09级高三数学总复习讲义——导数与积分x
- 格式:doc
- 大小:1.37 MB
- 文档页数:9
积分导数知识点总结高中积分和导数的概念最初来源于求解曲线的斜率和面积的问题。
导数描述了曲线在某一点的斜率,而积分则描述了曲线下的面积。
接下来,我们将深入探讨积分和导数的相关知识点,包括它们的定义、性质和求解方法等。
一、导数的概念和性质导数是函数在某一点处的斜率,它描述了函数在该点附近的变化率。
导数可以用以下极限形式来定义:\[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]其中,\( f'(x) \) 表示函数 \( f(x) \) 在点 \( x \) 处的导数。
导数的性质包括:1. 可导性:如果函数在某点处有导数,那么它在该点处是可导的。
2. 导数的基本性质:- 两个函数的和(差)的导数等于它们各自的导数的和(差);- 两个函数的积的导数等于其中一个函数乘以另一个函数的导数再加上另一个函数乘以第一个函数的导数;- 两个函数的商的导数等于分母函数乘以分子函数的导数减去分子函数乘以分母函数的导数再除以分母函数的平方。
3. 高阶导数:一个函数的导数的导数称为该函数的二阶导数,类推,可以得到更高阶的导数。
二、积分的概念和性质积分描述了函数下的面积,或是曲线的长度。
积分的概念最初来源于求解面积问题,它可以用以下定积分的形式来定义:\[ \int_{a}^{b} f(x) dx \]其中,\( \int \) 表示积分,\( a \) 和 \( b \) 分别是积分的上下限,\( f(x) \) 是要积分的函数。
积分的性质包括:1. 可积性:如果函数在闭区间上是有界的,则它在该区间上是可积的。
2. 积分的基本性质:- 根据可积性,定积分是存在的;- 定积分的几何意义是曲线与 \( x \) 轴之间的面积;- 定积分满足可加性和线性性质。
3. 不定积分:不定积分表示求解函数的原函数的过程,它是积分的逆运算。
三、积分和导数的关系积分和导数是微积分中最重要的两个概念,它们之间存在着密切的关系。
2009年高考第二轮热点专题复习:导数考纲指要:导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。
考点扫描:导数在研究函数中的应用① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。
考题先知:例1.设函数B A Cx Bx Ax x f ++++=6)(23,其中实数A 、B 、C 满足: ①9841218+≤+≤+-B C A B ; ②A B A 63≤-<。
(1)求证:49)1(,41)1(''≤-≥f f ; (2)设π≤≤x 0,求证:0)sin 2(≥x f 。
证明:(1)由9841218+≤+≤+-B C A B 得:,4123≥++C B A 4923≤+-C B A ,又C Bx Ax x f ++=23)(2',所以4123)1('≥++=C B A f ,4923)1('≤+-=-C B A f(2)当π≤≤x 0时,0)sin 2(≥x f 等价于当20≤≤u 时,0)(≥u f ,所以只须证明当20≤≤x 时,0)(≥x f ,由②知:,0>A 且(]2,13∈-AB,所以C Bx Ax x f ++=23)(2'为开口向上的抛物线,其对称轴方程(]2,13∈-=ABx ,又由A B A 63≤-<得: 0)6)(3(≤++B A B A ,即AB A B 91822+≥-,所以,当20≤≤x 时,有B AC AABA AC AB AC A B f x f 363918312412)3()(22''++=++≥-=-≥B BC B A B A C B A +-+++≥++++=)21(23323=)]1()1([4121)1('''--⨯+f f f=049814189)1(81)1(89''=⨯-⨯≥--f f ,所以)(x f 为[0,2]上的增函数。
高中数学教案—导数、定积分一.课标要求:1.导数及其应用( 1)导数概念及其几何意义① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵;②通过函数图像直观地理解导数的几何意义。
( 2)导数的运算2, y=x3, y=1/x ,y=x 的导数;① 能根据导数定义求函数y=c , y=x, y=x② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如 f ( ax+b))的导数;③ 会使用导数公式表。
( 3)导数在研究函数中的应用① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。
( 4)生活中的优化问题举例例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。
( 5)定积分与微积分基本定理① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念;② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。
( 6)数学文化收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。
具体要求见本《标准》中" 数学文化 " 的要求。
二.命题走向导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。
在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值.三.要点精讲1.导数的概念函数 y=f(x),如果自变量 x 在 x0 处有增量x ,那么函数y相应地有增量y =f(x0 + x)- f ( x 0),比值y叫做函数 y=f ( x )在 x 0到 x 0 +x 之间的平均变化率,即xy f ( x0x) f ( x0 ) x=x。
导数和积分知识点总结一、导数的概念导数是描述函数变化速率的一个重要概念。
对于函数y=f(x),在某一点x处的导数表示为f'(x),它的几何意义是函数曲线在该点的切线斜率。
在物理学中,导数可以描述物体的运动速度和加速度。
导数的计算方法有:求导法则(和差积商的导数、复合函数的导数)、高阶导数、隐函数求导、参数方程求导等。
二、导数的应用1. 导数在切线和曲率的计算中有广泛的应用;2. 导数可以用来求函数的最大值和最小值,以及函数的拐点;3. 导数可以用来计算函数的增减性和凹凸性;4. 导数在物理学中可以描述速度、加速度等概念。
三、不定积分的概念不定积分是求函数的原函数的过程,表示为∫f(x)dx=F(x)+C,其中F(x)是不定积分的结果,C为积分常数。
不定积分的计算方法有:基本初等函数的不定积分、分部积分、换元积分等。
四、定积分的概念定积分是对函数在区间[a,b]上的面积或曲线长度的度量。
表示为∫a^b f(x)dx。
定积分的计算方法有:定积分的性质与计算、定积分的应用(如物理学中的质心、工程学中的弧长等)。
五、积分中值定理积分中值定理是微积分的基本定理之一,它表明了函数的积分值与函数自身在某点的函数值之间的关系。
积分中值定理包括:拉格朗日中值定理和柯西中值定理。
六、导数和积分之间的关系导数和积分都是函数的重要特征,它们之间有着密切的关系。
牛顿—莱布尼茨公式揭示了导数与积分的关系:如果函数F(x)是函数f(x)的一个原函数,则函数f(x)的定积分可以表示为F(x)在区间[a,b]上的变化量。
七、常用函数的导数和不定积分1. 常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等的导数和不定积分的计算;2. 求导和积分的基本公式及常用函数的导数和不定积分。
八、微分方程的解法微分方程是描述变化规律的数学模型,它在物理、生物、经济等领域有着广泛的应用。
微分方程可分为常微分方程和偏微分方程两大类,同时它的解法有:变量分离法、齐次方程、一阶线性微分方程、二阶线性微分方程等。
高中数学导数与积分知识点归纳总结在高中数学中,导数和积分是两个重要的概念。
它们在计算和解决数学问题时起着关键作用。
以下是导数和积分的一些核心知识点的总结。
导数导数可以理解为函数在某一点的变化率。
它描述了函数在不同点的斜率或曲线的切线。
以下是导数的一些重要知识点:1. 导数的定义:函数f(x)在点x处的导数定义为f'(x) =lim(h→0) [(f(x+h) - f(x))/h]。
2. 导数的计算:使用导数的定义,我们可以通过求极限来计算导数。
另外,还有一些常见函数的导数公式,如幂函数、指数函数、对数函数和三角函数等。
3. 导数的性质:导数具有一些重要的性质,如线性性、乘法法则、除法法则和链式法则等。
这些性质可以简化导数计算的过程。
4. 高阶导数:除了一阶导数外,函数还可以有更高阶的导数,称为二阶导数、三阶导数等。
高阶导数描述了函数的曲率和曲线的变化情况。
积分积分可以理解为函数的累积总和。
它是导数的逆运算,可以用来计算曲线下面的面积或实现函数的反向操作。
以下是积分的一些重要知识点:1. 定积分:定积分是指对函数在给定区间上的积分。
定积分的计算可以使用黎曼和或牛顿-莱布尼茨公式等方法。
2. 不定积分:不定积分是指对函数求积分得到的含有任意常数的函数。
不定积分可以通过求导的逆运算来计算。
3. 积分的性质:积分具有一些重要的性质,如线性性、换元法、分部积分法等。
这些性质可以简化积分计算的过程。
4. 定积分的应用:定积分在几何学、物理学和经济学等领域有广泛的应用。
它可以用来计算曲线下的面积、质心、弧长以及求解各种实际问题。
以上是高中数学中导数和积分的一些核心知识点的归纳总结。
导数和积分在数学的不同领域中都具有重要的应用价值,例如计算、物理学、工程学等。
希望这份总结对您的学习和应用有所帮助。
09高三数学总复习讲义——导数概念与运算知识清单 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f(x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=xx f x x f ∆-∆+)()(00。
如果当0→∆x 时,x y ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x x y∆∆=0lim →∆x xx f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果xy ∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=xx f x x f ∆-∆+)()(00; (3)取极限,得导数f’(x 0)=xyx ∆∆→∆0lim 。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。
3.几种常见函数的导数:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '=⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x'=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛v u ‘=2''v uv v u -(v ≠0)。
形如y=f [x (ϕ])的函数称为复合函数。
复合函数求导步骤:分解——求导——回代。
法则:y '|X = y '|U ·u '|X09级高三数学总复习讲义——导数应用知识清单1.单调区间:一般地,设函数)(x f y =在某个区间可导, 如果'f )(x 0>,则)(x f 为增函数; 如果'f 0)(<x ,则)(x f 为减函数;如果在某区间内恒有'f 0)(=x ,则)(x f 为常数;2.极点与极值:曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正; 3.最值:一般地,在区间[a ,b]上连续的函数f )(x 在[a ,b]上必有最大值与最小值。
①求函数ƒ)(x 在(a ,b)内的极值;②求函数ƒ)(x 在区间端点的值ƒ(a)、ƒ(b);③将函数ƒ )(x 的各极值与ƒ(a)、ƒ(b)比较,其中最大的是最大值,其中最小的是最小值。
4.定积分(1)概念:设函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…x n =b 把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上取任一点ξi (i =1,2,…n )作和式I n =∑ni f 1=(ξi)△x (其中△x 为小区间长度),把n →∞即△x →0时,和式I n 的极限叫做函数f (x )在区间[a ,b ]上的定积分,记作:⎰badx x f )(,即⎰badx x f )(=∑=∞→ni n f 1lim (ξi )△x 。
这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )dx 叫做被积式。
基本的积分公式: ⎰dx 0=C ;⎰dx x m =111++m x m +C (m ∈Q , m ≠-1); ⎰x 1dx =ln x +C ; ⎰dx e x =x e +C ; ⎰dx a x=a a xln +C ; ⎰xdx cos =sin x +C ;⎰xdx sin =-cos x +C (表中C 均为常数)。
(2)定积分的性质①⎰⎰=babadx x f k dx x kf )()((k 为常数);②⎰⎰⎰±=±b ab abadx x g dx x f dx x g x f )()()()(;③⎰⎰⎰+=b ac abcdx x f dx x f dx x f )()()((其中a <c <b )。
(3)定积分求曲边梯形面积 由三条直线x =a ,x =b (a <b ),x 轴及一条曲线y =f (x )(f (x )≥0)围成的曲边梯的面积⎰=ba dx x f S )(。
如果图形由曲线y 1=f 1(x ),y 2=f 2(x )(不妨设f 1(x )≥f 2(x )≥0),及直线x =a ,x =b (a<b )围成,那么所求图形的面积S =S曲边梯形AMNB-S曲边梯形DMNC=⎰⎰-babadx x f dx x f )()(21。
课前预习1.求下列函数导数(1))11(32x x x x y ++= (2))11)(1(-+=xx y (3)2cos 2sin x x x y -= (4)y=x x sin 2 (5)y =xx x x x 9532-+-2.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= 3.过点(-1,0)作抛物线21y x x =++的切线,则其中一条切线为( ) (A )220x y ++= (B )330x y -+= (C )10x y ++= (D )10x y -+= 4.半径为r 的圆的面积S(r)=πr 2,周长C(r)=2πr ,若将r 看作(0,+∞)上的变量,则(πr 2)`=2πr ○1,○1式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数。
对于半径为R 的球,若将R 看作(0,+∞)上的变量,请你写出类似于 ○1的式子: ; ○2式可以用语言叙述为: 。
5.曲线1y x=和2y x =在它们交点处的两条切线与x 轴所围成的三角形面积是 。
6.对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( ) A .f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) C .f (0)+f (2)≥2f (1) D. f (0)+f (2)>2f (1) 7.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个B .2个C .3个D . 4个8.已知函数()11axx f x e x-+=-。
(Ⅰ)设0a >,讨论()y f x =的单调性;(Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围。
9.32()32f x x x =-+在区间[]1,1-上的最大值是( )(A)-2 (B)0 (C)2 (D)4 10.设函数f(x)= 3223(1)1, 1.x a x a --+≥其中 (Ⅰ)求f(x)的单调区间; (Ⅱ)讨论f(x)的极值。
11.设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点A B 、的坐标分别为11()x f x (,)、22()x f x (,),该平面上动点P 满足•4PA PB =,点Q 是点P 关于直线2(4)y x =-的对称点.求(I)求点A B 、的坐标; (II)求动点Q 的轨迹方程.12.请您设计一个帐篷。
它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥(如右图所示)。
试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐篷的体积最大?13.计算下列定积分的值 (1)⎰--312)4(dx x x(2)⎰-215)1(dx x ;(3)dx x x ⎰+20)sin (π;(4)dx x ⎰-222cos ππ;14.(1)一物体按规律x =bt 3作直线运动,式中x 为时间t 内通过的距离,媒质的阻力正比于速度的平方.试求物体由x =0运动到x =a 时,阻力所作的功。
(2)抛物线y=ax 2+bx 在第一象限内与直线x +y=4相切.此抛物线与x 轴所围成的图形的面积记为S .求使S 达到最大值的a 、b 值,并求S max . 典型例题一 导数的概念与运算EG :如果质点A 按规律s =2t 3运动,则在t =3 s 时的瞬时速度为( )A. 6m/sB. 18m/sC. 54m/sD. 81m/s变式:定义在D 上的函数)(x f ,如果满足:x D ∀∈,∃常数0M >,都有|()|f x ≤M 成立,则称)(x f 是D 上的有界函数,其中M 称为函数的上界.【文】(1)若已知质点的运动方程为at t t S ++=11)(,要使在[0,)t ∈+∞上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a 的取值范围. 【理】(2)若已知质点的运动方程为at t t S -+=12)(,要使在[0,)t ∈+∞上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a 的取值范围.EG :已知xf x f x x f x ∆-∆+=→∆)2()2(lim ,1)(0则的值是( )A. 41- B. 2 C. 41D. -2变式1:()()()为则设hf h f f h 233lim ,430--='→( )A .-1 B.-2 C .-3 D .1变式2:()()()00003,limx f x x f x x f x x x∆→+∆--∆∆设在可导则等于( )A .()02x f 'B .()0x f 'C .()03x f 'D .()04x f '根据所给的函数图像比较012(),,h t t t t 曲线在附近得变化情况。