概率论与数理统计实验报告
- 格式:docx
- 大小:3.36 KB
- 文档页数:3
数学实验——概率论与数理统计实验报告学院:班级:学号:姓名:成绩:成都理工大学第1章古典概型1.求下列各式的值(1)9!>> factorial(9)1页ans =362880(2)P310>> nchoosek(10,2)*factorial(2)ans =90(3)C310> nchoosek(10,3)ans =1202.碰运气能否通过英语四级考试大学英语四级考试是全面检验大学生英语水平的一种综合考试,具有一定难度。
这种考试包括听力、语法结构、阅读理解、写作等。
除写作占15分外,其余85道为单项选择题,每道题附有A、B、C、D四个选项。
这种考试方法使个别学生产生碰运气和侥幸心理,那么,靠运气能通过英语四级考试吗?第2章随机变量及其分布1.随机变量X服从参数为试验次数20,概率为0.25的二项分布。
(1)生成X的概率分布;(2)产生18个随机数(3行6列);(3)又已知分布函数F(x)=0.45,求x;(4)画出X的分布律和分布函数图形。
(1)>> binopdf(0:20,20,0.25)ans =Columns 1 through 80.0032 0.0211 0.0669 0.1339 0.1897 0.2023 0.1686 0.1124Columns 9 through 162页0.0609 0.0271 0.0099 0.0030 0.0008 0.0002 0.0000 0.0000Columns 17 through 210.0000 0.0000 0.0000 0.0000 0.0000(2)>> binornd(20,0.25,3,6)ans =9 8 3 4 6 66 3 4 5 6 25 6 6 4 7 4(3)>> binoinv(0.45,20,0.25)ans =5(4)>> x=0:20;y=binopdf(x,20,0.25);>> plot(x,y,'.')>> x=0:0.01:20;>> y=binocdf(x,20,0.25);>> plot(x,y)2、随机变量X服从参数为3的泊松分布。
概率论与数理统计上机实验报告一、实验内容使用MATLAB 软件进行验证性实验,掌握用MATLAB 实现概率统计中的常见计算。
本次实验包括了对二维随机变量,各种分布函数及其图像以及频率直方图的考察。
1、列出常见分布的概率密度及分布函数的命令,并操作。
2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X ,(1) 试计算45=X 的概率和45≤X 的概率;(2) 绘制分布函数图形和概率分布律图形。
3、用Matlab 软件生成服从二项分布的随机数,并验证泊松定理。
4、设22221),(y x e y x f +-=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。
5、来自某个总体的样本观察值如下,计算样本的样本均值、样本方差、画出频率直方图。
A=[16 25 19 20 25 33 24 23 20 24 25 17 15 21 22 26 15 23 2220 14 16 11 14 28 18 13 27 31 25 24 16 19 23 26 17 14 30 21 18 16 18 19 20 22 19 22 18 26 26 13 21 13 11 19 23 18 24 28 13 11 25 15 17 18 22 16 13 12 13 11 09 15 18 21 15 12 17 13 14 12 16 10 08 23 18 11 16 28 13 21 22 12 08 15 21 18 16 16 19 28 19 12 14 19 28 28 28 13 21 28 19 11 15 18 24 18 16 28 19 15 13 22 14 16 24 20 28 18 18 28 14 13 28 29 24 28 14 18 18 18 08 21 16 24 32 16 28 19 15 18 18 10 12 16 26 18 19 33 08 11 18 27 23 11 22 22 13 28 14 22 18 26 18 16 32 27 25 24 17 17 28 33 16 20 28 32 19 23 18 28 15 24 28 29 16 17 19 18] 6. 利用Matlab 软件模拟高尔顿板钉试验。
概率论与数理统计数学实验目录实验一几个重要的概率分布的MATLAB实现 p2-3 实验二数据的统计描述和分析 p4-8 实验三参数估计 p9-11 实验四假设检验 p12-14 实验五方差分析 p15-17 实验六回归分析 p18-27实验一 几个重要的概率分布的MATLAB 实现实验目的(1) 学习MATLAB 软件与概率有关的各种计算方法 (2) 会用MATLAB 软件生成几种常见分布的随机数 (3) 通过实验加深对概率密度,分布函数和分位数的理解Matlab 统计工具箱中提供了约20种概率分布,对每一种分布提供了5种运算功能,下表给出了常见8种分布对应的Matlab 命令字符,表2给出了每一种运算功能所对应的Matlab 命令字符。
当需要某一分布的某类运算功能时,将分布字符与功能字符连接起来,就得到所要的命令。
例1 求正态分布()2,1-N ,在x=1.2处的概率密度。
解:在MATLAB 命令窗口中输入: normpdf(1.2,-1,2) 结果为: 0.1089例2 求泊松分布()3P ,在k=5,6,7处的概率。
解:在MATLAB 命令窗口中输入: poisspdf([5 6 7],3)结果为:0.1008 0.0504 0.0216 例3 设X 服从均匀分布()3,1U ,计算{}225P X .-<<。
解:在MATLAB 命令窗口中输入:unifcdf(2.5,1,3)-unifcdf(-2,1,3) 结果为:0.75000例4 求概率995.0=α的正态分布()2,1N 的分位数αX 。
解:在MATLAB 命令窗口中输入: norminv(0.995,1,2) 结果为:6.1517例5 求t 分布()10t 的期望和方差。
解:在MATLAB 命令窗口中输入: [m,v]=tstat(10) m = 0 v =1.2500例6 生成一个2*3阶正态分布的随机矩阵。
数学实验——概率论与数理统计实验报告学院:班级:学号:姓名:成绩:成都理工大学第1章古典概型1.求下列各式的值(1)9!>> factorial(9)1页ans =362880(2)P310>> nchoosek(10,2)*factorial(2)ans =90(3)C310> nchoosek(10,3)ans =1202.碰运气能否通过英语四级考试大学英语四级考试是全面检验大学生英语水平的一种综合考试,具有一定难度。
这种考试包括听力、语法结构、阅读理解、写作等。
除写作占15分外,其余85道为单项选择题,每道题附有A、B、C、D四个选项。
这种考试方法使个别学生产生碰运气和侥幸心理,那么,靠运气能通过英语四级考试吗?第2章随机变量及其分布1.随机变量X服从参数为试验次数20,概率为0.25的二项分布。
(1)生成X的概率分布;(2)产生18个随机数(3行6列);(3)又已知分布函数F(x)=0.45,求x;(4)画出X的分布律和分布函数图形。
(1)>> binopdf(0:20,20,0.25)ans =Columns 1 through 80.0032 0.0211 0.0669 0.1339 0.1897 0.2023 0.1686 0.1124Columns 9 through 162页0.0609 0.0271 0.0099 0.0030 0.0008 0.0002 0.0000 0.0000Columns 17 through 210.0000 0.0000 0.0000 0.0000 0.0000(2)>> binornd(20,0.25,3,6)ans =9 8 3 4 6 66 3 4 5 6 25 6 6 4 7 4(3)>> binoinv(0.45,20,0.25)ans =5(4)>> x=0:20;y=binopdf(x,20,0.25);>> plot(x,y,'.')>> x=0:0.01:20;>> y=binocdf(x,20,0.25);>> plot(x,y)2、随机变量X服从参数为3的泊松分布。
《概率论与数理统计》实验报告【关键字】实验专业班级:×××姓名:××学号:××日期:××××一、实验目的通过Matlab编程实验将抽象的理论转化为具体的图像,以便更好的理解和记忆这些理论的内涵并将其应用于实践。
二、实验内容及结果1.设~;(1)当时,求,,;(2)当时,若,求;(3)分别绘制,时的概率密度函数图形。
解答:(1)源程序:clc;p1=normcdf(2.9,1.5,0.5)-normcdf(1.8,1.5,0.5)p2=1-normcdf(-2.5,1.5,0.5)p3=normcdf(0.1,1.5,0.5)+1-normcdf(3.3,1.5,0.5)运行结果:实验结论:=0.2717;=1.0000;=0.0027。
(2)源程序:clc;x=0;p=normcdf(x,1.5,0.5);while(p<0.95)x=x+0.001;p=normcdf(x,1.5,0.5);endpx运行结果:实验结论:此时x应为2.3230。
(3)源程序:clc;clf;x=linspace(-1,5,1000); %(-1,5)等分为1000份p1=normpdf(x,1,0.5);p2=normpdf(x,2,0.5);p3=normpdf(x,3,0.5);plot(x,p1,'r',x,p2,'g',x,p3,'y'); %红色线表示u=1,绿色线表示u=2,黄色线表示u=3 legend('u=1','u=2','u=3'); %图线标记运行结果:2.已知每百份报纸全部卖出可获利14元,卖不出去将赔8元,设报纸的需求量的分布律为试确定报纸的最佳购进量。
(要求使用计算机模拟)解答:源程序:clc; %假设报纸销售与购买均以百份为基本单位,不存在每百份中销售一部分、剩余一部分的情况d=zeros(1,6); %用数组保存报纸销售情况s=zeros(1,5); %s表示不同购进量下的盈利for(n=1:5) %至少应购进1的报纸(百份),至多5,按照不同的购进量分别模拟规定次数的销售状况进行比较for(i=1:365) %模拟一年的销售状况,也可以改变天数x=unifrnd(0,1); %模拟每日报纸销售量(百份)if(x<0.05) %售出0d(1)=d(1)+1;s(n)=s(n)-8*n;elseif(x<0.15) %1d(2)=d(2)+1;s(n)=s(n)+14*1-8*(n-1); elseif(x<0.4) %2d(3)=d(3)+1;if(n<2)s(n)=s(n)+14;elses(n)=s(n)+14*2-8*(n-2);endelseif(x<0.75) %3d(4)=d(4)+1;if(n<3)s(n)=s(n)+14*n;elses(n)=s(n)+14*3-8*(n-3);endelseif(x<0.9) %4d(5)=d(5)+1;if(n<4)s(n)=s(n)+14*n;elses(n)=s(n)+14*4-8*(n-4);endelse %5d(6)=d(6)+1;if(n<5)s(n)=s(n)+14*n;elses(n)=s(n)+14*5;endendendendds运行结果:实验结论:由模拟结果可知,n=300时,收益最大为10666元,故应取最佳购进量为300份。
概率论与数理统计实验实验3 参数估计假设检验实验目的实验内容直观了解统计描述的基本内容。
2、假设检验1、参数估计3、实例4、作业一、参数估计参数估计问题的一般提法X1, X2,…, Xn要依据该样本对参数作出估计,或估计的某个已知函数.现从该总体抽样,得样本设有一个统计总体,总体的分布函数向量). 为F(x, ),其中为未知参数( 可以是参数估计点估计区间估计点估计——估计未知参数的值区间估计——根据样本构造出适当的区间,使他以一定的概率包含未知参数或未知参数的已知函数的真?(一)、点估计的求法1、矩估计法基本思想是用样本矩估计总体矩.令设总体分布含有个m未知参数??1 ,…,??m解此方程组得其根为分别估计参数??i ,i=1,...,m,并称其为??i 的矩估计。
2、最大似然估计法(二)、区间估计的求法反复抽取容量为n的样本,都可得到一个区间,这个区间可能包含未知参数的真值,也可能不包含未知参数的真值,包含真值的区间占置信区间的意义1、数学期望的置信区间设样本来自正态母体X(1) 方差?? 2已知, ?? 的置信区间(2) 方差?? 2 未知, ?? 的置信区间2、方差的区间估计未知时, 方差?? 2 的置信区间为(三)参数估计的命令1、正态总体的参数估计设总体服从正态分布,则其点估计和区间估计可同时由以下命令获得:[muhat,sigmahat,muci,sigmaci] = normfit(X,alpha)此命令以alpha 为显著性水平,在数据X下,对参数进行估计。
(alpha缺省时设定为0.05),返回值muhat是X的均值的点估计值,sigmahat是标准差的点估计值, muci是均值的区间估计,sigmaci是标准差的区间估计.例1、给出两列参数?? =10, ??=2正态分布随机数,并以此为样本值,给出?? 和?? 的点估计和区间估计命令:r=normrnd(10,2,100,2);[mu,sigm,muci,sigmci]=normfit(r);[mu1,sigm1,muci1,si gmci1]=normfit(r,0.01);mu=9.8437 9.9803sigm=1.91381.9955muci=9.4639 9.584310.2234 10.3762sigmci=1.68031.75202.2232 2.3181mu1=9.8437 9.9803sigm1=1.91381.9955muci1=9.3410 9.456210.3463 10.5043sigmci1=1.6152 1.68412.3349 2.4346例2、产生正态分布随机数作为样本值,计算区间估计的覆盖率。
概率论与数理统计课程总结报告——概率论与数理统计在日常生活中的应用摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。
概率论与数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。
本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。
关键词:概率论 数理统计 经济生活 随机变量 贝叶斯公式基本知识§1.1 概率的重要性质1.1.1定义设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率。
概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)1.1.2 概率的一些重要性质(i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥(iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§1.2 随机变量的数字特征1.2.1 数学期望设离散型随机变量X 的分布律为k k p x X P ==}{,k=1,2,…若级数∑∞=1k k kp x绝对收敛,则称级数∑∞=1k k kp x的和为随机变量X 的数学期望,记为)(X E ,即∑=ik k p x X E )(设连续型随机变量X 的概率密度为)(x f ,若积分⎰∞∞-dx x xf )(绝对收敛,则称积分⎰∞∞-dx x xf )(的值为随机变量X 的数学期望,记为)(X E ,即⎰+∞∞-=dx x xf X E )()(定理 设Y 是随机变量X 的函数Y=)(X g (g 是连续函数)(1)如果X 是离散型随机变量,它的分布律为k p X P ==}x {k ,k=1,2,…若k k kp x g ∑∞=1()绝对收敛则有=)Y (E =))((X g E kk kp x g ∑∞=1()(2)如果X 是连续型随机变量,它的分概率密度为)(x f ,若⎰∞∞-dx x f x g )()(绝对收敛则有=)Y (E =))((X g E ⎰∞∞-dx x f x g )()(数学期望的几个重要性质 (1)设C 是常数,则有C C E =)(;(2)设X 是随机变量,C 是常数,则有)()(X CE CX E =; (3)设X,Y 是两个随机变量,则有)()()(Y E X E Y X E +=+; (4)设X ,Y 是相互独立的随机变量,则有)()()(Y E X E XY E =.1.2.2 方差定义 设X 是一个随机变量,若[]})({2X E X E -存在,则称[]})({2X E X E -为X 的方差,记为D (x )即D (x )=[]})({2X E X E -,在应用上还引入量)(x D ,记为)(x σ,称为标准差或均方差。
概率论与数理统计实验报告实验名称: 区间估计姓名 学号 班级 实验日期一、实验名称:区间估计二、实验目的:1. 会用MATLAB 对一个正态总体的参数进行区间估计;2. 会对两个正态总体的均值差和方差比进行区间估计。
三、实验要求:1. 用MATLAB 查正态分布表、χ2分布表、t 分布表和F 分布表。
2. 利用MATLAB 进行区间估计。
四、实验内容:1. 计算α=0.1, 0.05, 0.025时,标准正态分布的上侧α分位数。
2. 计算α=0.1, 0.05, 0.025,n =5, 10, 15时,χ2(n )的上侧α分位数(注:α与n相应配对,即只需计算2220.10.050.025(5),(10),(15)χχχ的值,下同)。
3. 计算α=0.1, 0.05, 0.025,n =5, 10, 15时, t (n )的上侧α分位数。
4. 计算α=0.1, 0.05, 0.025时, F (8,15)的上侧α分位数; 验证:0.050.95(8,15)1(15,8)F F =;计算概率{}312P X ≤≤。
5. 验证例题6.28、例题6.29、例题6.30、习题6.27、习题6.30。
五、实验任务及结果:任务一:计算α=0.1, 0.05, 0.025时,标准正态分布的上侧α分位数。
源程序:%1-1x = norminv([0.05 0.95],0,1)%1-2y = norminv([0.025 0.975],0,1)%1-3z = norminv([0.0125 0.9875],0,1)结果:x =-1.6449 1.6449y =-1.9600 1.9600z =-2.2414 2.2414结论:α=0.1时的置信区间为[-1.6449,1.6449],上侧α分位数为1.6449.α=0.05时的置信区间为[-1.9600,1.9600],上侧α分位数为1.9600.α=0.025时的置信区间为[-2.2414,2.2414],上侧α分位数为2.2414.任务二:计算α=0.1, 0.05, 0.025,n=5, 10, 15时,χ2(n)的上侧α分位数(注:α与n 相应配对,即只需计算2220.10.050.025(5),(10),(15)χχχ的值,下同)。
概率论与数理统计学习报告步入大二,我们开始学习『概率论与数理统计』这门课程。
如名称所述,课程内容分为两部分:概率论和数理统计。
这两部分是有着紧密联系的。
在概率论中,我们研究的随机变量,都是在假定分布已知的情况下研究它的性质和特点;而在数理统计中,实在随机变量分布未知的前提下通过对所研究的随机变量进行重复独立的观察,并对观察值对这些数据进行分析,从而对所研究的随机变量的分布做出推断。
因此,概率论可以说是数理统计的基础。
概率论与数理统计是研究带有随机性的各类问题或模型的基础,以我个人理解,如果说微积分、线性代数只是分析数学、或是说解题的工具,那么概率论才是真正把实际问题转换为数学问题的学问,因为它解决的并非纯数学问题,不是给你一个命题让你去解决,而是恰恰是让你去构思命题,进而构建模型来想法设法解决实际问题。
基于这些基础,概率论与数理统计这门学科应用相当广泛,几乎渗透到所有科学技术领域,工业、农业、国防与国民经济的各个部门都要用到它,例如,在工业生产中人们应用概率统计方法进行质量控制、工业试验设计、产品抽样检查等等,概率论与数理统计的理论与方法也正向各基础学科、工程学科、经济学科渗透产生了各种边缘性的应用学科。
作为一名工科生学好概率论与数理统计有着深远的意义,能够帮助我们将来在生活及工作中分析问题。
概率论有着悠久的历史,它的起源虽然有点不光彩,因与赌博有关。
但正是有了赌博这一现实问题才有了概率学发展的契机。
英雄莫问出处,虽然概率学与数理统计的出身不光彩,但不可否认它在人类发展的进程中起到了不可或缺的作用。
本学期到此,我们就学了四章内容,我就深感生活处处存在概率,深感学以致用的乐趣,虽然在以前高中的时候也学过概率,但是只是浅尝辄止,仅仅满足于应付高考,但仅是不同往日,没有了高考压力,学习概率论与数理统计的兴趣更浓了,因为的确能用于生活中的方方面面,真的不想微积分一样学了,但是生活中却用不了,仅仅开阔了一下思维而已。
概率论与数理统计实验报告
概率论与数理统计实验报告
引言:
概率论与数理统计是数学的两个重要分支,它们在现代科学研究和实际应用中
起着重要的作用。
本次实验旨在通过实际操作,加深对概率论与数理统计的理解,并探索其在实际问题中的应用。
实验一:掷硬币实验
实验目的:通过掷硬币实验,验证硬币正反面出现的概率是否为1/2。
实验步骤:
1. 准备一枚硬币,标记正反面。
2. 进行100次连续掷硬币实验。
3. 记录每次实验中正面朝上的次数。
实验结果与分析:
经过100次掷硬币实验,记录到正面朝上的次数为47次。
根据概率论的知识,理论上硬币正反面出现的概率应为1/2。
然而,实验结果显示正面朝上的次数
并未达到理论值。
这表明在实际操作中,概率与理论可能存在一定的差异。
实验二:骰子实验
实验目的:通过骰子实验,验证骰子的点数分布是否符合均匀分布。
实验步骤:
1. 准备一个六面骰子。
2. 进行100次连续投掷骰子实验。
3. 记录每次实验中骰子的点数。
实验结果与分析:
经过100次投掷骰子实验,记录到骰子点数的分布如下:
1出现了17次;
2出现了14次;
3出现了20次;
4出现了19次;
5出现了16次;
6出现了14次。
根据概率论的知识,理论上骰子的点数分布应符合均匀分布,即每个点数出现的概率相等。
然而,实验结果显示骰子点数的分布并未完全符合均匀分布。
这可能是由于实际操作的不确定性导致的结果差异。
实验三:正态分布实验
实验目的:通过测量人体身高数据,验证人体身高是否符合正态分布。
实验步骤:
1. 随机选择一定数量的被试者。
2. 测量每个被试者的身高。
3. 统计并绘制身高数据的频率分布直方图。
实验结果与分析:
通过测量100名被试者的身高数据,统计得到的频率分布直方图呈现出典型的钟形曲线,符合正态分布的特征。
这与概率论中对正态分布的描述相吻合。
结论:
通过以上实验,我们对概率论与数理统计的一些基本概念和方法有了更深入的
了解。
实验结果也向我们展示了概率与理论之间的差异以及实际操作的不确定性。
概率论与数理统计在科学研究和实际应用中的重要性不言而喻。
通过进一步的学习和实践,我们可以更好地应用概率论与数理统计的知识,解决实际问题,并取得更好的研究成果。