斜弯桥计算理论
- 格式:ppt
- 大小:1.91 MB
- 文档页数:84
弯桥计算理论弯桥【curvedbridge】指的是桥面中心线在平面上为曲线的桥梁。
有主梁为直线而桥面为曲线和主梁与桥面均为曲线两种情况。
弯桥主要分为曲线梁桥,曲线斜拉桥,曲线悬索桥。
本文主要论述曲线梁桥。
1 概述随着现代社会的发展和人们需求的提高,交通要求越来越快捷对个体舒适视觉感官的要求也越来越高。
我国近年来修建了大量的高等级公路尤其城市立交桥建设发展很快,道路设计时往往要综合道路平面纵断面和横断面等进行设计,以保证道路的平面顺畅纵坡均衡和横断面合理。
考虑到车辆行驶时的安全舒适以使驾驶人员的视觉和心理反应能保持线形的连续性,由于直线视觉效果单调容易使人疲劳,现在进行道路设计时往往采用平面上避免长直线的设计原则,因此弯桥的使用是不可避免的。
以前由于计算工具和设计理论的欠缺常常以直代弯,如我国南京长江大桥的引桥工程等将直桥上的人行道路缘石和栏杆等稍加修整以满足道路平面曲线线形的要求,但当弯道半径较小或桥梁跨径较大时以直代弯则显得不尽合理,而弯桥就不存在这样的问题。
随着计算理论的日渐成熟和人们的不断实践摸索弯桥有了很大的发展,曲线梁桥以其优美的曲线与道路良好的适应性以及其跨越能力已成为现代交通工程中的一种重要桥型。
在高等级公路中在对环境有特殊要求的地方为了尽量保持原地貌景观也都使用了曲线梁桥。
例如瑞士的勒内恩高架桥依山傍水而行,布伦纳公路上的卢埃克桥紧靠在多岩石茂密森林的山腰上。
这些桥不但起着交通作用还给大自然增添了一道亮丽的风景,早在20世纪30年代很多桥梁工程师就开始了对曲线桥有关问题的研究,60年代初国外一些桥梁专家和学者开始了对曲线梁桥进行深入细致分析探索并付诸于工程实践。
我国自80年代以来随着经济的快速增长,交通业也飞速发展,修建了大量的公路铁路尤其是城市立交桥发展更快,修建了大量的全互通式立交桥,使得我国的曲线梁桥的理论研究和工程实践取得了很大的可喜成果。
广州北京天津沈阳等许多城市都较早地修建了由曲线梁组成的大型立交桥,如弛名全国的天津市中山门蝶式立交桥满足交通功能占地少造价低造型优美。
在剪力-柔性梁格法如果解决实际问题的方面,介绍的都不是很详细,在此希望能通过此论题的开始,起到抛砖引玉的作用,一方面为困惑的设计人员深入了解,另一方面彼此交流互相提高弯桥的设计水平。
目前解决曲线桥梁计算方法有以下几种:1、空间梁元模型法2、空间薄壁箱梁元模型法3、空间梁格模型法4、实体、板壳元模型法第一种方法,是不能考虑桥梁的横向效应的,使用时要求桥梁的宽跨比不易太大。
第二种方法,是第一种方法的改进,主要区别是采用了不同的单元模型,考虑了横向作用如翘曲和畸变。
第四种方法,是解决问题最有效的方法,能够考虑各种结构受力问题。
第三种方法,是目前设计及科研中常采用的方法,其特点是容易掌握,且对设计能保证足够的精度,其中采用比较多的方法是剪力-柔性梁格法,能充分考虑弯桥横向的受力特性。
弯桥的受力特性如下:弯桥由于弯扭耦合现象的存在,其应力和变形不再仅仅是弯矩单独的影响,这样使得外梁弯曲应力大于内梁的弯曲应力,外梁的挠度大于内梁的挠度。
一般不主张采用加大外腹板高度的箱梁截面形式来改善受力特性。
剪力-柔性梁格法的原理是当梁格节点与结构重合的点承受相同挠度和转角时,由梁格产生的内力局部静力等效与结构的内力。
其实质是将传统的一维杆单元计算模式推进到二维计算模型,用一个二维的空间网格来模拟结构的受力特性有了以上的理论知识后便可以开始弯桥的设计,步骤如下:1、截面尺寸的拟订2、模型的划分3、模型特性的计算4、结果整理,并根据内力输出结果配筋5、检算各项设计指标:设置预偏心,支承反力的调整应力、挠度、裂缝宽度、斜截面承载力检算、抗扭检算等。
现以一三跨曲线梁桥为例说明以上的设计过程。
跨径20m+25m+20m;梁高1.6m,端横梁宽1.0m,中横梁宽度均为2.0m桥面宽为:净8+2x0.5m(防撞栏);双支座径向距离5.0m,单支座设在横梁中心,曲线半径50.0m,其截面形式如下:目前弯梁桥在现代化的公路及城市道路立交中的数量逐年增加,应用已非常普遍。
弯桥计算理论弯桥【curvedbridge】指的是桥面中心线在平面上为曲线的桥梁。
有主梁为直线而桥面为曲线和主梁与桥面均为曲线两种情况。
弯桥主要分为曲线梁桥,曲线斜拉桥,曲线悬索桥。
本文主要论述曲线梁桥。
1 概述随着现代社会的发展和人们需求的提高,交通要求越来越快捷对个体舒适视觉感官的要求也越来越高。
我国近年来修建了大量的高等级公路尤其城市立交桥建设发展很快,道路设计时往往要综合道路平面纵断面和横断面等进行设计,以保证道路的平面顺畅纵坡均衡和横断面合理。
考虑到车辆行驶时的安全舒适以使驾驶人员的视觉和心理反应能保持线形的连续性,由于直线视觉效果单调容易使人疲劳,现在进行道路设计时往往采用平面上避免长直线的设计原则,因此弯桥的使用是不可避免的。
以前由于计算工具和设计理论的欠缺常常以直代弯,如我国南京长江大桥的引桥工程等将直桥上的人行道路缘石和栏杆等稍加修整以满足道路平面曲线线形的要求,但当弯道半径较小或桥梁跨径较大时以直代弯则显得不尽合理,而弯桥就不存在这样的问题。
随着计算理论的日渐成熟和人们的不断实践摸索弯桥有了很大的发展,曲线梁桥以其优美的曲线与道路良好的适应性以及其跨越能力已成为现代交通工程中的一种重要桥型。
在高等级公路中在对环境有特殊要求的地方为了尽量保持原地貌景观也都使用了曲线梁桥。
例如瑞士的勒内恩高架桥依山傍水而行,布伦纳公路上的卢埃克桥紧靠在多岩石茂密森林的山腰上。
这些桥不但起着交通作用还给大自然增添了一道亮丽的风景,早在20世纪30年代很多桥梁工程师就开始了对曲线桥有关问题的研究,60年代初国外一些桥梁专家和学者开始了对曲线梁桥进行深入细致分析探索并付诸于工程实践。
我国自80年代以来随着经济的快速增长,交通业也飞速发展,修建了大量的公路铁路尤其是城市立交桥发展更快,修建了大量的全互通式立交桥,使得我国的曲线梁桥的理论研究和工程实践取得了很大的可喜成果。
广州北京天津沈阳等许多城市都较早地修建了由曲线梁组成的大型立交桥,如弛名全国的天津市中山门蝶式立交桥满足交通功能占地少造价低造型优美。
斜拉桥与悬索桥计算理论简析斜拉桥与悬索桥是桥梁结构中跨越能力最大的两种桥型,随着桥梁建造向大跨径方向发展,它们越来越成为人们研究的热点。
通过大跨径桥梁理论的学习,我对斜拉桥与悬索桥的计算理论有了较为系统的了解。
在本文中,我想从一个设计者的角度,在概念层次上,对斜拉桥与悬索桥的计算理论做个总结,以加深自己对这些计算理论的理解。
一、斜拉桥的计算理论斜拉桥诞生于十七世纪,在最近的五十年间,斜拉桥有了飞速的发展,成为200米到800米跨径范围内最具竞争力的桥梁结构形式之一。
有理由相信,在大江河口的软土地基上或不适合建造悬索桥的地区,有可能修建超过1200米的斜拉桥。
斜拉桥是塔、梁、索三种基本结构组成的缆索承重结构体系,一般表现为柔性的受力特性。
(一)、斜拉桥的静力设计过程1、方案设计阶段此阶段也称为概念设计。
本阶段的主要任务是凭借设计者的经验,参考别的斜拉桥的设计,结合自己的分析计算,来完成结构的总体布置,初拟构件尺寸。
根据此设计文件,设计者或甲方(有些地方领导说了算)进行方案比选。
2、初步设计阶段本阶段在前一阶段工作的基础上进一步细化。
主要任务是:通过反复计算比较以确定恒活载集度、恒载分析、调索初定恒载索力、修正斜拉索截面积、活载及附加荷载计算、荷载组合及梁体配索、索力优化以及强度刚度验算等。
3、施工图设计阶段此阶段要对斜拉桥的每一部位以及每一施工阶段进行计算,确保结构安全。
主要计算内容有:构件无应力尺寸计算、对施工阶段循环倒退分析、计算斜拉索初张力、预拱度计算、强度刚度稳定性验算以及前进分析验算等。
(二)、斜拉桥的计算模式1、平面杆系加横分系数此模式用在概念设计阶段研究结构的设计参数,以求获得理想的结构布置。
还可用于技术设计阶段,仅仅计算恒载作用下的内力。
2、空间杆系计算模式此模式用在空间荷载(风载、地震荷载以及局部温差等)作用下的静力响应分析。
此模式按照主梁可分为三种:“鱼骨”模式、双梁式模式与三梁式模型。
斜桥计算理论论文关键词:斜交桥;正负弯矩;反力;横向分布系数;扭矩;格点力;内力论文摘要: 一般公路中的桥梁常以正交布设为主,但为了满足公路技术标准,应使路线线形流畅、连续,部分桥梁须服从路线走向,不可避免会出现一些斜交桥梁,因此在公路桥梁设计中,斜交桥梁的计算理论学习,也应重视。
本文基于《高等桥梁结构理论》,详细介绍了斜交桥梁的参数及受力特征,以及斜梁桥的计算公式等。
5.1斜交桥的参数及受力特征1.斜梁排当斜交板或斜交梁排的斜交角 (见图5-1图示定义)小于20°时,一般可忽略斜交作用,按斜交跨径的正交桥进行分析计算,这样计算出的纵向弯矩与剪力均偏于安全方面。
在斜梁排中,如图5-3所示,如果A、B、C和D代表车轮,轴距为'l,A与B、C与D的横向间距为a,我们可将斜梁排转成正交桥,A、B、C、D位置不变,如图5-3b)。
如将AB与CD也转一个斜交角,则按图5-3c)算出的正交桥的结果与原斜交桥图5-3a)的结果是等价的。
a)b)c)图5-3 斜梁排的转换2.斜交板斜交板与直交板不同,它有许多特殊之处,其受力特征比斜梁排更为突出。
斜交板随宽跨比、抗弯刚度、抗扭刚度,斜交角、支承条件、荷载形式的不同而变化,现扼要说明如下:图5-4 斜交板纵向弯矩变化线(1)斜交板在均布荷载作用下,沿桥跨方向的最大弯矩随α角的增大从跨中向钝角部位移动,如图5-4所示,实线表示︒=50α时纵向最大弯矩的位置,虚线表示︒=70α,点虚线表示︒=30α时的相应位置。
(2)由于斜交,将使纵向弯矩减小,均布荷载时比集中荷载时的减小量更显著。
图5-5表示其减小程度曲线。
图5-5 均布荷载及集中荷载下纵向弯矩锐减曲线B x -桥轴方向单位板宽的抗弯刚度;B y -垂直桥轴方向单位板宽的抗弯刚度;P-集中荷载;q-均布荷载;GJ t -抗扭刚度(3)斜交板的扭矩变化较为复杂,它与斜交板的抗扭刚度t GJ 有关。
根据安泽利厄斯6.30.1==yx B B lb(Anzelius )绘出︒=45α,满布均布荷载作用下沿桥跨的扭矩分布图(图5-6)中可以看出,斜交板沿自由边与支承边上均有正负扭矩产生。
桥架30度的斜长公式
桥架是一种用于搭建或支撑结构的框架结构,通常应用于建筑物、工厂、电力线路、道路和铁路等领域。
桥架的形式多种多样,其中一种常见的形式是30度的斜长桥架。
斜长桥架是指桥架的支撑柱或梁具有一定的倾斜角度,而不是与水平面垂直或平行。
这种设计可以提供额外的稳定性和强度,使桥架系统能够承受更大的负荷。
斜长桥架的斜长公式是通过三角函数来计算桥架的斜长。
斜长公式可以写作:斜长=支撑柱或梁的实际长度/余弦(倾斜角度)。
假设斜长桥架的支撑柱长度为L,倾斜角度为θ,则斜长可以用以下公式计算:
斜长= L / cos(θ)
其中,斜长是斜长桥架的实际长度,L是支撑柱或梁的实际长度,θ是斜长桥架的倾斜角度。
斜长桥架的设计和计算需要考虑多个因素,如桥架的负荷、材料的强度和稳定性等。
在计算斜长时,需要确保斜长桥架能够承受预计的负荷,并提供足够的强度和稳定性。
斜长桥架的设计和建造需要遵循相关的建筑规范和标准。
在实际应用中,工程师会根据具体的需求和情况来确定斜长桥架的设计参数,如支撑柱的长度、倾斜角度和材料的选择等。
斜长桥架的应用范围广泛,可以用于建筑物、工厂、电力线路、道路
和铁路等领域。
由于斜长桥架具有高强度和稳定性,能够承受较大的负荷,因此在大跨度的搭建和支撑结构中得到了广泛应用。
总结起来,斜长桥架是一种具有倾斜角度的桥架结构,斜长桥架的斜
长公式可以通过三角函数来计算。
斜长桥架的设计和计算需要考虑多个因素,并遵循相关的建筑规范和标准。
斜长桥架在建筑物、工厂、电力线路、道路和铁路等领域有着广泛的应用。