与l相交,则和l 平行的平面没有;若AB与l异面,则和l平行的平面有一个.5.已知三棱柱ABC-A1B1C1,D,E,F分别是棱AA1,BB1,CC1的中点,则平面DEF 与平面ABC的位置关系是________.解析:∵D,E,F分别是棱AA1,BB1,CC1的中点,∴在平行四边形AA1B1B与平行四边形BB1C1C中,DE∥AB,EF∥BC,∴DE∥平面ABC,EF∥平面ABC.又DE∩EF=E,∴平面DEF ∥平面ABC.答案:平行6.如图是一几何体的平面展开图,其中ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点.在此几何体中,给出下面四个结论:①平面EFGH∥平面ABCD;②直线PA∥平面BDG;③直线EF∥平面PBC;④直线EF∥平面BDG.其中正确的序号是________.解析:作出立体图形,可知平面EFGH ∥平面ABCD ;PA ∥平面BDG ;EF ∥HG ,所以EF ∥平面PBC ;直线EF 与平面BDG 不平行.答案:①②③7.如图所示,在正方体ABCD -A 1B 1C 1D 1中,S 是B 1D 1的中点,E ,F ,G 分别是BC ,DC 和SC 的中点.求证:平面EFG ∥平面BDD 1B 1.证明:如图所示,连接SB ,SD , ∵F ,G 分别是DC ,SC 的中点, ∴FG ∥SD .又∵SD ⊂平面BDD 1B 1,FG ⊄平面BDD 1B 1, ∴FG ∥平面BDD 1B 1. 同理可证EG ∥平面BDD 1B 1, 又∵EG ⊂平面EFG ,FG ⊂平面EFG ,EG ∩FG =G , ∴平面EFG ∥平面BDD 1B 1.8.如图,已知底面是平行四边形的四棱锥P -ABCD ,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?若存在,请证明你的结论,并说出点F 的位置;若不存在,请说明理由.解:当F 是棱PC 的中点时,BF ∥平面AEC .证明如下:取PE 的中点M ,连接FM ,则FM ∥CE .因为FM ⊄平面AEC , EC ⊂平面AEC , 所以FM ∥平面AEC .由EM =12PE =ED ,得E 为MD 的中点,连接BM ,BD ,设BD ∩AC =O ,则O 为BD 的中点. 连接OE ,则BM ∥OE .因为BM ⊄平面AEC ,OE ⊂平面AEC , 所以BM ∥平面AEC .又因为FM ⊂平面BFM ,BM ⊂平面BFM ,FM ∩BM =M , 所以平面BFM ∥平面AEC ,所以平面BFM 内的任何直线与平面AEC 均没有公共点. 又BF ⊂平面BFM ,所以BF 与平面AEC 没有公共点,所以BF∥平面AEC.。
线和平面平行的判定定理
1. 垂直平行线定理,如果一条直线和平面上的两条平行线垂直
相交,那么这条直线与该平面平行。
2. 平行线的截距定理,如果一条直线与两条平行线分别相交,
且这两个交点到两条平行线的距离相等,那么这条直线与这两条平
行线平行。
3. 平行线的倾斜定理,如果一条直线与两条平行线分别相交,
且这两个交点到两条平行线的距离之比相等于一个常数k,那么这
条直线与这两条平行线平行。
4. 平行线的夹角定理,如果一条直线与两条平行线分别相交,
那么这两个交点所成的两个内角互为对应角,即它们相等。
这些定理提供了判定线和平面是否平行的方法,通过这些定理
我们可以在几何问题中判断线和平面的平行关系,从而解决相关问题。
这些定理在实际问题中有着广泛的应用,例如在建筑设计、工
程测量和地理空间分析等领域都有着重要的作用。
通过深入理解和
灵活运用这些定理,我们可以更好地理解空间关系,解决实际问题。
2.2.1 直线与平面平行的判定:知识要点 直线与平面平行的判断方法有两种1 根据定义:直线和平面没有公共点,则直线和平面平行 . ( 一般用反证法. )2. 判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平 面平行.(符号表示为: a ,b ,a//b a// . 图形如图所示) . 二:例题判定定理证明:已知: a α, b α,且 a ∥b求证: a∥α例 1 :求证:空间四边形相邻两边中点的连线平行于经过另 外两边所在的平面。
已知:如图空间四边形 ABCD 中,E 、F 分别是 AB 、 求证: EF ∥平面 BCD 证明:例 2: 正方体 ABCD —A 1B 1C 1D 1中,E 为 DD 1的中点,试判断 BD 1与平面AEC 的位置 关系,说明理由a AF点 BC1CB三练习:1. 判断下列说法是否正确,并说明理由.○1 平面 外的一条直线 a 与平面 内的无数条直线平行则直线 a 和平面 平行;○2平面 外的两条平行直线 a,b ,若 a// ,则b// ;○3 直线a 和平面 平行,则直线 a 平行于平面 内任意一条直线; ○4 直线 a 和平面 平行,则平面 中必定存在直线与直线 a 平行. A. l 1 ∥α B. l 2 α C. l 2 ∥α或l 2 α D. l 2 与α相交 3.以下说法(其中 a ,b 表示直线, 表示平面)①若 a ∥b , b ,则 a ∥ ②若 a ∥ ,b ∥ ,则 a ∥b ③若 a ∥b , b ∥ ,则 a ∥ ④若 a ∥ ,b ,则 a ∥b 其中正确说法的个数是( ) .A. 0 个B. 1 个C. 2 个D. 3 个4.已知a ,b 是两条相交直线, a ∥ ,则 b 与 的位置关系是( ). A. b ∥ B. b 与 相交 C. b α D. b ∥ 或 b 与 相交5. 如果平面 外有两点 A 、B ,它们到平面 的距离都是 a ,则直线 AB 和平面 的 位置关系一定是( ) .A. 平行B. 相交C. 平行或相交D. AB 6.平面 与△ ABC 的两边 AB 、 AC 分别交于 D 、E ,且 AD ∶DB=AE ∶EC ,求证: BC ∥平面 .7.P 是平行四边形 ABCD 所在平面外一点, E 为PB 的中点, O 为 AC ,BD 的交点. (1)求证:EO ‖平面PCD ; (2)图中EO 还与哪个平 面平行?8. 在正方体 ABCD- A 1B 1C 1D 1中, E 、F 分别为棱 BC 、C 1D 1的中点. 求证: EF ∥平面 BB 1D 1D2. 已知直线 l 1、l 2 , 平面α, l 1 ∥l 2 , l 1∥α 那么 l 2 与平面 α 的关系是( ).2.2 平面与平面平行的判定:知识要点平面与平面平行的判断方法有三种 1. 定义:两平面没有公共点,则两平面平行2. 判定定理:如果一个平面内有两条相交直线都平行于另一个平面, 那么这两个平面平行. 用符号表示为: a ,b ,a b P // a// ,b// 图形如图所示图形如图所示 3. 推论:①如果一个平面内有两条相交直线分别平行于 另一个平面内的两条直线,那么这两个平面平行 ②垂直于同一条直线的两个平面平行 . ③平行与同一平面的两个平面平行 . 二:例题 判定定理证明 : 已知:如图, m , n , 求证://mn ( 思考 1 :如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线, 那么这两个平面平行吗 ?为什么? )(思考 2:.在判断一个平面是否水平时,把水准器在这个平 面内交叉地放两次,如果水准器的气泡都是居中的,就 可以判定这个平面和水平面平行,你能说出理由吗?) 例 2:已知正方体 ABCD-A 1B 1C 1D 1, 求证:平面 AB 1D 1 // 平面 C 1BD 。
BC DA 1B 1C 1D 1图2AFE GαabA图1总结证明线面平行的常用方法空间直线与平面平行问题是立体几何的一个重要内容,也是高考考查的重点,下面就常见的线面平行的判定方法介绍如下:方法一、反证法【例1】求证:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(直线与平面平行的判定定理)已知:,,a b a αα⊄⊂∥b ,如图1.求证:a ∥α.【分析】要证明直线与平面平行,可以从直线与平面平行的定义入手,但从定义来看,必须说明直线与平面无公共点,这一点直接说明是困难的,但我们可以借助反正法来证明.【证明】假设直线a 与平面α不平行,又∵a α⊄,∴a A α=.下面只要说明aA α=不可能即可.∵a ∥b ,∴a ,b 可确定一平面,设为β. 又aA α=, ∴,A a A β∈∈.又b ,A αα⊂∈,∴平面α与平面β中含有相同的元素直线b ,以及不在直线b 上的点A, 由公理2的推论知,平面α与平面β重合. ∴a α⊂,这与已知a α⊄相矛盾. ∴a A α=不可能.故a ∥α.方法二、判定定理法【例2】正方体1AC 中,E、G 分别为BC 、11C D 的中点,求证:EG ∥平面11BDD B 【分析】要证明EG ∥平面11BDD B ,根据线面平行的判定定理,需在平面11BDD B 内找到一条与EG 平行的直线,充分借助E、G 为中点的条件.【证明】如图2,取BD 的中点为F,连结EF ,1D F . ∵E为BC 的中点, ∴ EF ∥CD 且12EF CD =又∵G 为11C D 的中点, ∴ 1D G ∥CD 且112D G CD =∴ EF ∥1D G ,且1EF D G =B C DA 1B 1C 1D 1ANME F图3故四边形1EFD G 为平行四边形.∴ 1D F ∥EG又1D F ⊂平面11BDD B ,且EG ⊄平面11BDD B , ∴ EG ∥平面11BDD B 【评注】根据直线与平面平行的判定定理证明直线和平面平行的关键是在平面内找到 一条直线和已知直线平行,常用到中位线定理 、平行四边形的性质、成比例线段、平行转移法、投影法等.具体应用时,应根据题目条件而定.方法三、运用面面平行的性质定理【例3】在正方体1111ABCD A B C D -中,点N 在BD 上,点M 在1B C 上,且CM DN =,求证:MN ∥平面11AA BB .【分析】若过MN 能作一个平面与平面11AA BB 平行,则由面面平行的性质定理,可得MN 与平面11AA BB 平行.【证明】如图3,作MP ∥1BB ,交BC 与点P,联结NP . ∵ MP ∥1BB ,∴1CM CPMB PB=. ∵1BD B C =,DN CM =,∴1B M BN =, ∵1CM DN MB NB =,∴DN CPNB PB= ∴NP ∥CD ∥AB , ∴面MNP ∥面11AA BB . ∴MN ∥平面11AA BB【评注】本题借助于成比例线段,证明一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行,得到这两个平面平行,进而得到线面平行,很好地体现了线面、线线、面面平行关系之间的转化思想.。