当前位置:文档之家› (完整word版)勾股定理典型题型

(完整word版)勾股定理典型题型

(完整word版)勾股定理典型题型
(完整word版)勾股定理典型题型

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理

例1.在ABC ?中,90C ∠=?.

⑴已知6AC =,8BC =.求AB 的长

⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理

222a b c +=

解:⑴2210AB AC BC =+= ⑵228BC AB AC =-=

题型二:利用勾股定理测量长度

例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少

米?

解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.

已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理!

根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2

=144,所以AC=12.

例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B

C 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到

D 点,并求水池的深度AC.

解析:同例题1一样,先将实物模型转化为数学模型,如

图2. 由题意可知△ACD 中,∠ACD=90°,在Rt △ACD 中,只知道CD=1.5,这是典型的利用勾

股定理“知二求一”的类型。

标准解题步骤如下(仅供参考):

解:如图2,根据勾股定理,AC 2+CD 2=AD 2

设水深AC= x 米,那么AD=AB=AC+CB=x +0.5

x 2+1.52=( x +0.5)2 解之得x =2. 故水深为2米.

题型三:勾股定理和逆定理并用——

例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4

1=

那么△DEF 是直角三角形吗?为什么? C

B D A

解析:这道题把很多条件都隐藏了,乍一看有点摸不着头脑。仔细读题会意可以发现规律,没有任何条件,我们也可以开创条件,由AB FB 4

1 可以设AB=4a ,那么BE=CE=

2 a ,AF=

3 a ,BF= a ,那么在Rt △AFD 、Rt △BEF 和 Rt △CDE 中,分别利用勾股定理求出DF,EF 和DE 的长,

反过来再利用勾股定理逆定理去判断△DEF 是否是直角三角形。

详细解题步骤如下:

解:设正方形ABCD 的边长为4a ,则BE=CE=2 a ,AF=3 a ,BF= a

在Rt △CDE 中,DE 2=CD 2+CE 2=(4a )2+(2 a)2=20 a

2 同理EF 2=5a 2, DF 2=25a

2 在△DEF 中,EF 2+ DE 2=5a 2+ 20a 2=25a 2=DF 2

∴△DEF 是直角三角形,且∠DEF=90°.

注:本题利用了四次勾股定理,是掌握勾股定理的必练习题。

题型四:利用勾股定理求线段长度——

例题4 如图4,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD

上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE

的长.

解析:解题之前先弄清楚折叠中的不变量。合理设元是关键。

注:本题接下来还可以折痕的长度和求重叠部分的面积。

题型五:利用勾股定理逆定理判断垂直——

例题5 如图5,王师傅想要检测桌子的表面AD 边是否垂直与AB 边和CD 边,他测得AD

=80cm ,AB=60cm ,BD=100cm ,AD 边与AB 边垂直吗?怎样去验证AD 边与CD 边是否垂直?

解析:由于实物一般比较大,长度不容易用直尺来方便测量。我们通常截取部分长度来

验证。如图4,矩形ABCD 表示桌面形状,在AB 上截取AM=12cm,在AD 上截取AN=9cm(想想

为什么要设为这两个长度?),连结MN ,测量MN 的长度。

①如果MN=15,则AM 2+AN 2=MN 2

,所以AD 边与AB 边垂直;

②如果MN=a ≠15,则92+122=81+144=225, a 2≠225,即92+122≠ a 2,所以∠A 不是直角。

利用勾股定理解决实际问题——

例题6 有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,

任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走

到离门多远的地方灯刚好打开?

解析:首先要弄清楚人走过去,是头先距离灯5米还是脚先距离灯5米,可想而知应该

是头先距离灯5米。转化为数学模型,如图6 所示,A 点表示控制灯,BM 表示人的高度,B

C ∥MN,BC ⊥AN 当头(B 点)距离A 有5米时,求BC 的长度。已知AN=4.5米,所以AC=3米,

由勾股定理,可计算BC=4米.即使要走到离门4米的时候灯刚好打开。

题型六:旋转问题:

例1、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△AC P ′重合,若AP=3,求PP ′的长。

变式1:如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长.

分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,

根据它们的数量关系,由勾股定理可知这是一个直角三角形.

变式2、如图,△ABC 为等腰直角三角形,∠BAC=90°,E 、F 是BC 上的点,且∠EAF=45°,

试探究222

BE CF EF 、、间的关系,并说明理由.

题型七:关于翻折问题

例1、如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折

叠,点B 恰好落在CD 边上的点G 处,求BE 的长.

变式:如图,AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿直线AD 翻折,点C 落在点C ’

的位置,BC=4,求BC ’的长.

题型八:关于勾股定理在实际中的应用:

例1、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,

AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,

周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方

向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知

拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?

题型九:关于最短性问题

例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A

处,它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,

为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从

背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问

壁虎至少要爬行多少路程才能捕到害虫?(π取3.14,结果保留1位小数,可以用

计算器计算)变式:如图为一棱长为3cm 的正方体,把所有面都分为9个小正方

形,其边长都是1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下地面A 点沿表面爬行至右侧面的B 点,最少要花几秒钟?

三、课后训练:

一、填空题

1.如图(1),在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.

图(1) 2.种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做 ㎝。

3.已知:如图,△ABC 中,∠C = 90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且BC = 8cm ,CA = 6cm ,则点O 到三边AB ,AC 和BC 的距离分别等于 cm

4.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高

_____________________米。 5.如图是一个三级台阶,它的每一级的长宽和高分别为20dm 、3dm 、

2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B

点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_____________. 二、选择题

1.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )

A 、25

B 、14

C 、7

D 、7或25

2.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( )

A 、121

B 、120

C 、132

D 、不能确定

3.如果Rt △两直角边的比为5∶12,则斜边上的高与斜边的比为( )

A 、60∶13

B 、5∶12

C 、12∶13

D 、60∶169

4.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )

A 、24cm 2

B 、36cm 2

C 、48cm 2

D 、60cm 2

5.等腰三角形底边上的高为8,周长为32,则三角形的面积为( )

A 、56

B 、48

C 、40

D 、32

6.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米

售价a 元,则购买这种草皮至少需要( ) A 、450a 元 B 、225a 元 C 、150a 元 D 、300a 元

7.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )

A 、6cm 2

B 、8cm 2

C 、10cm 2

D 、12cm 2 8.在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为 A .42 B .32 C .42或32 D .37或33

9. 如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 ( )

(A )直角三角形 (B)锐角三角形 (C)钝角三角形 (D)以上答案都不对 C

O

A B

D E

F 第3题图 D B C A 第4题图 2032A B

150° 20m 30m 第6题图 A B E F D C 第7题图

A B C

勾股定理常见题型

专题一:勾股定理与面积 知识点精讲: 类型一“勾股树”及其拓展类型求面积 典型例题: 1.如图(16),大正方形的面积可以表示为,又可以表示为,由此可得等量关系______________________,整理后可得:___________. 2.图中字母所代表的正方形的面积为144的选项为( ) 3.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则大正方形与小正方形的面积差是() A.9 B.36 C.27 D.34 4.如图所示的大正方形是由八个全等的直角三角形和一个小正方形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为2,则S1+S2+S3=________. 5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,则S=() A.25 B.31 C.32 D.40 6.如图,已知在Rt ABC △中,? = ∠90 ACB,4 AB=,分别以AC,BC为直径作半圆,面积分别记为1S,2S, 则 12 S S +的值等于________ 7.如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,则图中阴影部分的面积是________.8.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为( ) A.2 B.4 C.8 D.16 a a a a b b b b c c c c 图(16) 8 6 C B A

勾股定理题型归纳

勾股定理复习小结 一、 二. 1、 勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、 如何判定一个三角形是直角三角形 (1) 先确定最大边(如c ) (2) 验证2 c 与2 2b a +是否具有相等关系 (3) 若2 c =22b a +,则△ABC 是以∠C 为直角的直角三角形;若2c ≠2 2b a + 则△ABC 不是直角三角形。 3、 勾股数 满足2 2 b a +=2 c 的三个正整数,称为勾股数 如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17 (5)7,24,25 (6)9, 40, 41 勾股定理培优经典题型归纳 题型一:利用勾股定理解决实际问题 训练1、有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开? 训练2、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响 的时间为多少?

题型二、与勾股定理有关的图形问题 训练3.如图,直线l 经过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1、2,则正方形的边长是____ _____. 题型三、关于翻折问题 训练4、如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG. 训练5、如图,把矩形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,EC 与AD 相交于点F.若AB=4,BC=6,求△FAC 的周长和面积. 训练6、如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知cm CE 6=,cm AB 16=, 求BF 的长. G A B F E D C B A

勾股定理经典例题(教师版)

勾股定理全章知识点和典型例习题 一、基础知识点: 1.勾股定理 内容: 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 3.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠=?, 则 ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 4.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若 ,时,以a ,b ,c 为三边的三角形是钝角三角形;若 ,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 5.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

最新勾股定理知识点与常见题型总结(1)

《勾股定理分类练习》 题型一:直接考查勾股定理:直角三角形中,若a, b 分别为直角边,c 为斜边,那么直角三 角形三边的关系为 a 2 +b 2 =c 2 注意:直角三角形中,最长的边为斜边,较短的两边为直角边 1、如图1中,64、400分别为所在正方形的面积,则图中A 字母所代表的正方形面积是 2、 如图4,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的 边长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。 3、在Rt △ABC 中,斜边AB 2 =3,则AB 2+BC 2+AC 2的值是______ “知二求一”的题,可以直接利用勾股定理! 4、在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 5、已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25 B .14 C .7 D .7或25 1、已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 2、已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 3、已知△ABC ,∠A=90 °, ∠B=30°,AB=5,求AC,BC 的值. 题型三:勾股定理的逆定理: 1、以下列各组数为边长,能组成直角三角形的是( ) A .2,3,4 B .10,8,4 C .7,25,24 D .7,15,12 2、分别有下列几组数据:①6、8、10 ②12、1 3、5 ③ 17、8 、15 ④ 4、11、9其中能构成直角三形的有: ( ) A、4组 B、3组 C、2组 D、1组 3、将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) A. 钝角三角形; B. 锐角三角形; C. 直角三角形; D. 等腰三角形 4、请写出“对顶角相等”和“垂直平分线上的点到线段两端距离相等”的逆命题 题型四、与直角三角形面积相关

勾股定理经典例题(含答案)

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。 ∴S四边形ABCD=S△ABE-S△CDE=AB2BE-CD2DE= 类型三:勾股定理的实际应用(一) 用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)

《勾股定理》典型例题

《勾股定理》典型例题 例1 在两千多年前我国古算术上记载有“勾三股四弦五”.你知道它的意思吗? 它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52. (1)请你动动脑筋,能否验证这个事实呢?该如何考虑呢? (2)请你观察下列图形,直角三角形ABC 的两条直角边的长分别为AC =7,BC =4,请你研究这个直角三角形的斜边AB 的长的平方是否等于42+72? 解: (1)边长的平方即以此边长为边的正方 形的面积,故可通过面积验证.分别以这个直 角三角形的三边为边向外做正方形,如右 图:AC =4,BC =3, S 正方形ABED =S 正方形FCGH -4S Rt △ABC =(3+4)2-4×2 1×3×4=72-24=25 即AB 2=25,又AC =4,BC =3, AC 2+BC 2=42+32=25 ∴AB 2=AC 2+BC 2 (2)如图(图见题干中图)

S 正方形ABED =S 正方形KLCJ -4S Rt △ABC =(4+7)2-4×2 1×4×7=121-56=65=42+72 例2 下图甲是任意一个直角三角形ABC ,它的两条直角边的边长分别为a 、b ,斜边长为c .如图乙、丙那样分别取四个与直角三角形ABC 全等的三角形,放在边长为a +b 的正方形内. ①图乙和图丙中(1)(2)(3)是否为正方形?为什么? ②图中(1)(2)(3)的面积分别是多少? ③图中(1)(2)的面积之和是多少? ④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么? 由此你能得到关于直角三角形三边长的关系吗? 解: ①图乙、图丙中(1)(2)(3)都是正方形.易得(1)是以a 为边长的正方形, (2)是以b 为边长的正方形,(3)的四条边长都是c ,且每个角都是直角,所以(3)是以c 为边长的正方形. ②图中(1)的面积为a 2,(2)的面积为b 2,(3)的面积为c 2. ③图中(1)(2)面积之和为a 2+b 2. ④图中(1)(2)面积之和等于(3)的面积. 因为图乙、图丙都是以a +b 为边长的正方形,它们面积相等,(1)(2)的面

勾股定理全章知识点归纳总结

全国中考信息资源门户网站 https://www.doczj.com/doc/9716606118.html, 勾股定理全章知识点归纳总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=? ,则22 c a b = +, 2 2 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

全国中考信息资源门户网站 https://www.doczj.com/doc/9716606118.html, 3:勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ? +=正方形正方形ABCD ,22 14()2 ab b a c ? +-=,化简可证. c b a H G F E D C B A

勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是() A. CD、EF、GH B. AB、EF、GH C. AB、CD、GH D. AB、CD、EF

勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 ; 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗”

占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角 形。” ' “勾股定理一定是要用的,而且不动笔墨恐怕是不行的。”绣亚补充说。几位男孩子走进教室,画图、计算,不一会就得出了答案。同学们,你算 出来了吗 思路分析: 1)题意分析:本题考查勾股定理的应用 2)解题思路:本题关键是认真审题抓住问题的本质进行分析才能得出正确 的解答

勾股定理知识点与常见题型总结

勾股定理知识点与常见题型总结

————————————————————————————————作者:————————————————————————————————日期: ?

勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

勾股定理及常见题型分类

勾股定理及常见题型分类 一、知识要点: 1、勾股定理 2、勾股定理证明方法及勾股树 3、勾股定理逆定理 4、勾股定理常见题型回顾 二、典型题 题型一:“勾股树”及其拓展类型求面积 1. 右图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( ) A.13 B.26 C.47 D.94 2.如图,直线l 上有三个正方形a,b,c,若a,c 的边长分别为6和8,求b 的面积。 3. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系. 4、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 S 3 S 2 S 1 甲 乙 图1

5、在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是 、 =_____________。 题型二:勾股定理与图形问题 1、已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 . 2.如图,求该四边形的面积 3.如图2,已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边BC 的长为 . 4.某公司的大门如图所示,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.5m,宽为1.6m,问这辆卡车能否通过公司的大门?并说明你的理由 . 5.如图是一块地,已知AD=8m ,CD=6m ,∠D=90°,AB=26m ,BC=24m ,求这块地的面积。 题型三:在直角三角形中,已知两边求第三边 A B C D E F G

勾股定理题型总结83533

勾股定理知识技能和题型归纳(一)——知识技能 一、本章知识内容归纳 1、勾股定理——揭示的是平面几何图形本身所蕴含的代数关系。 (1)重视勾股定理的叙述形式: ①直角三角形直角边上的两个正方形的面积之和等于斜边上的正方形的面积. ②直角三角形斜边长度的平方,等于两个直角边长度平方之和. 从这两种形式来看,有“形的勾股定理”和“数的勾股定理”之分。 (2)定理的作用: ①已知直角三角形的两边,求第三边。 ②证明三角形中的某些线段的平方关系。 ③作长为n 的线段。(利用勾股定理探究长度为,3,2……的无理数线段的几何作图方法,并在数轴上将这些点表示出来,进一步反映了数与形的互相表示,加深对无理数概念的认识。) 2、勾股定理的逆定理 (1)勾股定理的逆定理的证明方法,通过构造一个三角形与直角三角形全等,达到证明某个角为直角的目的。 (2)逆定理的作用:判定一个三角形是否为直角三角形。 (3)勾股定理的逆定理是把数转化为形,是利用代数计算来证明几何问题。要注意叙述及书写格式。运用勾股定理的逆定理的步骤如下: ①首先确定最大的边(如c ) ②验证2 2 b a +与2 c 是否具有相等关系: 若2 2 2 c b a =+,则△ABC 是以∠C 为90°的直角三角形。 若2 2 2 c b a ≠+,则△ABC 不是直角三角形。 补充知识: 当222c b a >+时,则是锐角三角形;当2 22c b a <+时,则是钝角三角形。 (4)通过总结归纳,记住一些常用的勾股数。如:3,4,5;5,12,13;6,8,10;8,15,17;9,40,41;……以及这些数组的倍数组成的数组。 勾股数组的一般规律: ① 丢番图发现的:式子n m n m mn n m >+-(,2,2 2 2 2 的正整数) ② 毕达哥拉斯发现的:122,22,122 2 ++++n n n n n (1>n 的整数) ③ 柏拉图发现的:1,1,222 +-n n n (1>n 的整数)

勾股定理典型题型

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少 米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,. 已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到 D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如 图2. 由题意可知△ACD 中,∠ACD=90°,在Rt △ACD 中,只知道CD=1.5,这是典型的利用勾 股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=AD 2 设水深AC= x 米,那么AD=AB=AC+CB=x +0.5 x 2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

《勾股定理》典型例题分析

《勾股定理》典型例题分析 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果 直角三角形的两直角边为a 、b ,斜边为c ,那么 a 2 + b 2= c 2。公式的变形:a 2 = c 2 - b 2, b 2= c 2-a 2 。 2、勾股定理的逆定理 如果三角形ABC 的三边长分别是a ,b ,c ,且满足a 2 + b 2= c 2 ,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ① 已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+ 中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足a 2 + b 2= c 2 的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有: (3,4,5)(5,12,13) (6,8,10) (7,24,25) (8,15,17 )(9,40,41 ) 4、最短距离问题:主要运用的依据是两点之间线段最短。 二、考点剖析 考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆. 2. 如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( )A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 3、如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系. 4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 S 3 S 2 S 1

勾股定理知识点与题型总结大全-勾股定理知识点总结

C A B D 勾股定理全章类题总结 类型一:等面积法求高 【例题】如图,△ABC中,∠ACB=900,AC=7,BC=24,C D⊥AB于D。 (1)求AB的长; (2)求CD的长。 类型二:面积问题 【例题】如下左图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的 正方形的边和长为7cm,则正方形A,B,C,D的面积之和为___________cm2。 【练习1】如上右图,每个小方 格都是边长为1的正方形, (1)求图中格点四边形ABCD 的面积和周长。 (2)求∠ADC的度数。 【练习2】如图,四边形ABCD是正方形,AE⊥ BE,且AE=3,BE=4,阴影部分的面积是______. 【练习3】如图字母B所代表的正方形的面积是( ) A. 12 B. 13 C. 144 D. 194 类型三:距离最短问题 【例题】如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30 千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用 为每千米3万,请你在河流CD上选择水厂的位置M ,使铺设水管的费用最节省,并求出 总费用是多少? A B C D 7cm A B D C E B 169 25 A B C D L

【练习1】如图,一圆柱体的底面周长为20cm ,高AB为4cm ,BC是上底面的 直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程. 【练习2】如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少? 类型四:判断三角形的形状 【例题】如果ΔABC 的三边分别为a 、b 、c ,且满足a 2 +b 2 +c 2 +50=6a+8b+10c ,判断ΔABC 的形状。 【练习1】已知△ABC 的三边分别为m 2-n 2,2mn,m 2+n 2 (m,n 为正整数,且m >n),判 断△ABC 是否为直角三角形. 【练习2】若△ABC 的三边a 、b 、c 满足条件 a 2+ b 2+ c 2+338=10a +24b +26c ,试判断△ABC 的形状. 【练习3】.已知a ,b ,c 为△ABC 三边,且满足 (a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )三角形 A.直角 B.等腰 C.等腰直角 D.等腰或直角 【练习4】三角形的三边长为 ab c b a 2)(2 2+=+,则这个三角形是( ) 三角形 (A )等边(B )钝角(C ) 直角(D )锐角 类型五:直接考查勾股定理 【例题】在Rt △ABC 中,∠C=90° (1)已知a=6, c=10,求b ; (2)已知a=40,b=9,求c ;(3)已知c=25,b=15,求a.。 小河 A B 东 北 牧童 小屋

勾股定理经典例题(含答案)A

勾股定理经典例题(含答案)A

经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 举一反三【变式1】如图,已知:,,于P. 求证:. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从 营地A点出发,沿北偏东60°方向走了到 达B点,然后再沿北偏西30°方向走了500m到达目的地C 点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?

(二)用勾股定理求最短问题 4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线. 举一反三 【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.

类型四:利用勾股定理作长为的线段 5、作长为、、的线段。 举一反三【变式】在数轴上表示的点。 类型五:逆命题与勾股定理逆定理 6、写出下列原命题的逆命题并判断是否正确 1.原命题:猫有四只脚. 2.原命题:对顶角相等 3.原命题:线段垂直平分线上的点,到这条线段两端距离相等. 4.原命题:角平分线上的点,到这个角的两边距离相等.7、如果ΔABC的三边分别为a、b、c,且满足

勾股定理常见题型

1 .如图(16),大正方形的面积可以表示为 ,又可以表示为 ,由此可得等量关系 ABCD 正方形EFGH .ACB=90 , AB=4,分别以AC , BC 为直径作半圆,面积分别记为 专题一:勾股定理与面积 知识点精讲: 类型一 “勾股树”及其拓展类型求面积 典型例题: 3 .“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角 边的长分别是3和6,则大正方形与小正方形的面积差是 ( ) 4 .如图所示的大正方形是由八个全等的直角三角形和一个小正方形拼接而成,记图中正方形 正方形MNKT 勺面积分别为 S 、S 2、S.若正方形EFGH 勺边长为2,贝U S + S 2+ S 3 = _____________________________________ . 5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知 Si = 4, S 2= 9, S 3 = 8, S= 10,则S =( ) A. 25 B . 31 C . 32 D . 40 7?如图,已知直角厶ABC 的两直角边分别为 6, 8,分别以其三边为直径作半圆, 则图中阴影部分的面积是 ____________ 8.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形, 然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为 64,则正方形⑤的面积 _________________________ ,整理后可得: _______________ C 6 .如图,已知在Rt A ABC 中, C 6 8 ①

勾股定理经典例题(含答案)

勾股定理经典例题 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 类型二:勾股定理的构造应用 2 、如图,已知:在中,, ,. 求:BC的长. 1、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要() A、450a元 B、225a 元 C、150a元 D、300a元 举一反三【变式1】如图,已知: ,,于P. 求证:. 150° 20m 30m

【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B 点,然后再沿北偏西30°方向走了500m到达目的地C点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门? (二)用勾股定理求最短问题 4、如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,

勾股定理及其逆定理的应用常见题型

勾股定理及其逆定理的应用常见题型 利用勾股定理求线段长 1.如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边的中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长. (注:直角三角形斜边上的中线等于斜边的一半) 利用勾股定理求面积 2.如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交AD′于点E,AB=6 cm,BC=8 cm,求阴影部分的面积. 利用勾股定理逆定理判断三角形的形状 3.在△ABC中,D为BC的中点,AB=5,AD=6,AC=13,判断△ABD的形状.

利用勾股定理解决几何体表面的最短路径问题 4.(中考·青岛)如图,圆柱形玻璃杯的高为12 cm,底面周长为18 cm.在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________. 利用勾股定理解决实际问题 65如图,某港口位于东西方向的海岸线上,A,B两军舰同时离开港口O,各自沿一固定方向航行,A舰每小时航行32 n mile,B舰每小时航行24 n mile,它们离开港口一个小时后,相距40 n mile,已知A舰沿东北方向航行,则B舰沿哪个方向航行? (第6题)

几种常见的热门考点 勾股定理及其应用 1.直角三角形两直角边长分别为6和8,则连接这两条直角边中点的线段长为() A.3 B.4 C.5 D.10 (第2题) 2.如图,长方形ABCD沿着直线BD折叠,使点C落在点C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为________. 3.如图,已知∠C=90°,BC=3 cm,BD=12 cm,AD=13 cm.△ABC的面积是6 cm2.求: (1)AB的长度; (2)△ABD的面积. (第3题) 勾股定理的验证 4.如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE =90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和,根据图形写出一种证明勾股定理的方法.

勾股定理经典例题(含答案)29050

经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长 是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长.

思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长, 进而求出BC的长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中, . ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD

勾股定理经典题型

勾股定理 已知两边求第三边 例1. 在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长 勾股定理及其证明 1.勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方.若用a 、b 为表示两条直角边,c 表示斜边,则 222 a b c +=,如图1-1-1,其中 222222,,b c a a c b b a c -=-=+= 2.勾股定理的证明:勾股定理是通过面积拼图法来证明,其方法较多. 勾股定理的逆定理 1.在三角形中,若两边的平方和等于第三边的平方,则这个三角形为直角三角形,即⊿ABC 中,若 222a b c +=,则∠ABC 为直角三角形,∠C=90o 这是判 定一个三角形是直角三角形的方法.

为_____________. 例2.已知直角三角形的两边长为3、2,则另一条边长是________________. 例3.在一个直角三角形中,若斜边长为5cm,直角边的长为3cm,则另一条直角边的长为 . 例4.一种盛饮料的圆柱形杯,测得内部底面半径为㎝, 高为12㎝,吸管放进杯里,杯口外面至少要露出㎝,问吸 管要做多长 利用列方程求线段的长 例5.把一根长为10㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2,那么还 要准备一根长为____的铁丝才能把三角 形做好. F E D C B A

例6.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C点与A点重合,则EB的长是. 例7.如图,铁路上A,B两点相距25km,C,D为两村 庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km, CB=10km,现在要在铁路AB上建一个土特产品收 购站E,使得C,D两村到E站的距离相等,则E 站应建在离A站多少km处 例8.如图,某学校(A点)与公路(直线L)的距 离为300米, 又与公路车站(D点)的距离为500米,现要在公路上 建一个小商店(C点),使之与该校A及车站D的距离 相等,求商店与车站之间的距离.

相关主题
文本预览
相关文档 最新文档