等差数列的性质(适用于基础差的)
- 格式:pptx
- 大小:1002.41 KB
- 文档页数:15
等差数列、等比数列知识点梳理等差数列和等比数列知识点梳理第一节:等差数列的公式和相关性质1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈)注:下面所有涉及n ,*n N ∈省略,你懂的。
2、等差数列通项公式:1(1)n a a n d =+-,1a 为首项,d 为公差推广公式:()n m a a n m d =+-变形推广:mn a a d mn --= 3、等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a4、等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+ 211()22d n a d n =+-2An Bn =+(其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0)特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)5、等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a(3)数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4)数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。
数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。
前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。
3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。
等差数列的概念、性质(优质课)教案教学目标:教学重点: 掌握等差数列的概念、通项公式及性质;求等差中项,判断等差数列及与函数的关系; 教学难点: 通项公式的求解及等差数列的判定。
教学过程:1. 等差数列的概念一般地,如果一个数列从第二项起,每一项与它的前一项的差都等于同一常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 来表示。
用递推关系系表示为()1n n a a d n N ++−=∈或()12,n n a a d n n N −+−=≥∈2. 等差数列的通项公式若{}n a 为等差数列,首项为1a ,公差为d ,则()11n a a n d =+− 3. 等差中项如果三个数,,x A y 组成等差数列,那么A 叫做x 和y 的等差中项 4. 通项公式的变形对任意的,p q N +∈,在等差数列中,有:()11p a a p d =+−()11q a a q d =+− 两式相减,得()p q a a p q d =+− 其中,p q 的关系可以为,,p q p q p q <>=5. 等差数列与函数的关系由等差数列的通项公式()11n a a n d =+−可得()1n a dn a d =+−,这里1,a d 是常数,n 是自变量,n a 是n 的函数,如果设1,,d a a d b =−=则n a an b =+与函数y ax b =+对比,点(),n n a 在函数y ax b =+的图像上。
6. 等差数列的性质及应用(1)12132...n n n a a a a a a −−+=+=+=(2)若2,m n p q w +=+=则2m n p q w a a a a a +=+=(,,,,m n p q w 都是正整数) (3)若,,m p n 成等差数列,则,,m p n a a a 也成等差数列(,,m n p 都是正整数) (4)()n m a a n m d =+−(,m n 都是正整数)(5)若数列{}n a 成等差数列,则(),n a pn q p q R =+∈(6)若数列{}n a 成等差数列,则数列{}n a b λ+(,b λ为常数)仍为等差数列 (7)若{}n a 和{}n b 均为等差数列,则{}n n a b ±也是等差数列类型一: 等差数列的判定、项及公差的求解、通项公式的求解例1.(2015河北唐山月考)数列{}n a 是首项11a =−,公差3d =的等差数列,若2015,n a = 则n =A.672B.673C.662D.663 解析:由题意得()()1111334,n a a n d n n =+−=−+−⨯=−令2015n a =,解得673n = 答案:B练习1. 数列{}n a 是首项11a =−,公差3d =的等差数列,若2003,n a = 则n = A.669 B.673 C.662 D.663 答案:A练习2. 数列{}n a 是首项11a =−,公差3d =的等差数列,若2000,n a = 则n = A.669 B.668 C.662 D.663 答案:B例2.(2015山西太原段考)一个首项为23、公差为整数的等差数列从第7项开始为负数,则其公差d 为()A.-2B.-3C.-4D.-6 解析:由题意知670,0a a ≥<所以有115235062360a d d a d d +=+≥+=+<解得2323,456d d Z d −≤<−∈∴=− 答案:C练习3. 一个首项为23、公差为整数的等差数列从第6项开始为负数,则其公差d 为() A.-2 B.-3 C.-4 D.-5 答案:D练习4.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4 答案:B例3.(2014浙江绍兴一中期中)已知数列{}n a 满足1111,1,4n na a a +==−其中n N +∈设221n n b a =−(1) 求证:数列{}n b 是等差数列 (2) 求数列{}n a 的通项公式 解析:(1)1144222222121212121n n n n n n n n n a a b b a a a a a ++−−=−=−==−−−−− 所以数列{}n b 是等差数列(2)()111121,21221212,212n n n a b b b n d n a n n a a n=∴==∴=+−=−+∴==−答案:(1)略 (2)12n n a n+=练习5.已知数列{}n a 满足()1114,21n n n a a a n a −−==≥+令1n nb a =(1) 求证:数列{}n b 是等差数列(2) 求数列{}n b 与{}n a 的通项公式 答案:(1)数列{}n b 是公差为1的等差数列 (2)443n a n =− ,34n b n =− 练习6.在等差数列{}n a 中,已知581,2,a a =−= 求1,a d 答案:15,1a d =−=例4.已知数列8,,2,,a b c 是等差数列,则,,a b c 的值分别为____________ 解析:a 为8与2的等差中项,得8252a +== ;2为,ab 的等差中项得1b =−;由b 为2与c 的等差数列,得4c =− 答案:5,-1,-4练习7. 已知数列8,,2,,a b 是等差数列,则,a b 的值分别为____________ 答案:5,-1练习8. 已知数列2,,8,,a b c 是等差数列,则,,a b c 的值分别为____________ 答案:5,11,14类型二:等差数列的性质及与函数的关系例5.等差数列{}n a 中,已知100110142015a a +=,则12014a a +=()A.2014B.2015C.2013D.2016解析:1001101412014+=+,且{}n a 为等差数列,12014100110142015a a a a ∴+=+=故选B 答案:B练习9.在等差数列{}n a 中,若4681012120,a a a a a ++++=则10122a a −的值为 () A.24 B.22 C.20 D.18 答案:A练习10.(2015山东青岛检测)已知等差数列{}n a 中,1007100812015,1,a a a +==−则2014a = _____ 答案:2016例6.已知数列{}n a 中,220132013,2a a ==且n a 是n 的一次函数,则 2015a =________ 解析:n a 是 n 的一次函数,所以设()0n a kn b k =+≠代入22013,a a 解得20151,20152015201520150n k b a n a =−=∴=−+∴=−+=答案:0练习11.若,,a b c 成等差数列,则二次函数()22f x ax bx c =−+的零点个数为()A.0B.1C.2D.1或2 答案:D练习12.已知无穷等差数列{}n a 中,首项13,a = 公差5d =−,依次取出序号被4除余3的项组成数列{}n b (1) 求1b 和2b (2) 求{}n b 的通项公式 (3){}n b 中的第503项是{}n a 的第几项答案:数列{}n b 是数列{}n a 的一个子集列,其序号构成以3为首项,4为公差的等差数列,由于{}n a 是等差数列,所以{}n b 也是等差数列 (1)()()13,5,31585n a d a n n ==∴=+−−=− 数列{}n a 中序号被4除余3的项是{}n a 中的第3项,第7项,第11项,…13277,27b a b a ∴==−==− (2)设{}n a 中的第m 项是{}n b 的第n 项即n mb a =()()413414185411320n m n m n n b a a n n −=+−=−∴===−−=− 则1320n b n =−(3)503132*********b=−⨯=−,设它是{}n a中的第m项,则1004785m−=−,则2011m=,即{}n b中的第503项是{}n a中的第2011项1.在等差数列{a n}中,a1+a9=10,则a5的值为()A.5 B.6 C.8 D.10答案:A2.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为()A.49 B.50 C.51 D.52答案:D3. 如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.35答案:C4. 已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有()A.a1+a101>0 B.a2+a100<0 C.a3+a100≤0D.a51=0答案:D5. 等差数列{a n}中,a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9的值为()A.30 B.27 C.24 D.21答案:B6. 等差数列{a n}中,a5=33,a45=153,则201是该数列的第()项()A.60 B.61 C.62 D.63答案:B_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.在等差数列{a n}中,a3=7,a5=a2+6,则a6=()A.11 B.12 C.13 D.14答案:C2. 若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( )A .24B .27C .30D .33 答案:D3. 已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12等于( )A .15B .30C .31D .64 答案:A4. 等差数列中,若a 3+a 4+a 5+a 6+a 7+a 8+a 9=420,则a 2+a 10等于( )A .100B .120C .140D .160 答案:B 5. 已知a =13+2,b =13-2,则a ,b 的等差中项为( ) A.3 B.2 C.13 D.12答案:A6. 在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 答案: 747. 等差数列{a n }中,公差为12,且a 1+a 3+a 5+…+a 99=60,则a 2+a 4+a 6+…+a 100=_______.答案: 858. 在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( )A .14B .15C .16D .17 答案:C9. 在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6=________. 答案:4210. 等差数列{a n }的前三项依次为x,2x +1,4x +2,则它的第5项为__________. 答案:411. 已知等差数列6,3,0,…,试求此数列的第100项. 答案:设此数列为{a n },则首项a 1=6,公差d =3-6=-3,∴a n =a 1+(n -1)d =6-3(n -1)=-3n +9. ∴a 100=-3×100+9=-291.能力提升12. 等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( )A .d >875B .d <325 C.875<d <325 D.875<d ≤325答案:D13. 设等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 是( )A .48B .49C .50D .51 答案:C14. 已知数列{a n }中,a 3=2,a 7=1,又数列{1a n +1}是等差数列,则a 11等于( )A .0 B.12 C.23 D .-1答案:B15. 若a ≠b ,两个等差数列a ,x 1,x 2,b 与a ,y 1,y 2,y 3,b 的公差分别为d 1、d 2,则d 1d 2等于( )A.32B.23C.43D.34 答案:C16. 《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案:676617. 等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根 B .有两个相等实根 C .有两个不等实根 D .不能确定有无实根答案:A18. 在a 和b 之间插入n 个数构成一个等差数列,则其公差为( ) A.b -a n B.a -b n +1 C.b -a n +1 D.b -a n -1答案:C19. 在等差数列{a n }中,已知a m +n =A ,a m -n =B ,,则a m =__________. 答案:12(A +B )20.三个数成等差数列,它们的和等于18,它们的平方和等于116,则这三个数为__________. 答案:4,6,821. 在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 答案:2022. 已知数列{a n }是等差数列,且a 1=11,a 2=8.(1)求a 13的值;(2)判断-101是不是数列中的项; (3)从第几项开始出现负数? (4)在区间(-31,0)中有几项?答案:(1)由题意知a 1=11,d =a 2-a 1=8-11=-3,∴a n =a 1+(n -1)d =11+(n -1)×(-3)=-3n +14. ∴a 13=-3×13+14=-25.(2)设-101=a n ,则-101=-3n +14, ∴3n =115,n =1153=3813∉N +.∴-101不是数列{a n }中的项.(3)设从第n 项开始出现负数,即a n <0, ∴-3n +14<0,∴n >143=423.∵n ∈N +,∴n ≥5, 即从第5 项开始出现负数. (4)设a n ∈(-31,0),即-31<a n <0, ∴-31<-3n +14<0, ∴423<n <15,∴n ∈N +, ∴n =5,6,7,…,14,共10项.23. 已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项? 答案:设首项为a 1,公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+(15-1)d =33a 1+(61-1)d =217,解得⎩⎪⎨⎪⎧a 1=-23d =4,∴a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,得n =45∈N *, ∴153是所给数列的第45项. 24. 已知函数f (x )=3xx +3,数列{x n }的通项由x n =f (x n -1)(n ≥2,且n ∈N *)确定. (1)求证:{1x n}是等差数列;(2)当x 1=12时,求x 100的值.答案:(1)∵x n =f (x n -1)=3x n -1x n -1+3(n ≥2,n ∈N *),∴1x n =x n -1+33x n -1=13+1x n -1, ∴1x n -1x n -1=13(n ≥2,n ∈N *). ∴数列{1x n }是等差数列.(2)由(1)知{1x n }的公差为13,又x 1=12,∴1x n =1x 1+(n -1)·13=13n +53.∴1x 100=1003+53=35,即x 100=135.25. 四个数成等差数列,其平方和为94,第一个数与第四个数的积比第二个数与第三个数的积少18,求此四个数.答案:设四个数为a -3d ,a -d ,a +d ,a +3d ,据题意得,(a -3d )2+(a -d )2+(a +d )2+(a +3d )2=94 ⇒2a 2+10d 2=47.①又(a -3d )(a +3d )=(a -d )(a +d )-18⇒8d 2=18⇒d =±32代入①得a =±72,故所求四个数为8,5,2,-1或1,-2,-5,-8或-1,2,5,8或-8,-5,-2,1. 26. 已知等差数列{a n }中,a 2+a 6+a 10=1,求a 3+a 9.答案:解法一:a 2+a 6+a 10=a 1+d +a 1+5d +a 1+9d =3a 1+15d =1,∴a 1+5d =13.∴a 3+a 9=a 1+2d +a 1+8d =2a 1+10d =2(a 1+5d )=23.解法二:∵{a n }为等差数列,∴2a 6=a 2+a 10=a 3+a 9,∴a 2+a 6+a 10=3a 6=1, ∴a 6=13,∴a 3+a 9=2a 6=23.27. 在△ABC 中,若lgsin A ,lgsin B ,lgsin C 成等差数列,且三个内角A ,B ,C 也成等差数列,试判断三角形的形状.答案:∵A ,B ,C 成等差数列,∴2B =A +C ,又∵A +B +C =π,∴3B =π,B =π3.∵lgsin A ,lgsin B ,lgsin C 成等差数列, ∴2lgsin B =lgsin A +lgsin C , 即sin 2B =sin A ·sin C , ∴sin A sin C =34.又∵cos(A +C )=cos A cos C -sin A sin C ,cos(A -C )=cos A cos C +sin A sin C , ∴sin A sin C =cos (A -C )-cos (A +C )2,∴34=12[cos(A -C )-cos 2π3], ∴34=12cos(A -C )+14, ∴cos(A -C )=1,∵A -C ∈(-π,π),∴A -C =0, 即A =C =π3,A =B =C .故△ABC 为等边三角形.。
等差数列的通项及性质7大题型【考点预测】一.等差数列的有关概念(1)等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母表示,定义表达式为d (常数).1--=n n a a d *()2,∈≥n N n (2)等差中项 若三个数,,成等差数列,则叫做与的等差中项,且有a A b A a b =2+a bA .(3)等差数列的通项公式如果等差数列的首项为,公差为,那么它的通项公式是.{}n a 1a d 1(1)=+-n a a n d 二.等差数列通项的常用性质已知为等差数列,为公差,为该数列的前项和.{}n a d n S n (1)通项公式的推广:.*())(,=+-∈n m a a n m d n m N (2)在等差数列中,当时,.{}n a +=+m n p q *(),,,+=+∈m n p q a a a a m n p q N 特别地,若,则.2+=m n t *()2,,+=∈m n t a a a m n t N (3),…仍是等差数列,公差为.2++,,k k mk ma a a *(),∈md k m N (4)若,是等差数列,则也是等差数列.{}n a {}nb {}+n n pa qb 【题型目录】题型一:等差数列通项公式运用题型二:等差中项问题题型三:等差数列通项的性质题型四:整体看成等差数列问题题型五:等差数列通项公共项问题题型六:几个连续实数成等差数列问题题型七:等差数列通项新文化试题【典型例题】题型一:等差数列通项公式运用【例1】(2022·全国·高二课时练习)在等差数列中,若,,则( ){}n a823a =1132a =66a =A .195B .196C .197D .198【例2】(2022·江西省万载中学高一阶段练习(文))在数列中,,,若n 11a =13n n a a +-=2020n a =,则( )n =A .671B .672C .673D .674【答案】D【分析】分析得到数列是以1为首项,3为公差的等差数列,利用等差数列通项即得解.{}n a【详解】∵,,11a =13n n a a +-=∴13n n a a +-=∴数列是以1为首项,3为公差的等差数列,{}n a∴,解得.()()111312020n a a n d n =+-=+-=674n =故选:D.【例3】(2022·全国·高二课时练习)已知等差数列,若,,则( ){}n a2911a a +=41014a a +=n a =A .B .C .D .2n 21n +n 21n -【答案】C【分析】设公差为d ,利用基本量代换列方程组解出首项和公差,即可写出通项公式.【详解】在等差数列中,设公差为d ,依题意,即{}n a 294101114a a a a +=⎧⎨+=⎩11291121214a d a d +=⎧⎨+=⎩解得公差,,所以.1d =11a =n a n =故选:.C 【例4】(2022·全国·高二课时练习)数列的首项为,为等差数列,且{}n a 3{}nb ()1n n n b a a n N *+=-∈,若,,,则等于( )32b =-1012b =8a A .B .C .D .03811【例5】(2022全国高二课时练习)在等差数列中,若a 1=84,a 2=80,则使an 0,且an +1n ≥<0的n 为( )A .21B .22C .23D .24【答案】B【分析】用基本量表示,列出不等式组,求解即可1,a d 1,n n a a +8840,884(1)0n n -≥⎧⎨-+<⎩【详解】公差d =a 2-a 1=-4,∴an =a 1+(n -1)d =84+(n -1)(-4)=88-4n ,令10,0,n n a a +≥⎧⎨<⎩即8840,884(1)0n n -≥⎧⎨-+<⎩⇒,又∵n ∈N *,2122n <≤∴n =22.故选:B【例6】(2022·全国·高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中是举,是相等的步,相邻桁的举步之比分别为1111,,,DD CC BB AA 1111,,,OD DC CB BA .已知成公差为0.1的等差数列,且直线11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====123,,k k k OA的斜率为0.725,则( )3k =A .0.75B .0.8C .0.85D .0.9【答案】D【解析】设,则,11111OD DC CB BA ====111213,,CC k BB k AA k ===依题意,有,且,31320.2,0.1k k k k -=-=111111110.725DD CC BB AA OD DC CB BA +++=+++所以,故,30.530.30.7254k +-=30.9k =故选:D【例7】(2022·全国·高二课时练习)若数列为等差数列,,,则( ){}n ap a q=()q a p p q =≠p q a +=A .B .0C .D .p q +()p q -+2p q+【答案】B【分析】根据等差数列通项公式的变形形式求解:.()n m a a n m d =+-【详解】设数列的公差为.∵,∴,即.∵,∴{}n ad ()p q a a p q d=+-()q p p q d=+-()q p p q d-=-p q ≠,∴.1d =-()0p q p a a p q p d q p +=++-=-=⎡⎤⎣⎦故选:B .【例8】(2022·全国·高二课时练习)已知数列均为等差数列,若{}{},n n a b1122333,7,13a b a b a b ===,则( )44a b =A .B .C .D .19212327【答案】B【分析】设,得出,令,可得,n n a an b b cn d =+=+2()n n a b acn bc ad n bd =+++n n n c a b =1n n nd c c +=-构成一个等差数列,求得公差,即可求得的值.4c 【详解】由题意,设,,n n a an b b cn d =+=+则,()()2()n n a b an b cn d acn bc ad n bd=++=+++令,可得构成一个等差数列,n n n c a b =12()n n n d c c acn ac ad bc +=-=+++所以由已给出的 ,,113a b =227a b =3313a b =,,所以121734d c c =-=-=2321376d c c =-=-=4434138d c c c =-=-=解得:,即.421c =4421a b =故选:B【例9】(2022全国高二课时练习)(1)在等差数列{an }中,已知a 3+a 8=10,则3a 5+a 7=________.(2)已知等差数列{an }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9=________.【答案】 20 27【分析】(1)利用等差数列的性质求解即可,(2)利用等差数列的性质求解,或设等差数列{an }的公差为d ,利用已知条件求出公差,再利用等差数的性质求解【详解】(1)3a 5+a 7=2a 5+(a 5+a 7)=2a 5+2a 6=2(a 3+a 8)=20.(2)法一 由性质可知,数列a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9是等差数列,所以2(a 2+a 5+a 8)=(a 1+a 4+a 7)+(a 3+a 6+a 9),则a 3+a 6+a 9=2×33-39=27.法二 设等差数列{an }的公差为d ,则(a 2+a 5+a 8)-(a 1+a 4+a 7)=(a 2-a 1)+(a 5-a 4)+(a 8-a 7)=3d =-6,解得d =-2,所以a 3+a 6+a 9=a 2+d +a 5+d +a 8+d =27.故答案为:(1)20 (2)27【例10】(2022全国高二专题练习)在等差数列中,,且{}n a 138a a +=2429a a a =⋅(1)求数列的首项、公差;{}n a(2)设,若,求正整数m 的值.()()1218n n n a a b -+=13m m m b b b +++=【题型专练】1.(2021·全国·高二单元测试)已知等差数列满足,则中一定为零的项是( ){}n a3243a =a {}n aA .B .C .D .6a 7a 8a 9a 【答案】A【分析】先设等差数列的公差,根据题中条件,得出首项与公差之间关系,即可得出结果.【详解】设等差数列的公差为,由得,∴,{}n ad 3243a =a 15a d =-6150a a d =+=故选:A .2.(2021·全国·高二专题练习)已知等差数列中,,,则等于( ){}n a3822a a +=67a =4a A .B .1523C .D .729【答案】B【分析】求出等差数列的公差的值,由此可求得的值.{}n ad 4a【详解】设等差数列的公差为,则,解得,{}n ad ()()3866632222a a a d a d a d +=-++=-=8d =-因此,.()46272823a a d =-=-⨯-=故选:B.3.(2021·江苏·高二专题练习)在等差数列中,已知,,,则( ){}n a113a =45163a a +=33k a =k =A .B .5049C .D .48474.(2022·广东·佛山市南海区狮山高级中学高二阶段练习)在数列中,,n 12a =1221n n a a +-=,则的值为( )101a A .52B .51C .50D .495.(2022·全国·高二课时练习)已知数列是首项为3,公差为n a d d ∈N 的等差数列,若2023是该数列的一项,则公差d 可能是( )A .2B .3C .5D .6P 条弦的长度组成一个等差数列,最短弦长为,最长弦长为,且公差,则1a n a 2,13d ⎛⎤∈ ⎥⎝⎦n的取值可能是( )A .B .C .D .56781123A .公差d =-4B .a 2=7C .数列{an }为递增数列D .a 3+a 4+a 5=84【答案】BC【分析】根据等差数列性质公式及基本量计算,对选项一一判断即可.【详解】解析:∵a 1+a 2+a 3=21,∴3a 2=21,∴a 2=7.∵a 1=3,∴d =4.∴数列{an }为递增数列,a 4=a 2+2d =15.∴a 3+a 4+a 5=3a 4=45.故选:BC8.(2022·全国·高二单元测试)已知数列为等差数列,,,则公差d 为______.{}n a36a =918a =【答案】2【分析】由等差数列性质得,即可求得公差d936a a d =+【详解】数列为等差数列,则,可解得.{}n a9361866d a a d =+⇒=+2d =故答案为:29.(2022·全国·高二课时练习)等差数列2,4,6,…的第18项为______.【答案】36【分析】由条件确定数列的公差,再确定其通项公式,由此求其第18项.【详解】设数列的第项为,n n a 由已知数列为等差数列,且,,{}n a12a =24a =所以数列的公差,{}n a2d =所以,2(1)22n a n n =+-⨯=所以,1836a =故答案为:36.10.(2022·全国·高二单元测试)设是公差为-2的等差数列,如果{}n a1479750a a a a ++++= ,那么______.36999a a a a ++++= 【答案】-82【分析】根据等差数列通项公式化简求解.【详解】∵是公差为-2的等差数列,{}n a ∴()()()()36999147972222a a a a a d a d a d a d ++++=++++++++ .147973325013282a a a a d =+++++⨯=-=- 故答案为:-8211.(2022·全国·高二课时练习)已知等差数列为递增数列,若,{}n a 22110101a a +=5611a a +=,则数列的公差d 的值为______.{}n a【答案】112.(2022·全国·高二课时练习)若,且两数列a , , ,b 和a ,,,a b ¹12123,b 都是等差数列,则________.3121y y x x -=-【答案】##32 1.513.(2022·全国·高二课时练习)已知等差数列的前三项分别为,,n 1a -21a +7a +,则此数列的通项公式为______.n a =【答案】43n -【分析】根据等差数列前三项可求出,即可得出首项和公差,求出通项公式.a 【详解】由题意,得,所以,()17221a a a -++=+2a =所以的前三项分别为1,5,9,公差为4,故.{}n a()11443n a n n =+-⨯=-故答案为:.43n -14.(2022·全国·高二课时练习)已知等差数列满足,则____________.{}n a2438a a =-5a =【答案】4【分析】利用表示,整理可得.1,a d 2438a a =-5a 【详解】设等差数列的公差为,则由得:,{}n ad 2438a a =-()11338a d a d +=+-整理可得:,即.()1128248a d a d +=+=5144a a d =+=故答案为:.415.(2020·全国·高二课时练习)已知等差数列{an },且a 3+a 5=10,a 2a 6=21,则an =____________.【答案】或.1n a n =+9n a n =-+【分析】设等差数列的公差为,根据题意列出方程组,求得的值,即可求解.{}n a d d 【详解】设等差数列的公差为,{}n ad 因为,可得,354210a a a +==45a =又由,2644(2)(2)(52)(52)21a a a d a d d d =-+=-+=解得,所以或,21d =1d =1d =-所以数列的通项公式为或.{}n a1n a n =+9n a n =-+故答案为:或.1n a n =+9n a n =-+16.(2021·全国·高二专题练习)若a ,x 1,x 2,x 3,b 与a ,y 1,y 2,y 3,y 4,y 5,b 均为等差数列,则3131x x y y --=________.17.(2022·全国·高二课时练习)存在条件:①,;②,;③,23d =-37a =713.在这三个条件中任选一个,回答下列问题,已知等差数列满足______.求数列2414a a +={}n a 的通项公式.{}n a【答案】163n a n=-【分析】不管选择哪个条件,都是求首项和公差,再求通项公式.【详解】若选择①,,1213a a d =-=数列的通项公式,{}n a()()()111313163n a a n d n n=+-=+-⨯-=-即;163n a n =-若选择②,,解得:,,112765ad a d +=⎧⎨+=-⎩113a =3d =-数列的通项公式;{}n a163n a n =-若选择条件③,解得:,,1122202414a d a d +=⎧⎨+=⎩113a =3d =-数列 的通项公式.{}n a 163n a n=-题型二:等差中项问题【例1】(2022·全国·高二课时练习)已知则a ,b 的等差中项为()a =b =A B C D 间的角是多少度( )A .30°B .60°C .90°D .45°【答案】B【分析】设三内角由小到大依次为,,A B C,利用等差数列定义结合三角形三内角和定理列式计算作答.【详解】设三角形三内角由小到大依次为,依题意,,而,,,A B C 2A+C =B 180A B C ++=则有,解得,3180B =60B =所以中间的角是.60故选:B【例3】(2022·全国·高二课时练习)已知和的等差中项是4,和的等差中项是5,则和m 2n 2m n m n 的等差中项是( )A .8B .6C .D .34.5【例4】(2022·全国·高三专题练习(理))数列{an }满足,且,是函数122n n n a a a ++=+4a 4040a 的两个零点,则的值为( )2()83f x x x =-+2022a A .4B .-4C .4040D .-4040【答案】A【分析】由题设可得+=8,根据已知条件易知{an }是等差数列,应用等差中项的性质求4a 4040a .2022a 【详解】由,是的两个零点,即,是x 2-8x +3=0的两个根,4a 4040a 2()83f x x x =-+4a 4040a ∴+=8,又,即数列{an }是等差数列,4a 4040a 122n n n a a a ++=+∴+=8,故=4.4a 4040a 20222a =2022a 故选:A.【题型专练】1.(2022·全国·高三专题练习)下列选项中,为“数列{}n a是等差数列”的一个充分不必要条件的是( )A .B .()1122n n n a a a n +-=+≥()2112n n n a a a n +-=⋅≥C .数列的通项公式为D .{}n a23n a n =-()2112n n n n a a a a n ++--=-≥A .2BCD .13.(2022·上海市复旦实验中学高二期末)若b 是2,8的等差中项,则______;b =【答案】0【分析】根据等差中项的性质即可求解.【详解】解:因为8,a ,2,b ,c 是等差数列,所以8222222a a b c b +=⎧⎪+=⨯⎨⎪+=⎩解得514a b c =⎧⎪=-⎨⎪=-⎩所以.0a b c ++=故答案为:.0题型三:等差数列通项的性质【例1】(2022·广东肇庆·高二阶段练习)已知数列是等差数列,且满足,则{}n a2104a a +=26log a =( )A .B .C .D .0123【答案】B【分析】利用等差中项的性质求出的值,进而可求得结果.6a 【详解】由等差中项的性质可得,可得,因此,.621024a a a =+=62a =26log 1a =故选:B.【例2】(2022·全国·高三专题练习)已知等差数列满足,则( ){}n a5796a a a ++=7a =A .B .C D .322-【答案】B【分析】利用等差中项的性质可求得结果.【详解】由等差中项的性质可得,故.579736a a a a ++==72a =故选:B.【例3】(2022·四川省成都市新都一中高一期中(理))已知数列满足,且{}n a ()*122n n n a a a n ++=+∈N ,则( )38132πa a a ++=()79cos a a +=A .B .C .D 12-12【例4】(2023·全国·高三专题练习)已知等差数列中,,,则n a1234a a a ++=131415等于( )789a a a ++A .6B .7C .8D .9(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(2)数列为等差数列的充要条件是对任意,都有.{}n a*N n ∈122n n n a a a ++=+(3)数列为等差数列的充要条件是其通项公式为n 的一次函数.{}n a(4)已知数列的通项公式是(其中p ,q 为常数),则数列一定是等差数列.{}n a n a pn q =+{}n aA .1个B .2个C .3个D .4个【答案】B【分析】利用等差数列定义判断(1);利用等差中项的定义结合充要条件的意义判断(2);利用等差数列定义结合充要条件的意义判断(3);利用等差数列定义判断(4)作答.【详解】对于(1),若一个数列从第2项起每一项与它的前一项的差都是同一个常数,则这个数列是等差数列,(1)不正确;对于(2),因对任意,都有数列*N n ∈121212n n n n n n n a a a a a a a +++++⇔=+-=-⇔{}n a为等差数列,(2)正确;对于(3),因常数列是等差数列,而常数列的通项不是n 的一次函数,则通项公式为n 的一次函数是数列为等差数列的充分不必要条件,(3)不正确;{}n a对于(4),数列的通项公式是(其中p ,q 为常数),则,,即数列{}n an a pn q =+N n *∀∈1n n a a p +-=一定是等差数列,(4)正确,{}n a 所以所给4个命题正确的个数为2.故选:B【题型专练】1.(2021·江西·高三阶段练习(文))设是等差数列,且,,则( ){}n a122a a +=344a a +=56a a +=A .B .C .D .12-0624【答案】C【分析】根据等差数列性质可知,,成等差数列,由此可构造方程求得结果.12a a +34a a +56a a +【详解】解:是等差数列,,,成等差数列,{}n a12a a ∴+34a a +56a a +,.()()()3412562a a a a a a ∴+=+++56826a a ∴+=-=故选:C.2.(2022·重庆·高三阶段练习)已知数列为等差数列,,则( ){}n a286a a +=357a a a ++=A .9B .12C .15D .16【分析】根据等差数列下标和性质计算可得.【详解】解:在等差数列中,所以,{}n a28526a a a +==53a =所以;357539a a a a ++==故选:A3.(2022·河南平顶山·高二期末(文))已知数列是等差数列,且满足,则{}n a891075a a a ++=( )612a a +=A .B .C .D .42485058【答案】C【分析】利用等差中项的性质可求得结果.【详解】由等差中项的性质可得,则,因此,.89109375a a a a ++==925a =6129250a a a +==故选:C.4.(2023·全国·高三专题练习)已知数列为等差数列,若,则的值为( ){}n a15915a a a ++=28a a +A .4B .6C .8D .10【答案】D【分析】由等差中项的性质进行计算【详解】由题意得:,所以,1595315a a a a ++==55a =故285210a a a +==故选:D5.(2022·河南·驻马店市基础教学研究室高二期末(理))已知等差数列中,、是{}n a2a 8a 的两根,则( )221610x x --=()2375a a a +-=A .B .C .D .248601246.(2022·全国·高二课时练习)在等差数列中,若,则______.{}n a34567450a a a a a ++++=19a a +=【答案】180【分析】利用等差中项的性质即可求值.【详解】由,故,37169452a a a a a a a =+=+=+3456755450a a a a a a ++++==所以,则.590a =19a a +=180故答案为:1807.(2022·宁夏·青铜峡市宁朔中学高二开学考试)在等差数列中,若{}n a357911100a a a a a ++++=,则________.212a a +=8.(2021·河北衡水·高三阶段练习)已知等差数列中,分别是方程n 12021,a a 2410x x --=的两个根,则__________.1011a =1项,则这个等差数列的公差为___________.【答案】1【分析】根据题意,利用等差数列等差中项的性质即可求得和,进而求得公差.3a 29a10.(2021·全国·高二课时练习)已知等差数列{an }中,a 1+a 3+a 8=54π,那么cos(a 3+a 5)=________.11.(2022·全国·高二课时练习)已知等差数列,满足,,求数列n 23418a a a ++=23466=a a a n 的通项公式.【答案】或521=-+n a n 59=--n a n 【分析】根据是等差数列且满足求出,代入,中得到{}n a23418a a a ++=3a 23418a a a ++=23466=a a a 的方程组,并解出,从而解出,结合通项公式解出.24,a a 24,a a 1a d ,n a 【详解】是等差数列,且, ,{}n a23418a a a ++=33=18∴a 3=6a ∴解得或2342341866a a a a a a ++=⎧⎨=⎩ 242412,.11,a a a a +=⎧⎨=⎩2411,1a a =⎧⎨=⎩241,11.a a =⎧⎨=⎩当时,,.2411,1a a =⎧⎨=⎩1=16a =5-d ()()()111615521∴=+-=+--=-+n a a n d n n当时,,.241,11a a =⎧⎨=⎩1=4-a =5d ()()1141559∴=+-=-+-=-n a a n d n n 综上:或521=-+n a n 59=--n a n 题型四:整体看成等差数列问题【例1】(2022·全国·高三专题练习)已知数列,为等差数列,且公差分别为,{}n a{}n b12d =21d =,则数列的公差为( ){}23n n a b -A .B .C .D .7531【答案】D【分析】利用即可整理求得公差.112323n n n n a b a b ++--+【详解】,为等差数列,为等差,设其公差为,{}n a {}n b {}23n n a b ∴-d 则.()()111112232323231n n n n n n n n d a b a b a a b b d d ++++=--+=---=-=故选:D.【例2】(2022·全国·高二课时练习)定义:在数列中,若对任意的都满足{}n a n +∈N 211n n n n a a da a +++-=(d 为常数),则称数列为等差比数列.已知等差比数列中,,,则{}n a {}n a 121a a ==33a =20222020a a =( )A .B .C .D .2420221⨯-2420211⨯-2420201⨯-242020⨯【例3】(2022·全国·高二课时练习)已知数列,均为等差数列,若,,则{}n a{}n b110a b +=221a b +=( )n n a b +=A .B .C .D .2n -1n +n1n -【答案】D【分析】利用等差数列的通项公式可求出结果.【详解】设等差数列,的公差分别为,{}n a{}n b12,d d 则,1221212211()()101d d a a b b a b a b +=-+-=+-+=-=所以1112(1)(1)n n a b a n d b n d +=+-++-.1112(1)()1a b n d d n =++-+=-故选:D【例4】(2022·全国·高二课时练习)已知数列均为等差数列,若{}{},n n a b1122333,7,13a b a b a b ===,则( )44a b =A .B .C .D .19212327【答案】B【分析】设,得出,令,可得,n n a an b b cn d =+=+2()n n a b acn bc ad n bd =+++n n n c a b =1n n nd c c +=-构成一个等差数列,求得公差,即可求得的值.4c 【详解】由题意,设,,n n a an b b cn d =+=+则,()()2()n n a b an b cn d acn bc ad n bd=++=+++令,可得构成一个等差数列,n n n c a b =12()n n n d c c acn ac ad bc +=-=+++所以由已给出的 ,,113a b =227a b =3313a b =,,所以121734d c c =-=-=2321376d c c =-=-=4434138d c c c =-=-=解得:,即.421c =4421a b =故选:B【例5】(2022·全国·高二课时练习多选题)已知等差数列,若,,则( )11n a ⎧⎫⎨⎬+⎩⎭114a =41a =A .数列的公差11n a ⎧⎫⎨⎬+⎩⎭110d =B .数列的公差11n a ⎧⎫⎨⎬+⎩⎭110d =-C .1011a =-D .1011a =1.(2021·江苏·高二单元测试多选题)在数列中,若(,,{}n a 221n n a a p --=2n ≥*n N ∈p 为常数),则称为等方差数列,下列对等方差数列的判断正确的有( ){}n aA .若是等差数列,则是等方差数列{}n a {}2n a B .数列是等方差数列(){}1n-C .若数列既是等方差数列,又是等差数列,则数列一定是常数列{}n a{}n aD .若数列是等方差数列,则数列(,为常数)也是等方差数列{}n a{}kn a*k N ∈k 【答案】BCD【分析】利用等方差数列的定义判断.【详解】A.设等差数列的通项公式,则{}n an a kn b =+,不一定是常数,()()()()22111122n n n n n n n n a a a a a a a a d kn k b d-----=+-=+=-+所以不是等方差数列,故错误;{}2naB. 因为,所以数列是等方差数列,故正确;()()()112222110n nn n a a---=---=(){}1n-C.因为数列是等方差数列,则,又数列是等差数列,则{}n a 221n n a a p --={}n a ,()()()221111n n n n n n n n a a a a a d a a pa -----=+-=+=2.(2022·全国·高二课时练习)已知是等差数列,且,,则______.1n a ⎧⎫⎨⎬⎩⎭21a =41a =10a =为等差数列,则______.13a =4.(2022·全国·高二课时练习)数列中,,,若数列是等差数列,则{}n a 32a =71a =11n a ⎧⎫⎨⎬+⎩⎭8a =__________.【例1】(2022·全国·高二课时练习)在1,2,3,…,2021这2021个自然数中,将能被2除余1,且被3除余1的数按从小到大的次序排成一列,构成数列,则等于( ){}n a50a A .289B .295C .301D .307【答案】B【分析】根据题意,得到能被2除余1满足,被3除余1的数满足,进而求得数列21n -32n -{}n a的通项公式,即可求解.65n a n =-【详解】由题意,在1,2,3,…,2021这2021个自然数中,能被2除余1满足,21n -被3除余1的数满足,32n -所以在1,2,3,…,2021这2021个自然数中,能被2除余1,且被3除余1的数,按从小到大的次序排成一列,可得构成的数列是首项为,公差为的等差数列,{}n a16则数列的通项公式,{}n a65n a n =-所以.506505295a =⨯-=故选:B.【例2】(2022·全国·高三专题练习)已知两个等差数列5,8,11,…,302与3,7,11,…,399,则它们所有公共项的个数为( )A .23B .24C .25D .261.(2022·全国·高二课时练习)“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中被3除余1且被5除余1的数按从小到大的顺序排成一列,构成数列{}n a,则此数列的项数为( )A .134B .135C .136D .137【答案】B【分析】根据已知条件进行转化得到数列通项公式,由题意解出不等式即可判断项数.{}n a【详解】由题意知,被3除余1且被5除余1的数即为被15除余1的数,故.1514,n a n n N *=-∈由,得,15142019n a n =-≤135.5n ≤又因为,所以此数列的项数为135.n *∈N 故选:B2.(2022全国高二单元测试)在数学发展史上,已知各除数及其对应的余数,求适合条件的被除数,这类问题统称为剩余问题.1852年《孙子算经》中“物不知其数”问题的解法传至欧洲,在西方的数学史上将“物不知其数”问题的解法称之为“中国剩余定理”.“物不知其数”问题后经秦九韶推广,得到了一个普遍的解法,提升了“中国剩余定理”的高度.现有一个剩余问题:在的整数中,把被除余数为,被(]1,2021415除余数也为的数,按照由小到大的顺序排列,得到数列,则数列的项数为( )1{}n a{}n aA .B .C .D .1011009998【答案】A【分析】将数列中的项由小到大列举出来,可知数列{}n a{}n a为等差数列,确定该数列的首项和公差,可求得,然后解不等式,即可得解.n a 12021n a <≤【详解】由题意可知,数列中的项由小到大排列依次为、、、、,{}n a21416181L 可知数列是以为首项,以为公差的等差数列,则,{}n a2120()21201201n a n n =+-=+由可得,解得,12021n a <≤12012021n <+≤0101n <≤,则,n N *∈ {}1,2,3,,101n ∈ 因此,数列的项数为.{}n a101故选:A.题型六:几个连续实数成等差数列问题【例1】(2022·江苏·高二课时练习)若直角三角形的三条边的长组成公差为3的等差数列,则三边的长分别为( )A .5,8,11B .9,12,15C .10,13,16D .15,18,21【答案】B【分析】设出三边长,根据直角三角形的勾股定理,解得答案.【详解】由题意直角三角形的三条边的长组成公差为3的等差数列,设可三边长为 ,则,,3,6x x x ++222(3)(6)x x x ++=+解得 ,(舍去),9x =3x =-故三边长为9,12,15 ,故选:B.【例2】(2022·全国·高二课时练习)已知四个数成等差数列,它们的和为28,中间两项的积为40,则这四个数依次为( )A .-2,4,10,16B .16,10,4,-2C .2,5,8,11D .11,8,5,2【答案】AB【分析】根据等差数列的性质,列出方程求解即可【详解】设这四个数分别为,,,,3a d -a d -a d +3a d +则解得或()()3328,40,a d a d a d a d a d a d -+-++++=⎧⎨-+=⎩7,3a d =⎧⎨=⎩7,3,a d =⎧⎨=-⎩所以这四个数依次为-2,4,10,16或16,10,4,-2.故选:AB【例3】(2022·全国·高二课时练习)已知5个数组成一个单调递减的等差数列,且它们的和为5,平方和为165,则这个等差数列的第1项为___________.【答案】9【分析】根据等差数列的性质,直接求解即可【详解】设这个等差数列中的五个数分别为,,x ,2x d -x d -,.由题意,得x d +2x d +()()()()22222225,22165,x d x d x x d x d x d x d x x d x d -+-+++++=⎧⎪⎨-+-+++++=⎪⎩解得或因为这个数列单调递减,所以,1,4x d =⎧⎨=⎩1,4.x d =⎧⎨=-⎩0d <即所以第1项为.1,4.x d =⎧⎨=-⎩()21249x d -=-⨯-=故答案为:9【题型专练】1.(2022·全国·高二课时练习)已知等差数列{}n a前三项的和为-3,前三项的积为8.求等差数列的通项公式.{}n a【答案】或35n a n =-+37n a n =-【分析】结合等差数列的通项公式得到,求出首项与公差即可求出结果.()()111133328a d a a d a d +=-⎧⎨++=⎩【详解】设等差数列的公差为d ,则,.{}n a21a a d =+312a a d =+由题意得,解得或()()111133328a d a a d a d +=-⎧⎨++=⎩123a d =⎧⎨=-⎩143a d =-⎧⎨=⎩所以由等差数列的通项公式可得或.()23135n a n n =--=-+()43137n a n n =-+-=-故或.35n a n =-+37n a n =-2.(2022·全国·高二单元测试)(1)三个数成等差数列,其和为,前两项之积为后一项的96倍,求这三个数.(2)四个数成递增等差数列,中间两数的和为,首末两项的积为,求这四个数.28-【答案】(1),,;(2),,,.4322-024【分析】(1)设这三个数依次为,,,根据已知条件列方程组,求得和a d -a a d +a d 的值即可得这三个数;(2)设这四个数依次为,,, (公差为),根据已知条件列方程组,求得3a d -a d -a d +3a d +20d >和的值即可得这四个数.a d 【详解】(1)设这三个数依次为,,,a d -a a d +由题意可得:,解得:,()()96a d a a d a a d a d -+++=⎧⎨-=+⎩31a d =⎧⎨=-⎩所以这三个数依次为,,.432(2)设这四个数依次为,,, (公差为),3a d -a d -a d +3a d +20d >由题意可得,解得或(舍),()()2338a d a d a d a d -++=⎧⎨-+=-⎩11a d =⎧⎨=⎩11a d =⎧⎨=-⎩故所求的四个数依次为,,,.2-024题型七:等差数列通项新文化试题【例1】(2022·全国·高二课时练习)中国古代有一道数学题:“今有七人差等均钱,甲、乙均七十七文,戊、己、庚均七十五文,问戊、己各若干?”意思是甲、乙、丙、丁、戊、己、庚七个人分钱,所分得的钱数构成等差数列,甲、乙两人共分得77文,戊、己、庚三人共分得75文,则戊、己两人各分得多少文钱?则下列说法正确的是( )A .戊分得34文,己分得31文B .戊分得31文,己分得34文C .戊分得28文,己分得25文D .戊分得25文,己分得28文【答案】C【分析】设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,,3a d -2a d -a d -a a d +2a d +,再根据题意列方程组可解得结果.3a d +【详解】依题意,设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,3a d -2a d -a d -a a d +,,2a d +3a d +则,解得,32772375a d a d a d a d a d -+-=⎧⎨+++++=⎩313a d =⎧⎨=-⎩所以戊分得(文),己分得(文),28a d +=225a d +=故选:C.【例2】(2022全国高二课时练习)中国历法推测遵循以算为主、以测为辅的原则.例如《周髀算经》和《易经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其他节气的晷影长则是按照等差数列的规律计算得出的.下表为《周髀算经》对二十四节气晷影长的记录,其中115.1寸表示115寸1分(1寸=10分).4646节气冬至小寒(大雪)大寒(小雪)立春(立冬)雨水(霜降)惊蛰(寒露)春分(秋分)晷影长/寸135.0125.56115.146105.23695.32685.41675.5节气清明(白露)谷雨(处暑)立夏(立秋)小满(大暑)芒种(小暑)夏至晷影长/寸65.55655.64645.73635.82625.91616.0已知《易经》中记录的冬至晷影长为130.0寸,夏至晷影长为14.8寸,那么《易经》中小寒与清明之间的晷影长之差为( )A .105.6寸B .48寸C .57.6寸D .67.2寸【答案】C【分析】利用等差数列的基本量计算,直接求解即可.全书总结了战国、秦、汉时期的数学成就,其中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为:“今有5人分5钱,各人所得钱数依次为等差数列,其中前2人所得之和与后3人所得之和相等,问各得多少钱?”则第2人比第4人多得钱数为( )A .钱B .钱C .钱D .钱1613-2313,就是相邻两衡间距离(半径差)为1198333里,给出了计算各衡直径的一般法则,即“预知次衡径,倍而增内衡之径,二而增内衡径,得三衡径”.这段话的意思是说想求出二次衡的直径,须把半径差二倍加上内一衡(最小圆圈)的直径,次三衡以及以后的都这样要求.已知内一衡径=238000里000步(当时300步为1里),则次三衡径为( )A.396666里200步B.357000里000步C.317333里100步D.277666里200步【题型专练】1.(2022·全国·高二课时练习)《周髀算经》中有这样一个问题:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则()A.冬至的日影子长最长,为15.5尺B.立夏比谷雨的日影子长多1尺C.大寒、雨水、春分的日影子长成等差数列D.清明的日影子长为8.5尺【答案】ACD【分析】根据给定条件结合等差数列知识,求出首项、公差,再逐一分析计算作答.【详解】依题意,从冬至起,日影长依次记为,则数列是等差数列,1212,,,a a a {}(N ,12)n a n n *∈≤因此,,而,解得,又,14737.5a a a ++=1742a a a +=412.5a =12 4.5a =设数列的公差为,于是得:,解得,A 正确;{}n a d 11312.511 4.5a d a d +=⎧⎨+=⎩115.5,1a d ==-,立夏比谷雨的日影子长少1尺,B 不正确;1091a a -=-而成等差数列,即大寒、雨水、春分的日影子长成等差数列,C 正确;357,,a a a ,即清明的日影子长为8.5尺.81(81)8.5a a d =+-=故选:ACD2.(2022·全国·高二课时练习)《周髀算经》是中国最古老的天文学和数学著作,书中提到:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则立夏的日影子长为___________尺.【答案】6.5【分析】利用等差数列的通项公式求出首项和公差,然后求出其中某一项.【详解】解:由题意得从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,设其公差为{}n ad ,解得14711213937.511 4.5a a a a d a a d ++=+=⎧∴⎨=+=⎩11,15.5d a =-=101915.59 6.5a a d ∴=+=-=故立夏的日影子长为尺.6.5故答案为:6.53.(2021·全国·高二课时练习)现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.。
第2讲 等差数列及其前n 项和基础知识整合1.等差数列的有关概念(1)定义:如果一个数列从□01第2项起,每一项与它的前一项的□02差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为□03a n +1-a n =d (n ∈N *,d 为常数). (2)等差中项:数列a ,A ,b 成等差数列的充要条件是□04A =a +b 2,其中A 叫做a ,b 的□05等差中项.2.等差数列的有关公式(1)通项公式:a n =□06a 1+(n -1)d . (2)前n 项和公式:S n =□07na 1+n n -12d =□08n a 1+a n2.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .若m +n =2p (m ,n ,p ∈N *),则a m +a n =2a p .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d, 则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(6)等差数列{a n }的前n 项和为S n, 则S n ,S 2n -S n ,S 3n -S 2n 仍成等差数列,其公差为n 2d . (7)若等差数列的项数为2n (n ∈N *),则S 偶-S 奇=nd ,S 奇S 偶=a na n +1. (8)若等差数列的项数为2n -1(n ∈N *),则S 奇-S 偶=a n ,S 奇S 偶=n n -1(S 奇=na n ,S 偶=(n -1)a n ).(9)由公式S n =na 1+n n -1d 2得S n n =a 1+n -12d =d 2n +a 1-d2,因此数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,首项为a 1,公差为等差数列{a n }公差的一半.1.(2019·河北邯郸模拟)在等差数列{a n }中,a 3+a 4=12,公差d =2,则a 9=( ) A .14 B .15 C .16 D .17答案 D解析 ⎩⎪⎨⎪⎧a 3+a 4=12⇒2a 1+5d =12,d =2⇒a 1=1,∴a 9=a 1+8d =1+16=17.故选D.2.(2018·全国卷Ⅰ)设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12答案 B解析 设该等差数列的公差为d ,根据题中的条件可得3×⎝ ⎛⎭⎪⎫3×2+3×22·d =2×2+d +4×2+4×32·d ,整理解得d =-3,所以a 5=a 1+4d =2-12=-10.故选B.3.(2019·湖北武汉调研)若等差数列{a n }的前n 项和S n 满足S 4=4,S 6=12,则S 2=( ) A .-1 B .0 C .1 D .3答案 B解析 根据等差数列的性质,可得S 2,S 4-S 2,S 6-S 4成等差数列,即2(S 4-S 2)=S 2+S 6-S 4,因此S 2=0.4.(2019·宁夏银川模拟)在等差数列{a n }中,S 5=25,a 2=3,则a 7=( ) A .13 B .12 C .15 D .14答案 A 解析 ∵S 5=5a 1+a 52=5a 3=25,∴a 3=5,又a 2=3,∴d =a 3-a 2=2,∴a 7=a 3+4d=5+8=13.故选A.5.(2019·辽宁模拟)在等差数列{a n }中,S n 为其前n 项和,若a 3+a 4+a 8=25,则S 9=( )A .60B .75C .90D .105 答案 B解析 由等差数列的性质知a 3+a 4+a 8=3a 5=25. ∴a 5=253,∴S 9=9a 1+a 92=9a 5=75.故选B.6.(2019·长春市模拟)等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时的n 的值为( )A .6B .7C .8D .9答案 C解析 ∵|a 6|=|a 11|且公差d >0,∴a 6=-a 11, ∴a 6+a 11=a 8+a 9=0,且a 8<0,a 9>0, ∴a 1<a 2<…<a 8<0<a 9<a 10<…∴使S n 取最小值的n 的值为8.故选C.核心考向突破考向一 等差数列的基本运算例1 (1)(2019·西安八校联考)设数列{a n }是等差数列,且a 2=-6,a 6=6,S n 是数列{a n }的前n 项和,则( )A .S 4<S 3B .S 4=S 3C .S 4>S 1D .S 4=S 1答案 B解析 设{a n }的公差为d ,由a 2=-6,a 6=6,得⎩⎪⎨⎪⎧a 1+d =-6,a 1+5d =6,解得⎩⎪⎨⎪⎧a 1=-9,d =3.于是,S 1=-9,S 3=3×(-9)+3×22×3=-18,S 4=4×(-9)+4×32×3=-18,所以S 4=S 3,S 4<S 1.故选B. (2)(2019·潍坊模拟)在等差数列{a n }中,公差d ≠0,若lg a 1,lg a 2,lg a 4也成等差数列,且a 5=10,则{a n }的前5项和S 5=( )A .40B .35C .30D .25答案 C解析 因为lg a 1,lg a 2,lg a 4成等差数列,所以2lg a 2=lg a 1+lg a 4⇒lg a 22=lg a 1a 4⇒a 22=a 1a 4⇒d 2=a 1d ,因为d ≠0,所以a 1=d ,又a 5=a 1+4d =10,所以a 1=2,d =2,S 5=5a 1+5×42d =30.选C.(3)(2018·上海高考)记等差数列{a n }的前n 项和为S n ,若a 3=0,a 6+a 7=14,则S 7=________.答案 14解析 设数列{a n }的公差为d ,则a 6+a 7=2a 3+7d =14,又∵a 3=0,∴d =2,∴a 4=a 3+d =2.∴S 7=a 1+a 2+a 3+a 4+a 5+a 6+a 7=7a 4=14.触类旁通等差数列计算中的两个技巧(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.2数列的通项公式和前n 项和公式在解题中起到变量转换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.即时训练 1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8答案 C解析 设{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,解得d =4.故选C.2.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 答案 20解析 设等差数列{a n }的公差为d ,则a 1+a 22=a 1+(a 1+d )2=-3,S 5=5a 1+10d =10, 解得a 1=-4,d =3,则a 9=a 1+8d =-4+24=20.3.已知数列{a n }中,a 3=7,a 7=3,且⎩⎨⎧⎭⎬⎫1a n -1是等差数列,则a 10=________. 答案 73解析 设等差数列⎩⎨⎧⎭⎬⎫1a n -1的公差为d , 则1a 3-1=16,1a 7-1=12. ∵⎩⎨⎧⎭⎬⎫1a n -1是等差数列, ∴1a 7-1=1a 3-1+4d ,即12=16+4d ,解得d =112, 故1a 10-1=1a 3-1+7d =16+7×112=34,解得a 10=73. 考向二 等差数列的性质角度1 等差数列项的性质例2 (1)(2019·温州模拟)等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值是( )A .14B .15C .16D .17答案 C解析 因为{a n }是等差数列,所以a 4+a 6+a 8+a 10+a 12=5a 8=120,所以a 8=24.所以a 9-13a 11=a 8+d -13(a 8+3d )=23a 8=16.故选C. (2)设等差数列{a n }的前n 项和为S n ,若a 2+a 5+a 8=30,则下列一定为定值的是( ) A .S 6 B .S 7 C .S 8 D .S 9答案 D解析 由a 2+a 5+a 8=30可得3a 5=30,所以a 5=10,S 6=3(a 1+a 6)不一定是定值;S 7=72(a 1+a 7)不一定是定值;S 8=4(a 1+a 8)不一定是定值;S 9=a 1+a 9×92=2a 5×92=90.选D.触类旁通等差数列项的性质:利用等差数列项的性质解决基本量的运算体现了整体求值思想,应用时常将a n +a m =2a k (n +m =2k ,n ,m ,k ∈N *)与a m +a n =a p +a q (m +n =p +q ,m ,n ,p ,q ∈N *)相结合,可减少运算量.即时训练 4.(2019·河南豫南、豫北联考)等差数列{a n }中,a 4+a 10+a 16=30,则a 18-2a 14的值为( )A .20B .-20C .10D .-10答案 D解析 ∵a 4+a 10+a 16=3a 10=30,∴a 10=10,又2a 14=a 18+a 10,∴a 18-2a 14=-a 10=-10,故选D.5.(2019·福建漳州模拟)在等差数列{a n }中,若S 9=18,S n =240,a n -4=30,则n 的值为( )A .14B .15C .16D .17 答案 B解析 由等差数列的性质知S 9=9a 1+a 92=9a 5=18,∴a 5=2,又a n -4=30.∴S n =n a 1+a n2=n a n -4+a 52=16n =240,∴n =15.故选B.角度2 等差数列和的性质例3 (1)(2019·四川双流中学模拟)已知等差数列{a n }的前n 项和为S n ,若S 10=1,S 30=5,则S 40=( )A .7B .8C .9D .10答案 B解析 由等差数列的性质知S 10,S 20-S 10,S 30-S 20,S 40-S 30成等差数列,∴2(S 20-S 10)=S 10+(S 30-S 20),∴S 20=S 10+S 303=1+53=83.∴d =(S 20-S 10)-S 10=23,∴S 40-5=1+3×23=3,∴S 40=8.故选B.(2)一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d =________.答案 5解析 设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.触类旁通等差数列和的性质:在等差数列{a n }中,S n 为其前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列,且有S 2n =na 1+a 2n =…=n a n +a n +1;S 2n -1=2n -1a n ;若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中中间项.即时训练 6.(2019·大同模拟)在等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 50=( )A .-22.5B .-21.5C .28.5D .20答案 C解析 由(a 51+a 52+…+a 100)-(a 1+a 2+…+a 50)=50×50d =2700-200,得d =1.由a 1+a 100+a 2+a 99+…+a 50+a 51=50(a 50+a 51)=2700+200,得a 50+a 51=58,即2a 50+d =58,所以a 50=58-12=572=28.5.故选C.7.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=( )A.310B.13C.18D.19答案 A解析 令S 3=1,则S 6=3,∴S 9=1+2+3=6.S 12=S 9+4=10,∴S 6S 12=310.故选A. 考向三 等差数列的判定与证明例4 (1)(2019·辽宁模拟)数列{a n }满足a 1=2,a 2=1并且1a n -1=2a n -1a n +1(n ≥2),则数列{a n }的第100项为( )A.1100B.150C.12100 D.1250 答案 B 解析 ∵1a n -1=2a n -1a n +1(n ≥2),∴1a n +1+1a n -1=2a n ,∴⎩⎨⎧⎭⎬⎫1a n 为等差数列,首项为1a 1=12,第二项为1a 2=1,∴d =12,∴1a 100=1a 1+99d =50,∴a 100=150.(2)(2019·昆明模拟)在数列{a n }中,a 1=35,a n +1=2-1a n ,设b n =1a n -1,数列{b n }的前n 项和是S n .①证明数列{b n }是等差数列,并求S n ; ②比较a n 与S n +7的大小. 解 ①证明:∵b n =1a n -1,a n +1=2-1a n, ∴b n +1=1a n +1-1=1a n -1+1=b n +1,∴b n +1-b n =1,∴数列{b n }是公差为1的等差数列. 由a 1=35,b n =1a n -1,得b 1=-52,∴S n =-5n 2+n n -12=n 22-3n . ②由①知,b n =-52+n -1=n -72.由b n =1a n -1,得a n =1+1b n =1+1n -72. ∴a n -S n -7=-n 22+3n -6+1n -72.∵当n ≥4时,y =-n 22+3n -6是减函数,y =1n -72也是减函数,∴当n ≥4时,a n -S n-7≤a 4-S 4-7=0.又∵a 1-S 1-7=-3910<0,a 2-S 2-7=-83<0,a 3-S 3-7=-72<0,∴∀n ∈N *,a n -S n -7≤0,∴a n ≤S n +7.触类旁通等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立. 3通项公式法:验证a n =pn +q . 4前n 项和公式法:验证S n =An 2+Bn .提醒:在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断.即时训练 8.(2019·河南郑州模拟)已知数列{a n }中,a 1=1,a 2=4,2a n =a n -1+a n +1(n ≥2,n ∈N *),当a n =298时,项数n =( )A .100B .99C .96D .101答案 A解析 因为2a n =a n -1+a n +1(n ≥2,n ∈N *),所以a n -a n -1=a n +1-a n .由a 1=1,a 2=4得d=a 2-a 1=3,所以数列{a n }是首项为1,公差为3的等差数列,所以a n =a 1+(n -1)d =1+(n -1)×3=3n -2.由3n -2=298,解得n =100.故选A.9.已知数列{a n }的前n 项和S n =2a n -2n +1.(1)证明:数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列;(2)若不等式2n 2-n -3<(5-λ)a n 对任意的n ∈N *恒成立,求λ的取值范围. 解 (1)证明:当n =1时,S 1=2a 1-22,得a 1=4.S n =2a n -2n +1,当n ≥2时,S n -1=2a n -1-2n,两式相减得a n =2a n -2a n -1-2n ,即a n =2a n -1+2n ,所以a n 2n -a n -12n -1=1,又a 121=2,所以数列⎩⎨⎧⎭⎬⎫a n 2n 是以2为首项,1为公差的等差数列.(2)由(1)知a n2n =n +1,即a n =n ·2n +2n.因为a n >0,所以不等式2n 2-n -3<(5-λ)a n 等价于5-λ>2n -32n .即λ<5-⎝ ⎛⎭⎪⎫2n -32n .记b n =2n -32n ,b 1=-12,b 2=14,当n ≥2时,b n +1b n =2n -12n +12n -32n =2n -14n -6,则b 3b 2=32,即b 3>b 2,又显然当n ≥3时,b n +1b n <1,所以(b n )max =b 3=38,所以λ<378.1.(2019·长沙模拟)已知等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9答案 A解析 由a 4+a 6=2a 5=-6得a 5=-3,则公差为-3+115-1=2,所以由a n =-11+(n -1)×2=2n -13≤0得n ≤132,所以前6项和最小.选A.2.(2019·北京海淀模拟)等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解 解法一:由S 3=S 11,得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1.又a 1>0,所以-a 113<0.故当n =7时,S n 最大. 解法二:由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由解法一可知a =-a 113<0,故当n =7时,S n 最大.解法三:由解法一可知d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+n -1⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大.解法四:由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.答题启示求等差数列前n 项和最值的常用方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *.(2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值.(3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧ a n ≤0,a n +1≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小.若有零项,则使S n 取最值的n 有两个.对点训练1.(2019·广东佛山模拟)设等差数列{a n }满足3a 8=5a 15,且a 1>0,S n 为其前n 项和,则数列{S n }的最大项为( )A .S 23B .S 24C .S 25D .S 26 答案 C解析 设等差数列的公差为d ,∵3a 8=5a 15,∴3a 1+21d =5a 1+70d ,∴a 1+2412d =0. ∵a 1>0,∴d <0,∴a 1+24d =a 25>0, a 1+25d =a 26<0,∴数列{S n }最大项为S 25.故选C.2.(2019·黑龙江模拟)已知数列{a n }为等差数列,若a 11a 10<-1,且其前n 项和S n 有最大值,则使得S n >0的最大值n 为( )A .11B .19C .20D .21 答案 B解析 ∵S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n 有最大值,∴d <0,又a 11a 10<-1,∴a 10>0,a 11<0,∴a 10+a 11<0,即a 1+a 20<0,∴S 20=10(a 1+a 20)<0,又S 19=19a 1+a 192=19a 10>0,∴使S n >0的n 的最大值为19.故选B.。
专题07 数列目录一览考向一等差数列}为等差数列,1.(2023•新高考Ⅰ•第7题)记S n为数列{a n}的前n项和,设甲:{a n}为等差数列;乙:{S nn 则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件考向二等比数列2.(2023•新高考Ⅱ•第8题)记S n为等比数列{a n}的前n项和,若S4=﹣5,S6=21S2,则S8=( )A.120B.85C.﹣85D.﹣120考向三数列综合3.(2023•新高考Ⅰ•第20题)设等差数列{a n}的公差为d,且d>1.令b n=S n,T n分别为数列n{a n},{b n}的前n项和.(1)若3a2=3a1+a3,S3+T3=21,求{a n}的通项公式;(2)若{b n}为等差数列,且S99﹣T99=99,求d.4.(2023•新高考Ⅱ•第18题)已知{a n}为等差数列,b n=a n−6,n为奇数2a n,n为偶数,记S n,T n为{a n},{b n}的前n 项和,S4=32,T3=16.(1)求{a n}的通项公式;(2)证明:当n>5时,T n>S n.【命题意图】考查等差、等比数列的通项公式和前n 项和公式,考查等差、等比数列的性质;考查数列的求和方法,考查根据数列的递推公式求通项公式,考查数列和其他知识结合等综合知识.【考查要点】数列是高考考查热点之一,其中等差、等比数列的通项公式、求和公式,以及与等差、等比数列有关的错位相消求和及裂项相消求和,是考查的重点.作为数列综合题,常和充要条件、方程、不等式、函数等结合,涉及到恒成立,存在,最值,解不等式或者证明不等式等,对于基础能力和基础运算要求较高.【得分要点】1.解决等差、等比数列有关问题的几点注意(1)等差数列、等比数列公式和性质的灵活应用;(2)对于计算解答题注意基本量及方程思想的运用;(3)注重问题的转化,由非等差数列、非等比数列构造出新的等差数列或等比数列,以便利用相关公式和性质解题;(4)当题目中出现多个数列时,既要纵向考察单一数列的项与项之间的关系,又要横向考察各数列之间的内在联系.2.数列求和问题一般转化为等差数列或等比数列的前n 项和问题或已知公式的数列求和,不能转化的再根据数列通项公式的特点选择恰当的方法求解.,一般常见的求和方法有:(一)公式法②等比数列的前n 项和公式:③数列前项和重要公式:(2)(5)等差数列中,;n 1(21)n k k =-=∑()13521n ++++-= 2nm n m n S S S mnd +=++(6)等比数列中,.(二)分组求和法:把一个数列分成几个可以直接求和的数列.(三)裂项(相消)法:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.(四)错位相减法:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.(1)适用条件:若{a n }是公差为d (d ≠0)的等差数列,{b n }是公比为q (q ≠1)的等比数列,求数列{a n b n }的前n 项和S n ;(2)基本步骤(3)注意事项:①在写出S n 与qS n 的表达式时,应特别注意将两式“错位对齐”,以便下一步准确写出S n-qS n ;②作差后,等式右边有第一项、中间n -1项的和式、最后一项三部分组成;③运算时,经常把b 2+b 3+…+b n 这n -1项和看成n 项和,把-a n b n +1写成+a n b n +1导致错误. (五)倒序相加法相加,就得到一个常数列的和,这一求和方法称为倒序相加法,等差数列前n 项和公式的推导便使用了此法. 用倒序相加法解题的关键,就是要能够找出首项和末项之间的关系,因为有时这种关系比较隐蔽.考向一 等差数列5.(2022•新高考Ⅱ)图1是中国古代建筑中的举架结构,AA ′,BB ′,CC ′,DD ′是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为=0.5,=k 1,=k 2,=k 3.已知k 1,k 2,k 3成公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=( )n m m n n m m n S S q S S q S +=+=+A.0.75B.0.8C.0.85D.0.9考向二数列递推公式6.(多选)(2021•新高考Ⅱ)设正整数n=a0•20+a1•21+…+a k﹣1•2k﹣1+a k•2k,其中a i∈{0,1},记ω(n)=a0+a1+…+a k,则( )A.ω(2n)=ω(n)B.ω(2n+3)=ω(n)+1C.ω(8n+5)=ω(4n+3)D.ω(2n﹣1)=n考向三数列的求和7.(2021•新高考Ⅰ)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm的长方形纸,对折1次共可以得到10dm×12dm,20dm×6dm两种规格的图形,它们的面积之和S1=240dm2,对折2次共可以得到5dm×12dm,10dm×6dm,20dm×3dm三种规格的图形,它们的面积之和S2=180dm2,以此类推.则对折4次共可以得到不同规格图形的种数为 ;如果对折n次,那么S k= dm2.考向四数列综合8.(2021•新高考Ⅱ)记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(Ⅰ)求数列{a n}的通项公式a n;(Ⅱ)求使S n>a n成立的n的最小值.9.(2021•新高考Ⅰ)已知数列{a n}满足a1=1,a n+1=(1)记b n=a2n,写出b1,b2,并求数列{b n}的通项公式;(2)求{a n}的前20项和.10.(2022•新高考Ⅰ)记S n为数列{a n}的前n项和,已知a1=1,{}是公差为的等差数列.(1)求{a n}的通项公式;(2)证明:++…+<2.11.(2022•新高考Ⅱ)已知{a n}是等差数列,{b n}是公比为2的等比数列,且a2﹣b2=a3﹣b3=b4﹣a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中元素的个数.重点考查等差、等比数列的概念、性质、通项公式和前n项和,考查错位相减、裂项相消等求和方法。
等差数列一.等差数列知识点: 知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 知识点2、等差数列的判定方法:②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列知识点3、等差数列的通项公式:④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数知识点4、等差数列的前n 项和:⑤2)(1n n a a n S +=⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数 知识点5、等差中项:⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2b a A +=或b a A +=2在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+=⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+也就是: =+=+=+--23121n n n a a a a a a⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k kS S 23-成等差数列如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 10、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1n n S aS a +=奇偶.②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶).二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 22.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( )A .49B .50C .51D .52 3.等差数列1,-1,-3,…,-89的项数是( )A .92B .47C .46D .45 4、已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )( ) A 15 B 30 C 31 D 64 5. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是( )A.d >38B.d <3C. 38≤d <3D.38<d ≤36、.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直03=--y x 上,则n a =_____________.7、在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= . 8、等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( )(A )12(B )10 (C )8 (D )69、设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=-=+且满足,则=+++1721a a a ______.10、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = __________ 11、已知数列的通项a n = -5n +2,则其前n 项和为S n = .12、设n S 为等差数列{}n a 的前n 项和,4S =14,30S S 710=-,则9S = .题型二、等差数列性质1、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )(A)4 (B)5 (C)6 (D)72、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .53、 若等差数列{}n a 中,37101148,4,a a a a a +-=-=则7__________.a =4、记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( ) A .7 B. 6 C. 3 D. 25、等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( )(A )48 (B )49 (C )50 (D )516.、等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )(A)9 (B)10 (C)11 (D)127、设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1 B .-1 C .2 D .21 8、已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( )A .α1+α101>0B .α2+α100<0C .α3+α99=0D .α51=51 9、如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a10、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项题型三、等差数列前n 项和 1、等差数列{}n a 中,已知12310a a a a p ++++=,98n n n a a a q --+++=,则其前n项和n S = .2、等差数列 ,4,1,2-的前n 项和为 ( )A. ()4321-n nB. ()7321-n nC. ()4321+n nD. ()7321+n n3、已知等差数列{}n a 满足099321=++++a a a a ,则 ( )A. 0991>+a aB. 0991<+a aC. 0991=+a aD. 5050=a4、在等差数列{}n a 中,78,1521321=++=++--n n n a a a a a a ,155=n S , 则=n 。