八年级上册数学周周清试卷带答案
- 格式:docx
- 大小:683.44 KB
- 文档页数:6
一次函数周周清(4.1-4.4)一、选择题(每小题4分,共28分)1.下列函数:①y =πx ;①y =2x -1;①y =1x ;①y =2-1-3x ;①y =x 2-1中,是一次函数的有( )A .4个B .3个C .2个D .1个2.已知A ,B 两地相距3千米,小黄从A 地到B 地,平均速度为4千米/小时,若用x 表示行走的时间(小时),y 表示余下的路程(千米),则y 关于x 的函数表达式是()A .y =4x(x≥0)B .y =4x -3(x≥34 ) C .y =3-4x(x≥0) D .y =3-4x(0≤x≤34 )3.已知正比例函数y =(k +5)x ,且y 随x 的增大而减小,则k 的取值范围是( ) A .k >5 B .k <5 C .k >-5 D .k <-54.已知点A(x 1,y 1)和点B(x 2,y 2)是一次函数y =(k 2+1)x +2图象上的两点,且x 1>x 2,则y 1和y 2的大小关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不确定5.一次函数y =kx -1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(-5,3)B .(1,-3)C .(2,2)D .(5,-1)6.点P 位于y 轴左侧,x 轴上方,距y 轴3个单位,距x 轴4个单位,则点P 的坐标为( )A .(3,-4)B .(-3,4)C .(4,-3)D .(-4,3)7.已知一次函数y =2x +a 与y =-x +b 的图象都经过A(-2,0),且与y 轴分别交于B ,C 两点,则①ABC 的面积为( )A.4 B.5 C.6 D.7二、填空题(每小题5分,共25分)8.如果正比例函数y=(k-3)x的图象经过第一、三象限,那么k的取值范围是____.9.若一次函数y=mx+|m-1|的图象过点(0,3),且y随x的增大而增大,则m 的值为____.10.若函数y=(m+1)x2-m2是正比例函数,则其图象经过第____象限.11.一个长为100 m,宽为80 m的长方形场地要扩建成一个正方形场地,设长增加x m,宽增加y m,则y与x的函数关系式是____,自变量的取值范围是____.12.已知点(a,4)在连接点(0,8)和点(-4,0)的线段上,则a=____.三、解答题(共47分)13.(8分))已知一次函数y=ax+b.(1)当点P(a,b)在第二象限时,直线y=ax+b经过哪几个象限?(2)如果ab<0,且y随x的增大而增大,则函数的图象不经过哪些象限?14、(11分)科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系,经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2 000米的地方,空气含氧量约为235克/立方米.(1)求出y与x的函数关系式;(2)已知某山的海拔高度为1 200米,请你求出该山山顶处的空气含氧量约为多少?15.(13分)某通讯公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式;(2)月通话时间多长时,A,B两种套餐收费一样?(3)什么情况下A套餐更省钱?16.(15分)某学校的复印任务原来由甲复印社承接,其收费y(元)与复印页数x(页)的关系如下表:(1)已知y与x满足一次函数关系,求该函数的表达式;(2)现在乙复印社表示:若学校每月先付200元的承包费,则可按每页0.15元收费,则乙复印社每月收费y(元)与复印页数x(页)之间的函数表达式为____;(不需要写出自变量的取值范围)(3)在如图所示的直角坐标系内画出(1)(2)中的函数图象,并回答每月复印页数在1 200页左右时,选择哪个复印社更合算.一次函数周周清(4.1-4.4)参考答案一、选择题(每小题4分,共28分)1.下列函数:①y =πx ;①y =2x -1;①y =1x ;①y =2-1-3x ;①y =x 2-1中,是一次函数的有( B )A .4个B .3个C .2个D .1个2.已知A ,B 两地相距3千米,小黄从A 地到B 地,平均速度为4千米/小时,若用x 表示行走的时间(小时),y 表示余下的路程(千米),则y 关于x 的函数表达式是(D )A .y =4x(x≥0)B .y =4x -3(x≥34 ) C .y =3-4x(x≥0) D .y =3-4x(0≤x≤34 )3.已知正比例函数y =(k +5)x ,且y 随x 的增大而减小,则k 的取值范围是( D ) A .k >5 B .k <5 C .k >-5 D .k <-54.已知点A(x 1,y 1)和点B(x 2,y 2)是一次函数y =(k 2+1)x +2图象上的两点,且x 1>x 2,则y 1和y 2的大小关系是( C )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不确定5.一次函数y =kx -1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( C )A .(-5,3)B .(1,-3)C .(2,2)D .(5,-1)6.点P 位于y 轴左侧,x 轴上方,距y 轴3个单位,距x 轴4个单位,则点P 的坐标为( B )A.(3,-4) B.(-3,4)C.(4,-3) D.(-4,3)7.已知一次函数y=2x+a与y=-x+b的图象都经过A(-2,0),且与y轴分别交于B,C两点,则①ABC的面积为( C )A.4 B.5 C.6 D.7二、填空题(每小题5分,共25分)8.如果正比例函数y=(k-3)x的图象经过第一、三象限,那么k的取值范围是k >3.9.若一次函数y=mx+|m-1|的图象过点(0,3),且y随x的增大而增大,则m 的值为4.10.若函数y=(m+1)x2-m2是正比例函数,则其图象经过第__一、三__象限.11.一个长为100 m,宽为80 m的长方形场地要扩建成一个正方形场地,设长增加x m,宽增加y m,则y与x的函数关系式是__y=20+x__,自变量的取值范围是__x≥0__.12.已知点(a,4)在连接点(0,8)和点(-4,0)的线段上,则a=__-2__.三、解答题(共47分)13.(8分))已知一次函数y=ax+b.(1)当点P(a,b)在第二象限时,直线y=ax+b经过哪几个象限?(2)如果ab<0,且y随x的增大而增大,则函数的图象不经过哪些象限?解:(1)∵点P(a,b)在第二象限,①a<0,b>0,①直线y=ax+b经过第一、二、四象限(2)∵y随x的增大而增大,①a>0,又∵ab<0,①b<0,①一次函数y=ax+b的图象不经过第二象限14、(11分)科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系,经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2 000米的地方,空气含氧量约为235克/立方米.(1)求出y与x的函数关系式;解:设一次函数关系式为y=kx+b,由题意,得b=299,当x=2 000时,y=235,代入得235=2 000k+299,解得k=-4125,所以一次函数关系式为y=-4125x+299.(2)已知某山的海拔高度为1 200米,请你求出该山山顶处的空气含氧量约为多少?解:把x=1 200代入y=-4125x+299得y=-4125×1 200+299,解得y=260.6.所以该山山顶处的空气含氧量约为260.6克/立方米.15.(13分)某通讯公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式;(2)月通话时间多长时,A,B两种套餐收费一样?(3)什么情况下A套餐更省钱?解:(1)y1=0.1x+15,y2=0.15x(2)由y1=y2得0.1x+15=0.15x,解得x=300,即月通话时间为300分钟时,A,B两种套餐收费一样(3)当通话时间多于300分钟时,A套餐更省钱16.(15分)某学校的复印任务原来由甲复印社承接,其收费y(元)与复印页数x(页)的关系如下表:(1)已知y与x满足一次函数关系,求该函数的表达式;(2)现在乙复印社表示:若学校每月先付200元的承包费,则可按每页0.15元收费,则乙复印社每月收费y(元)与复印页数x(页)之间的函数表达式为__y=0.15x+200__;(不需要写出自变量的取值范围)(3)在如图所示的直角坐标系内画出(1)(2)中的函数图象,并回答每月复印页数在1 200页左右时,选择哪个复印社更合算.解:(1)y=0.4x(3)画函数图象如图所示,由图象可知,当每月复印页数在1 200页左右时,应选择乙复印社更合算。
数学周周清八上答案【篇一:八年级周周清数学测试卷】=txt>一、选择题(每小题5分,共40分)1.下列说法正确的是() a.形状相同的两个三角形全等 b.面积相等的两个三角形全等c.完全重合的两个三角形全等d.所有的等边三角形全等第2题图2. 如图所示,a,b,c分别表示△abc的三边长,则下面与△abc一定全等的三角形是()ab c d3.如图所示,已知△abe≌△acd,∠1=∠2,∠b=∠c,下列不正确的等式是()a .ab=acb .∠bae=∠cad c. be=dc d. ad=de 4.如图,已知点p 到ae,ad,bc的距离相等,则下列说法:①点p在∠bac的平分线上;②点p在∠cbe的平分线上;③点p在∠bcd的平分线上;④点p是∠bac,∠cbe,∠bcd的平分线的交点,其中正确的是( ).a.①②③④b.①②③ c.④d ②③第3题图第5题图5.如图所示,点b、c、e在同一条直线上,△abc与△cde都是等边三角形,则下列结论不一定成立的第4题图是()a.△ace≌△bcdb.△bgc≌△afcc.△dcg≌△ecfd.△adb≌△cea 6.如图,在cd上求一点p,使它到oa,ob的距离相等,则p点是() a.线段cd的中点 a b.oa与ob的中垂线的交点c.oa与cd的中垂线的交点 d.cd与∠aob的平分线的交点dccoa第6题图第7题图第8题图和△fed 中,已知∠c=∠d,∠b=∠e,要判定这两个三角形全等,还需要条件()7. 在△a.ab=edb.ab=fdc.ac=fdd.∠a=∠f8.如图所示,在△abc中,ab=ac,∠abc、∠acb的平分线bd,ce相交于o点,且bd交ac于点d,ce交ab于点e.某同学分析图形后得出以下结论:①△bcd≌△cbe;②△bad≌△bcd;③△bda≌△cea;④△boe≌△cod;⑤△ace≌△bce,上述结论一定正确的是()a.①②③b.②③④c.①③⑤d.①③④二、填空题(每题5分,共30分)__________.图1第5题图第6题图第2题图第3题图3.如图3所示,ad=cb,若利用“边边边”来判定△abc≌△cda,则需添加一个直接条件是__________;若利用“边角边”来判定△abc≌△cda,则需添加一个直接条件是__________.6.如图所示,已知△abc的周长是21,ob,oc分别平分∠abc和∠acb,od⊥bc于d,且od=3,则△abc的面积是.三、解答题(共30分)1.(10分)如图,已知△abc中,ab=ac,ad平分∠bac,请补充完整过程说明△abd≌△acd的理由.解:∵ad平分∠bac∴∠________=∠_________(角平分线的定义)在△abd和△acd中???????bdc∴△abd≌△acd()2.(10分)如图,在四边形abcd中,e是ac上的一点,∠1=∠2,∠3=∠4求证: ∠5=∠6.3.(10分)已知:be⊥cd,be=de,bc=da,求证:①△bec≌△dea;②df⊥bc.ac【篇二:8年级数学周周清(8)】xt>1.函数y=中,自变量x的取值范围是().a.x≠0 b.x≥2 c.x>2且x≠0 d.x≥2且x≠02.(2014?青山区模拟)下列计算正确的是() a. b. c. d.3.下列各数①-3.14 ②2? ③3 ④22 ⑤?30.001中,无理数的个数7是()a.2 b.3 c.4 d.54.若关于x的方程a?3x?2??2x?1的解是负数,则a的取值范围是.5.三角形的三条边长分别是2,2x?3,6,则x的取值范围是.?xx?1?>0??236.关于x的不等式组?恰有两个整数解.则实数a的?x?5a?4>4(x?1)?a?33?取值范围.7.在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分.(1)小李考了60分,那么小李答对了多少道题?(2)小王获得二等奖(75~85分),请你算算小王答对了几道题? ?2x?3y?3m?78.已知关于x,y的方程组满足?,且它的解是一对正数。
北师版八年级数学上册全册周周测、周周清(全册195页含答案)第一章勾股定理周周测1一、选择题1.在△ABC中,AB=15,AC=13,高AD=12,则△ABC中BC边的长为()A.9B.5C.14D.4或142.在R t△ABC中,∠C=90°,若∠A=30°,AB=12cm,则BC边的长为()A.6cmB.12cmC.24cmD.无法确定3.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则(a+b)2的值为()A.25B.19C.13D.1694.如图,在△ABC中,AB=6cm,∠B=∠C=30°,那么△ABC的中线AD=()cm.A.3B.4C.5D.65.小明同学先向北行进4千米,然后向东进4千米,再向北行进2千米,最后又向东行进一定距离,此时小明离出发点的距离是10千米,小明最后向东行进了()A.3千米B.4千米C.5千米D.6千米6.若直角三角形两边长分别是6,8,则它的斜边为()A.8B.10C.8或10D.以上都不正确7.已知一个直角三角形的两直角边长分别为3和4,则斜边长是()A.5B.C.D.或58.如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为()米.A.4米B.5米C.7米D.8米9.如图,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D、E为垂足,下列结论正确的是()A.AC=2ABB.AC=8ECC.CE=BDD.BC=2BD10.一艘轮船以16海里∕时的速度从港口A出发向东北方向航行,同时另一艘轮船以12海里∕时从港口A出发向东南方向航行.离开港口1小时后,两船相距()A.12海里B.16海里C.20海里D.28海里11.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4B.8C.16D.64二、解答题12.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,若c-a=4,b=12,求a,c.13.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A,B的距离分别为300km和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?14.如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD= ______ ;(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;(3)利用勾股定理求出AD的长,再计算三角形的面积.第一章勾股定理周周测2一、选择题1.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为A. 4B. 6C. 8D. 102.如图,在中,,垂足为,则BD的长为A.B. 2C.D. 33.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为A. 20 cmB. 50 cmC. 40 cmD. 45 cm4.如图,是台阶的示意图已知每个台阶的宽度都是20cm,每个台阶的高度都是10cm,连接AB,则AB等于A. 120cmB. 130cmC. 140cmD. 150cm5.如果一个直角三角形的两边分别是2、5,那么第三边的平方是A. 21B. 26C. 29D. 21或296.直角三角形的一直角边长是12,斜边长是15,则另一直角边是A. 8B. 9C. 10D. 117.如图,已知在中,、E为垂足,下列结论正确的是A.B.C.D.8.已知一直角三角形的木板,三边的平方和为,则斜边长为A. 30cmB. 80cmC. 90cmD. 120cm9.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为A.B. 4C.D.10.如图,图中每个四边形都是正方形,字母A所代表的正方形的面积为A. 4B. 8C. 16D. 6411.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为3cm和5cm,则小正方形的面积为A. B. 2 C. 3 D.12.如图所示,的顶点A、B、C在边长为1的正方形网格的格点上,于点D,则BD的长为A.B.C.D.二、解答题13.如图,在中,边上的中线求AC的长.14.市政广场前有块形状为直角三角形的绿地如图所示,其中为广场整体布局考虑,现在将原绿地扩充成等腰三角形,且扩充所增加的部分要求是以AC为直角边的直角三角形请求出扩充建设后所得等腰三角形绿地的周长.15.如图是“赵爽弦图”,其中、、和是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,根据这个图形的面积关系,可以证明勾股定理设,取.正方形EFGH的面积为______,四个直角三角形的面积和为______;求的值.第一章勾股定理周周测3一、选择题16.下列各组数据中的三个数,可作为三边长构成直角三角形的是A. B. C.D.17.下列各组数中,以为边的三角形不是直角三角形的是A. B. C. D.18.下列几组数:;;;是大于1的整数,其中是勾股数的有A. 1组B. 2组C. 3组D. 4组19.一直角三角形三边长分别为,那么由为自然数为三边组成的三角形一定是A. 等腰三角形B. 等腰直角三角形C. 钝角三角形D. 任意三角形20.已知的三边长分别为且,则的形状为A. 锐角三角形B. 钝角三角形C. 直角三角形D. 不能确定21.一个三角形的三边长为,则此三角形最大边上的高为A. 10B. 12C. 24D. 4822.在中,,则点C到AB的距离是A. B. C. D.23.给出长度分别为的五根木棒,分别取其中的三根首尾连接最多可以搭成的直角三角形的个数为A. 1个B. 2个C. 3个D. 4个24.中,则D.A. 60B. 30C. 7825.中,的对边分别为a、b、c,下列说法中错误的A. 如果,则是直角三角形,且B. 如果,则是直角三角形,且C. 如果,则是直角三角形,且D. 如果:::2:5,则是直角三角形,且26.在中,已知,则的面积等于A. B. C. D.27.三角形的三边长满足,则此三角形是A. 钝角三角形B. 锐角三角形C. 直角三角形D. 等边三角形二、解答题28.已知为三角形的三边且满足,试判断三角形的形状.29.已知:如图,四边形ABCD中,求证:是直角三角形.30.已知,在中,,求的面积.31.如图,四边形ABCD中,.判断是否是直角,并说明理由.求四边形ABCD的面积.第一章 勾股定理周周测4一、选择题:1、以下面每组中的三条线段为边的三角形中,是直角三角形的是( ) A 5cm ,12cm ,13cm B 5cm ,8cm ,11cm C 5cm ,13cm ,11cm D 8cm ,13cm ,11cm2、由下列线段组成的三角形中,不是直角三角形的是( ) A a=7,b=25,c=24 B a=2.5,b=2,c=1.5C a=45,b=1,c= 32 D a=15,b=20,c=253、三角形的三边长a 、b 、c 满足ab c b a 2)(22=-+,则此三角形是( ) A 直角三角形 B 锐角三角形 C 钝角三角形 D 等腰三角形4、小红要求△ABC 最长边上的高,测得AB =8 cm ,AC =6 cm ,BC =10 cm ,则可知最长边上的高是A.48 cmB.4.8 cmC.0.48 cmD.5 cm5.满足下列条件的△ABC ,不是直角三角形的是A.b 2=c 2-a 2B.a ∶b ∶c =3∶4∶5C.∠C =∠A -∠BD.∠A ∶∠B ∶∠C =12∶13∶156.在下列长度的各组线段中,能组成直角三角形的是A.5,6,7B.1,4,9C.5,12,13D.5,11,127.若一个三角形的三边长的平方分别为:32,42,x2则此三角形是直角三角形的x2的值是A.42B.52C.7D.52或78.如果△ABC的三边分别为m2-1,2 m,m2+1(m>1)那么A.△ABC是直角三角形,且斜边长为m2+1B.△ABC是直角三角形,且斜边长2 为mC.△ABC是直角三角形,但斜边长需由m的大小确定D.△ABC不是直角三角形9.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是( ).A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形10.一部电视机屏幕的长为58厘米,宽为46厘米,则这部电视机大小规格(实际测量误差忽略不计)().A.34英寸(87厘米)B.29英寸(74厘米)C.25英寸(64厘米)D.21英寸(54厘米)11.一块木板如图所示,已知AB=4,BC=3, DC=12,AD=13,∠B=90°,木板的面积ADBC为( ).A.60B.30C.24D.12二、填空题:12、若一个三角形的三边长分别是m+1,m+2,m+3,则当m= ,它是直角三角形。
八上年级数学周周清试卷八年级数学周周清试卷班级:_________姓名:__________成绩:_________一、选择题(每题5分后):1、x=﹣1时,函数y=a、2的值()d、﹣b、﹣2c、2、已知函数y=ax﹣3(a是常量,且a≠0),当x=1时,y=7,则a的值为()a、4b、﹣4c、10d、﹣103、函数y=﹣a、c、的自变量x的值域范围在数轴上可以则表示为()b、d、4、在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的()a、v=2m﹣2b、v=m2﹣1c、v=3m﹣3d、v=m+15、未知函数y=x2+,点p(x,y)在该函数的图象上.那么,点p(x,y)应当在直角坐标平面的()a、第一象限b、第二象限c、第三象限d、第四象限二、填空题(每题5分后):6、已知方程x﹣3y=12,用含x的代数式表示y是_________.7、邓教师设计一个计算程序,输入和输出的数据如下表所求:那么当输入数据是正整数n时,输出的数据是_________.8、若函数,则当函数值y=8时,自变量x的值就是_________.9、若记y==f(x),如f(1)表示x=1时y的值,即f(1)=)+f(=,则f(2021)+f(2021)+…+f(2)+f(1)+f()=_________.10、小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,稳步散步了一段时间,然后回家,例如图叙述了小明在散步过程中离家的距离s(米)与散步所用时间t(分后)之间的函数关系,根据图象,以下信息恰当的就是_________.①小明看报用时8分钟②公共阅报栏距小明家200米③小明离家最远的距离为400米④小明从启程至回家共用时16分钟三、解答题(共50分):11、若y1=-x+3,y2=3x-4,先行确认当x取何值时:(2)y1=y2;(3)y1>y2.12、求下列函数中自变量的取值范围:13、未知y就是关于x的一次函数,且当x=3时,y=-2;当x=2时,y=-3.(1)求这个一次函数的表达式;(2)求当x=-3时,函数y的值;(3)求当y=2时,自变量x的值;(4)当y>1时,自变量x的值域范围.14、如图,在靠墙(墙长为18m)的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m,求:(1)鸡场的长y(m)与阔x(m)的函数关系式;(2)自变量的取值范围.15、如图所示,在直角坐标系则中,矩形abcd的边ad在x轴上,点a在原点,ab=3,ad=5,矩形以每秒2个单位长度沿x轴正方向搞匀速运动.同时点p从a点启程以每秒1个单位长度沿a─b─c─d的路线搞匀速运动.当p点运动至d点时暂停运动,矩形abcd也随之停止运动.(1)谋p点从a点运动至d点所需的时间;(2)设p点运动时间为t(s):①当t=5时,谋出点p的座标;②若△odp的面积为s,试求出s与t之间的函数关系式(并写出相应的自量t的取值范围).。
八年级数学第一周周清试卷班级 _______ 姓名______ 成绩 _______一、选择题:(本题满分30分,每小题3分) 1、下列三条线段,能组成三角形的是( )A 、6,6,6B 、3,3,6C 、3,2,5D 、2,6 ,4 2.如图四个图形中,线段BE 是△ABC 的高的图是( )3.五边形的内角和是( )A .180°B .360°C .540°D .600°4、已知△ABC 中,∠A、∠B、∠C 三个角的比例如下,其中能说明△ABC 是直角三角形的是( ) A 、2:3:4 B 、1:2:3 C 、4:3:5 D 、1:2:2 5. 下列图形中有稳定性的是( )A. 正方形B. 直角三角形C. 长方形D. 平行四边形 6.若三角形两边长分别是4、5,则第三边长c 的范围是( ) A. 1<c<9 B. 9<c<14 C. 10<c<18 D. 无法确定 7、正多边形的每个内角都等于135º,则该多边形是正( )边形。
(A )8 (B )9 (C )10 (D )11 8.六边形的对角线的条数是( ) (A )7 (B )8 (C )9 (D )109.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( ) A 、90 º B 、120 º C 、160 º D 、180 º10.如图,△ABC 中,BD 是 ∠ ABC 的角平分线,DE ∥ BC,交AB 于 E, ∠A=60º, ∠BDC=95º,则∠BED 的度数是( ) A 、35 º B 、70º C 、110 º D 、130 º第9题图A B C D(D)E CB A (C)E B A(B)E C B A(A)E CBA二、填空题(本题满分18分,每小题3分)11. 若将多边形边数增加1条,则它的内角和增加__________。
检测内容:1.1-1.3得分________卷后分________评价________一、选择题(每小题5分,共30分)1.(开封期末)下列各组数据是三角形的三边长,能构成直角三角形的是( D )A.2,3,4 B.4,5,6C.32,42,52D.6,8,102.如图,在Rt△ABC中,∠ACB=90°.若AB=15 cm,则正方形ADEC和正方形BCFG 的面积和为( C )A.150 cm2B.200 cm2C.225 cm2D.无法计算第2题图第4题图第5题图3.始终角三角形的周长为24,斜边长与始终角边长之比为5∶4,则这个直角三角形的面积是( B )A.20 B.24 C.28 D.304.如图,在某次海上编队演习中,两艘航母护卫舰从同一港口O同时动身,一号舰沿南偏西30°方向以12海里/小时的速度航行,二号舰以16海里/小时的速度航行,离开港口1.5小时后它们分别到达相距30海里的A,B两点,则二号舰航行的方向是( C )A.南偏东30°B.北偏东30°C.南偏东60°D.南偏西60°5.如图,一个工人拿了一个2.5 m长的梯子,底端A放在距离墙根C点0.7 m处,另一头B点靠墙.假如梯子的顶部下滑0.4 m,则梯子的底部向外滑了( D ) A.0.4 m B.0.6 m C.0.7 m D.0.8 m6.(辉县市期末)如图①是我国古代闻名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是( D )图①图②A.72 B.52 C.80 D.76二、填空题(每小题5分,共25分)7.如图,起重机吊运物体,∠ABC =90°.若BC =12 m ,AC =13 m ,则AB =__5__m. 8.已知一组勾股数中有一个数是2mn (m ,n 都是正整数,且m >n ≥2),尝试写出其他两个数(均用含m ,n 的代数式表示,只要写出一组):__m 2-n 2,m 2+n 2(答案不唯一)__.9.小东拿着一根长竹竿进一个宽为4 m 的长方形城门,他先横着拿进不去,又竖起来拿,结果竿比城门高0.5 m ,当他把竿斜着时,两端刚好顶着城门的对角,则竿长__16.25__m.10.如图,在△ABC 中,AB =AC =5,BC =6.M 为BC 的中点,过点M 作MN ⊥AC 于点N ,则MN =__125__.11.如图,长方体的底面边长分别为2 cm 和4 cm ,高为5 cm.若一只蚂蚁从P 点起先经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为__13__cm.三、解答题(共45分)12.(10分)如图,在△ABC 中,CD ⊥AB 于点D ,AC =4,BC =3,DB =95. (1)求CD ,AD 的长;(2)试推断△ABC 的形态,并说明理由.解:(1)因为CD ⊥AB ,所以CD 2+DB 2=BC 2,即CD 2+(95 )2=32,所以CD =125.因为AD 2+CD 2=AC 2,即AD 2+(125 )2=42,所以AD =165 (2)因为AB =AD +DB =165 +95=5,所以AB 2=AC 2+BC 2,所以△ABC 为直角三角形13.(10分)如图,在△ABC 中,AB =AC, BC =20 cm ,D 是腰AB 上一点,且CD =16 cm ,BD =12 cm.求:(1)∠BDC 的度数;(2)△ABC 的周长.解:(1)因为BD 2+CD 2=122+162=202=BC 2,所以∠BDC =90°(2)设AD =x cm ,则AB =AC =(x +12) cm.因为∠BDC =90°,所以∠ADC =90°,所以AD 2+CD 2=AC 2,即x 2+162=(x +12)2,解得x =143 ,∴AB =AC =1623cm ,所以△ABC 的周长为1623 +1623 +20=5313(cm) 14.(12分)强大的台风使得山坡上的一棵树甲从A 点处拦腰折断,如图所示,其树顶端恰好落在另一棵树乙的根部C 处,已知AB =4 m ,BC =13 m ,两棵树的水平距离为12 m ,求这棵树原来的高度.解:过点C 作CD ⊥AB 的延长线于点D ,则CD =12 m .由勾股定理得BD 2+CD 2=BC 2,即BD 2+122=132,所以BD =5,所以AD =AB +BD =4+5=9 m.在Rt △ACD 中,AC 2=CD 2+AD 2=122+92,所以AC =15,所以AC +AB =15+4=19(m),所以这棵树原来的高度是19 m15.(13分)台风是一种自然灾难,它以台风中心为圆心在四周上百千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB 由A 行驶向B ,已知点C 为一海港,且点C 与直线AB 上的两点A ,B 的距离分别为AC =300 km ,BC =400 km ,AB =500 km ,以台风中心为圆心四周250 km 以内为受影响区域.(1)求∠ACB 的度数;(2)海港C 受台风影响吗?为什么?(3)若台风的速度为20千米/小时,当台风运动到点E 处时,海港C 刚好受到影响,当台风运动到点F 时,海港C 刚好不受影响,即CE =CF =250 km ,则台风影响该海港持续的时间有多长?解:(1)因为AC 2+BC 2=3002+4002=5002=AB 2,所以△ABC 是直角三角形,∠ACB =90° (2)海港C 受台风影响,理由:过点C 作CD ⊥AB 于点D .因为S △ABC =12 AC ×BC =12CD ×AB .所以CD =240(km)<250 km ,所以海港C 受台风影响(3)在Rt △CDE 中,由勾股定理得ED 2+CD 2=CE 2,即ED 2+2402=2502,所以ED =70,所以EF =140 km ,则140÷20=7(小时).答:台风影响该海港持续的时间有7小时。
检测内容:11.1—11.3得分________卷后分________评价________一、选择题(每小题4分,共32分)1.下列图形中,不具有稳定性的是(B)2.小芳有两根长度为5 cm和10 cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择木条的长度为(D)A.5 cm B.3 cm C.17 cm D.12 cm3.如图,△ABC为直角三角形,∠ACB=90°,CD⊥AB,与∠1互余的角有(C)A.∠BB.∠AC.∠BCD和∠AD.∠BCD4.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC=(C) A.95°B.120°C.135°D.无法确定第4题图第5题图5.(济宁中考)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是(C)A.50°B.55°C.60°D.65°6.等腰三角形的一边长为3 cm,周长为19 cm,则该三角形的腰长为(B)A.3 cm B.8 cmC.3 cm或8 cm D.以上答案均不对7.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于点E,∠BAC =60°,∠ABE=25°,则∠DAC的大小为(B)A.15°B.20°C.25°D.30°第7题图第8题图8.(聊城中考)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A′处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是(A) A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°-α-β二、填空题(每小题4分,共24分)9.(辽阳中考)已知正多边形的一个外角是72°,则这个正多边形的边数是__5__.10.如图,一副三角板△AOC和△BCD如图摆放,则∠AOD=__15°__.第10题图第11题图11.如图,在△ABC中,BD为△ABC内角平分线,CE为△ABC的外角平分线,若∠BDC =130°,∠E=50°,则∠BAC的度数为__120°__.12.如图,B处在A处南偏西45°方向,C处在A处南偏东15°方向,C处在B处北偏东80°方向,则∠ACB的度数是__85°__.第12题图第13题图13.如图,AD是△ABC中BC边上的中线,E,F分别是AD,BE的中点,若△BFD 的面积为6 cm2,则△ABC的面积等于__48__cm2.14.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处.若DE∥AB,则∠ADC的度数为__110°__.三、解答题(共44分)15.(8分)如图,CE平分∠ACD,F为CA延长线上一点,FG∥CE交AB于点G,∠ACD=100°,∠AGF=20°,求∠B的度数.解:∵CE平分∠ACD,∴∠ACE=12∠ACD=12×100°=50°.∵FG∥CE,∴∠AFG=∠ACE=50°.∴∠BAC=∠AFG+∠AGF=50°+20°=70°.∴∠B=∠ACD-∠BAC=100°-70°=30°16.(10分)如图,在△ABC中,AB=10 cm,AC=6 cm,D是BC的中点,E点在边AB上,△BDE与四边形ACDE的周长相等.(1)求线段AE的长;(2)若图中所有线段长度的和是53 cm,求BC+12DE的值.解:(1)由题意得BD+DE+BE=AC+AE+CD+DE,BD=DC,∴BE=AE+AC .∴10-AE=AE+6.解得AE=2 cm(2)由题意得2AB+AC+2BC+DE=53,∴2BC+DE=53-(2AB+AC)=53-(2×10+6)=27,∴BC+12DE=272(cm)17.(12分)如图,在△ACB中,∠ACB=90°,CD⊥AB于点D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD,BC于点E,F,求证:∠CEF=∠CFE.证明:(1)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B(2)在Rt△AFC中,∠CFE=90°-∠CAF,同理在Rt△AED中,∠AED=90°-∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE.∴∠AED=∠CFE.又∵∠CEF=∠AED,∴∠CEF =∠CFE18.(14分)如图①,在四边形ABCD中,∠A=∠C=90°.(1)求证:∠ABC+∠ADC=180°;(2)如图②,若DE平分∠ADC,交BC于点E,BF平分∠CBM,写出DE与BF的位置关系,并证明;(3)如图③,若BF,DE分别平分∠ABC,∠ADC的外角,写出DE与BF的位置关系,并证明.解:(1)证明:∵∠A+∠C+∠ABC+∠ADC=360°,∠A=∠C=90°,∴∠ABC+∠ADC=360°-180°=180°(2)DE⊥BF.证明:如图②,延长DE交BF于点G.∵∠ADC+∠ABC=180°,∠CBM+∠ABC=180°,∴∠ADC=∠CBM.∵DE平分∠ADC,BF平分∠CBM,∴∠CDE=∠EBF.又∵∠BEG=∠DEC,∴∠EGB=∠BCD=90°.∴DE⊥BF(3)DE∥BF.证明:如图③,连接BD,易证∠NDC+∠MBC=180°,∵DE平分∠NDC,BF平分∠MBC,∴∠EDC+∠CBF=12(∠NDC+∠MBC)=90°.∴∠EDC+∠CDB+∠CBD+∠CBF=180°,即∠EDB+∠DBF=180°,∴DE∥BF。
第一周——2023-2024学年人教版数学八年级上册周周练考查范围:11.1 1.如图,以BC为边的三角形有( )个.A.3个B.4个C.5个D.6个2.以下列各组数据为边长,能组成三角形的是( )A.1,1,3B.3,3,8C.3,4,5D.3,10,43.如图, 一扇窗户打开后, 用窗钩AB 可将其固定, 这里所运用的几何原理是( )A.两点之间线段最短B.三角形两边之和大于第三边C.两点确定一条直线D.三角形的稳定性4.如图,在中,边AB上的高是( )A.ADB.GEC.EFD.CH5.下列说法中正确的是( )A.三角形的三条中线必交于一点B.直角三角形只有一条高C.三角形的中线可能在三角形的外部D.三角形的高线都在三角形的内部6.如图,在中,AE是高,BD是角平分线,CF是中线,下列说法不正确的是( )A. B.C. D.7.如图,AD,CE是三角形的两条高,,,,AD 的长为( )A.2cmB.3cmC.4cmD.6cm8.三角形的下列线段中,能将三角形的面积分成相等的两部分的是( )A.中线B.角平分线C.高D.最长边上的高9.若等腰三角形的两边长分别为3cm和8cm,则它的周长是__________.10.在画三角形的三条重要线段:角平分线、中线和高时,不一定画在三角形内部的是__________.11.如图,AD,CE分别是的中线和角平分线,则:____________________;____________________.12.如图所示,已知AD,AE分别是和的高和中线,,,,,试求:(1)和的周长的差.(2)AD的长:(3)直接写出的面积.答案以及解析1.答案:B解析:以BC为边的三角形有,,,.2.答案:C解析:,故A错误;,故B错误;,故C正确;,故D错误.3.答案:D解析:根据三角形的稳定性可知窗钩可以固定窗户,故选D.4.答案:D解析:,在中,边AB上的高是CH.故选:D.5.答案:A解析:A.三角形的三条中线必交于一点,故该选项正确,B.直角三角形有三条高,故该选项错误,C.三角形的中线不可能在三角形的外部,故该选项错误,D.三角形的高线不一定都在三角形的内部,故该选项错误,故选:A.6.答案:A解析:当CF是角平分线时,一定成立,但是CF是中线,所以A选项说法错误;因为BD是角平分线,所以,故B选项说法正确;因为AE 是高,所以,故C选项说法正确;因为CF是中线,所以点F是AB边的中点,即,故D选项说法正确.7.答案:B解析:,,解得:.故选B.8.答案:A解析:三角形的中线把三角形分成两个等底同高的三角形,三角形的中线将三角形的面积分成相等两部分.故选:A.9.答案:解析:等腰三角形的两边长分别为和当腰长是时,则三角形的三边是,,,不满足三角形的三边关系;当腰长是时,三角形的三边是,,,三角形的周长是.故答案为:.10.答案:高解析:三角形的角平分线和中线都在三角形内部,而锐角三角形的三条高均在三角形内部,直角三角形有两条高与直角边重合,另一条高在三角形内部,钝角三角形有两条高在三角形外部,一条高在三角形内部.11.答案:CD;BC;;解析:AD是的中线,D是线段BC的中点,,CE是的角平分线,CE平分,;故答案为:CD;BC;;.12.答案:(1)2(2)4.8(3)12解析:(1)AE是中线,,又的周长,的周长,和的周长的差,又,,和的周长的差.(2),,,,又,AD是高,,,.(3)是中线,,.。
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. 0D. -52. 如果a > 0,b < 0,那么下列不等式中正确的是()A. a > bB. a < bC. -a > -bD. -a < -b3. 下列函数中,图象是一条直线的是()A. y = x^2B. y = 2x + 3C. y = √xD. y = x^34. 在直角三角形ABC中,∠C = 90°,AC = 3cm,BC = 4cm,那么AB的长度是()A. 5cmB. 6cmC. 7cmD. 8cm5. 下列关于圆的命题中,正确的是()A. 所有半径相等的圆都是同心圆B. 所有直径相等的圆都是同心圆C. 所有圆心在一条直线上的圆都是同心圆D. 所有圆周长相等的圆都是同心圆6. 如果一个正方形的对角线长度为6cm,那么这个正方形的边长是()A. 3cmB. 4cmC. 5cmD. 6cm7. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^28. 下列各数中,是负数的是()A. -√9B. -√4C. -√16D. -√259. 如果x^2 = 25,那么x的值是()A. 5B. -5C. 5 或 -5D. 无法确定10. 下列关于二次函数的图象的说法中,正确的是()A. 二次函数的图象一定是抛物线B. 二次函数的图象开口方向一定向上C. 二次函数的图象开口方向一定向下D. 二次函数的图象一定经过原点二、填空题(每题5分,共25分)11. 有理数a的相反数是______。
12. 在直角三角形中,如果一个角的正弦值是0.5,那么这个角的度数是______。
13. 如果一个圆的半径是r,那么这个圆的周长是______。
一、单选题(共32分)1.下列各等式中成立的有()个.①()a b a bc c---=--;①a b a bc c---=;①a b a bc c-++=-;①a b a bc c-+-=-.A.1B.2C.3D.42.分式434y xa+,2411xx--,22x xy yx y-++,2222a abab b+-中,最简分式有()A.1个B.2个C.3个D.4个3.下列图形,是中心对称图形的是()A.B.C.D.4.如图,Rt ABC△中,∠B=90°,12AB=,5BC=,射线AP AB⊥于点A,点E,D分别在线段AB和射线AP上运动,并始终保持DE AC=.要使DAE和ABC全等,则AD的长为()A.5B.12C.5或12D.5或13第4题第7题第13题第14题5.在实数5-,π2,4,227,3.14159,38,0.232332332……(每相邻两个2之间依次多一个3)中,无理数有()A.4个B.3个C.2个D.1个6.设2221M a a=++,2327N a a=-+,其中a为实数,则M与N的大小关系是()A.M N≥B.M N>C.N M≥D.N M>7.如图,已知BAC DAC∠=∠,则下列条件中不一定能使ABC ADC∆∆≌的是()A.B D∠=∠B.ACB ACD∠=∠C.BC DC=D.AB AD=8.下列说法,错误的是().A.0.698精确到0.01的近似值是0.7B.近似数1.205是精确到千分位C.2与2--互为相反数D.3与5-是同类项.9.估算12÷2的运算结果应在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间10.若111x y z-=,则z等于()A.x y-B.-y xxyC.xyx y-D.xyy x11.下面等式:3242122⨯=①,43271-=②,()222x y x y-=-③,()3412m m=④,()()22222x y x y x y-+=-⑤,1823÷=⑥,其中正确的个数是()A.1B.2C.3D.412.化简28xy y⋅=()A.4y x B.16y x C.4x y D.16x y13.如图,在ABC中,90A∠=︒,25AB BC==,,BD是ABC∠的平分线,设ABD△和BDC的面积分别是1S,2S,则12:S S的值为()A.5:2B.2:5C.1:2D.1:514.如图,ABC中,3AC=,4BC=,5AB=,BD平分ABC∠,如果M、N分别为BD、BC上的动点,那么CM MN+的最小值是()A.2.4B.3C.4D.4.815.如图,在ABC中,120BAC∠=︒,点D是BC上一点,BD的垂直平分线交AB于点E,将ACD沿AD 折叠,点C 恰好与点E 重合,则B ∠等于( ) A .19°B .20°C .24°D .25°第15题 第16题 第18题16.如图,AP 是ABC ∆的角平分线,PM ,PN 分别是APB △,APC ∆的高,则下列结论错误的是( )A .AM AN =B .AB PC AC BP ⋅=⋅ C .1()2ABCS AB AC MP =+⋅ D .ABPACPAB S AC S⋅=⋅二、填空题(共12分)17.已知324122a b c a b c +++=+-+-,则a b c ++的值是_____________.18.如图,在Rt ABC △中,90ACB ∠=︒,BD 平分ABC ∠,E 是AB 上一点,且AE AD =,连接DE ,过E 作EF BD ⊥,垂足为F ,延长EF 交BC 于点G .现给出以下结论:①EF FG =;①CD DE =;①BEG BDC ∠=∠;①45DEF ∠=︒.其中正确的是______.(写出所有正确结论的序号)19.将1、2、3、4……按如图方式排列.若规定(x ,y )表示第x 排从左向右第y 个数,则:①(6,6)表示的数是______;①若2021在(x ,y ),则(2x ﹣y )3的值为_______.三、解答题(共0分) 20(12分).计算(1) ()113482112-+--+-; (2)312227-+;(2) ()()()23331222++--; (4)()24251228-⨯+---+⨯21.(8分)计算下列各题,(1)已知21b +的平方根为3±,321a b +-的算术平方根为4,求6a b +的立方根; (2)已知5a =,24b =,求2a b +.22.(6分)化简求值:221241442x x x x x x x -+⎛⎫⎛⎫-÷- ⎪ ⎪-+-⎝⎭⎝⎭,然后从55x -<<选一个合适的整数作为x 的值代入求值23.(8分)如图,点C 、F 在BE 上,BF CE =,AC DF ∥,A D ∠=∠,判断线段AB ,DE 的数量关系和位置关系,并说明理由.24.(10分)为落实“数字中国”的建设工作,市政府计划对全市中小学多媒体教室进行安装改造,现安排两个安装公司共同完成.已知甲公司安装工效是乙公司安装工效的1.5倍,乙公司安装36间教室比甲公司安装同样数量的教室多用3天. (1)求甲、乙两个公司每天各安装多少间教室?(2)已知甲公司安装费每天800元,乙公司安装费每天400元,现需安装教室120间,若想尽快完成安装工作且安装总费用不超过15000元,则最多安排甲公司工作多少天?25.(12分)已知:60AOB ∠=︒,小新在学习了角平分钱的知识后,做了一个夹角为120°(即120DPE ∠=︒)的角尺来作AOB ∠的角平分线.(1)如图1,他先在边OA 和OB 上分别取OD OE =,再移动角尺使PD PE =,然后他就说射线OP 是AOB ∠的角平分线.试根据小新的做法证明射线OP 是AOB ∠的角平分线;(2)如图2,将角尺绕点P 旋转了一定的角度后,OD OE ≠,但仍然出现了PD PE =,此时OP 是AOB ∠的角平分线吗?如果是,请说明理由.(3)如图3,在(2)的基础上,若角尺旋转后恰好使得DP OB ∥,请判断线段OD 与OE 的数量关系,并说明理由.1.A 2.C 3.B . 4.C 5.B 6.D 7.C 8.A 9.B 10.D 11.B 12.A 13.B 14.A【详解】过点C 作CE AB ⊥于E ,交BD 于点M ,过点M 作MN BC ⊥于点N , ①BD 平分ABC ∠, ①ME MN =,①CM MN CM ME CE +=+=,①Rt ABC △中,90ACB ∠=,3AC =,4BC =,5AB =,CE AB ⊥, ①1122ABC S AB CE AC BC =⋅=⋅△, ①534CE =⨯,① 2.4CE =,即CM MN +的最小值是2.4 15.B 16.D 17.9解:①3a b c +++=①114210a b c -+--+--=,①2221)2)1)0++=,10=20=10=,1=2=1,①1a =,5b =,3c =, ①1539a b c ++=++=, 18.①①① 【详解】①BD 平分ABC ∠, ①12∠=∠, ①EF BD ⊥,①349090EFD DFG ∠=∠=︒∠=∠=︒,, 又①BF BF =, ①BEF BEG ≅, ①EF FG =,故①正确; 过D 作DM ①AB , ①90ACB ∠=︒, ①DC BC ⊥, 又①BD 平分ABC ∠, ①DC DM =,在Rt EMD △中:ED>MD , ①CD DE ≠,故①说法错误; ①BEF BEG ≅, ①56∠=∠,在四边形CDFG 中87180C DFG ∠+∠+∠+∠=︒,90C DFG ∠=∠=︒,①78180∠+∠=︒, ①76180∠+∠=︒, ①68∠=∠, ①38∠=∠,即BEG BDC ∠=∠,故①正确;设12x ∠=∠=,则902A x ∠=︒-, ①AE AD =,①45AED ADE x ∠=∠=︒+,在BED 中,145AED EDB x EDB x ∠=∠+∠=+∠=+︒, ①45EDB ∠=︒, ①90EFD ∠=︒,①45DEF ∠=︒,故①正确. 故答案为:①①①. 19.31 125【详解】解:观察式子可得,第1排的个数为2111⨯-=,前1排的总数为211=,第2排的个数为2213⨯-=,前2排的总数为242=,从右到左依次增大排列, 第3排的个数为2315⨯-=,前3排的总数为293=,从左到右依次增大排列, 第4排的个数为2417⨯-=,前4排的总数为2164=,从右到左依次增大排列, ……第n 排的个数为(21)n -个,前n 排的总数为2n 个,奇数排是从左到右依次增大排列,偶数排是从右到左依次增大排列,(6,6)表示第6排从左向右第6个数前5排的总数为25,第6排的个数为11个,为偶数排,从右向左依次增大, 第6排中,从左向右第6个数,也就是从右向左第6个数, 所以(6,6)表示的数为25631+=;因为24419362021=<,24520252021=> 所以2021是在第45排,即45x = 第45排,为奇数排,从左向右依次增大, 因为2021193685-=,所以85y =将45x =,85y =代入3(2)x y -得33(90852)5(2)1x y =-=- 20.(1)1 (2)53 (3)1243- (4)4 21.(1)3 (2)3或1 22.2144x x -+,当取1x =时,原式的值为1.23.解:AB DE =,AB DE ∥, 理由:BF CE =,BF CF CE CF ∴+=+, BC EF ∴=, AC DF ∥,ACB DFE ∴∠=∠,在ABC 和DEC 中,A D ACB DFE BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AAS ABC DEF ∴≌,AB DE ∴=,B E ∠=∠,AB DE ∴∥.24.(1)设乙公司每天安装x 间教室,则甲公司每天安装1.5x 间教室, 根据题意得,363631.5x x-=, 解得,4x =,经检验,4x =是所列方程的解, 则1.5 1.546x =⨯=,答:甲公司每天安装6间教室,乙公司每天安装4间教室;(2)设安排甲公司工作y 天,则乙公司工作12064y-天, 根据题意得:1206800400150004yy -+⨯≤, 解这个不等式,得:15y ≤, 答:最多安排甲公司工作15天. 25.(1)解:证明:如图1中, 在OPD ∆和OPE ∆中, OD OE PD PE OP OP =⎧⎪=⎨⎪=⎩, ()OPD OPE SSS ∴∆≅∆,POD POE ∴∠=∠.(2)解:结论正确.理由:如图2中,过点P 作PH OA ⊥于H ,PK OB ⊥于K .90PHO PKB ∠=∠=︒,60AOB ∠=︒, 120HPK ∴∠=︒,120DPE HPK ∠=∠=︒,DPH EPK ∴∠=∠,在OPH ∆和OPK ∆中, 90PHO PKB DPH EPKPD PE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()DPH EPK AAS ∴∆≅∆,PH PK ∴=,则OP 是AOB ∠的角平分线; (3)解:结论:2OE OD =.理由:如图3中,在OB 上取一点T ,使得OT OD =,连接PT .OP 平分AOB ∠,POD POT ∴∠=∠,在POD ∆和POT ∆中, OD OT POD POT OP OP =⎧⎪∠=∠⎨⎪=⎩, ()POD POT SAS ∴∆≅∆,ODP OTP ∴∠=∠, PD OB ∥,180PDO AOB ∴∠+∠=︒,180DPE PEO ∠+∠=︒,60AOB ∠=︒,120DPE ∠=︒,120ODP ∴∠=︒,60PEO ∠=︒,120OTP ODP ∴∠=∠=︒,60PTE ∴∠=︒, 60TPE PET ∴∠=∠=︒, TP TE ∴=,PTE TOP TPO ∠=∠+∠,30POT ∠=︒,30TOP TPO ∴∠=∠=︒,OT TP ∴=,OT TE ∴=,2OE OD ∴=.。