(2) 作图:
① 作特殊位置点。 很明显 , 辅助平面 P 截球体及圆锥台均为它们 的主视轮廓素线, 其交点 I、III就是相贯线上的点。 可 先 求 出 1′ 、 3 ′ , 然 后 作出1、3及1″、3″, 如 图 (b)所示。
为了作出圆锥台左视 轮廓素线上相贯线点的投 影, 可过圆锥台轴线作侧 平面Q为辅助平面, 平面Q 与圆锥台的截交线即圆锥 台左视轮廓线, 平面Q与球 体的截交线是以r1为半径 的圆弧, 它们的交点Ⅱ、 Ⅳ就是相贯线上的点。可 先求得2"、 4", 然后作出 2′、 (4′)及2、4, 如图 (c)所示。
② 作一般位置点。 在点I、III的高度范围 内 , 选取水平面 R 为辅助平 面,平面R与球及圆锥台的截 交线分别是以r2、r3为半径 的圆弧, 它们的交点Ⅴ、Ⅵ 就是相贯线上的点。先求出 水 平 投 影 5 、 6, 然 后 找 到 5′、 6′和 5" 、 6", 如图 (d)所示。
③ 依次光滑连接各点的 投影, 并判别可见性, 完 成相贯线的投影。最后 注意,圆锥台左视轮廓 素线画到2"、4"两点, 球体左视轮廓素线上有 一段虚线, 如图 (e)所示。
① 辅助平面法的实质, 是求辅助平面分别截两立 体所得截交线的交点。
② 辅助平面位置选取的原则,是使辅助平面分别 截两立体所得截交线的形状最简单(直线和圆),以便用 工具作图。
例:求轴线正交的水平圆柱与直立圆锥的相贯线
解题步骤:
1' 4' 3'
5'
2'
PV1 PV2 PV3
1"
4" P W1
2"
最后,补全可见与不可见部分的轮廓线或转向轮 廓素线,并擦除被切割掉的轮廓线或转向轮廓素 线。