1.3.1有理数加法
- 格式:doc
- 大小:45.50 KB
- 文档页数:4
1.3.1 有理数的加法引言有理数是数学中的一类数,包括整数、分数和零。
有理数的加法是数学中最基本的运算之一,通过对有理数的加法进行学习和运算,可以帮助我们更好地理解数的运算规律和性质。
本文将详细介绍有理数的加法运算,包括加法的定义、加法的性质以及一些实例演示。
有理数的加法定义有理数的加法是指对两个有理数进行相加的操作。
对于任意两个有理数a和b,它们的和记作a + b。
有理数的加法遵循以下规则:•正数 + 正数:两个正数相加,结果是两个数的和,并仍然是正数。
•负数 + 负数:两个负数相加,结果是两个数的和,并仍然是负数。
•正数 + 负数:将两个数的绝对值相减,然后根据绝对值较大的数的符号确定结果的符号。
•零 + 零:零与零相加,结果仍然是零。
有理数加法的性质有理数的加法具有以下性质:交换律加法的交换律是指对于任意两个有理数a和b,a + b的结果等于b + a。
即:对于任意的a和b,有 a + b = b + a。
结合律加法的结合律是指对于任意三个有理数a、b和c,(a + b) + c 的结果等于 a + (b + c)。
即:对于任意的a、b和c,有 (a + b) + c = a + (b + c)。
零元素零是加法中的零元素,对于任意有理数a,有 a + 0 = 0 + a = a。
即:对于任意的a,有 a + 0 = 0 + a = a。
相反数对于任意有理数a,存在一个有理数-b,使得 a + (-a) = (-a) + a = 0。
即:对于任意的a,存在-b,有 a + (-a) = (-a) + a = 0。
有理数加法的实例演示例子1:计算:2 + (-3)。
根据有理数加法的规则,我们需要计算绝对值相加并根据绝对值较大的数的符号确定结果的符号。
绝对值相加为2 + 3 = 5,绝对值较大的数为3,所以结果为负数。
因此,2 + (-3) = -1。
例子2:计算:(-5) + 7。
根据有理数加法的规则,绝对值相加为5 + 7 = 12,绝对值较大的数为7,所以结果为正数。
人教版七年级数学上册:1.3.1《有理数的加法》说课稿一. 教材分析《有理数的加法》是人民教育出版社出版的七年级数学上册第一章第三节第一课时内容。
这一节主要介绍有理数的加法运算方法,是学生学习有理数运算的基础知识。
在本节课中,学生将学习如何利用数轴理解有理数的加法,掌握加法的运算律,并能够熟练地进行有理数的加法运算。
二. 学情分析七年级的学生已经具备了一定的数理基础,对数的运算有一定的了解。
但是,对于有理数的加法运算,学生可能还存在着一些困难,如对有理数的概念理解不深,对数轴的使用不熟练等。
因此,在教学过程中,需要注重对学生基础知识的巩固,以及对数轴使用的指导。
三. 说教学目标1.知识与技能目标:学生能够理解有理数的加法概念,掌握有理数的加法运算方法,能够熟练地进行有理数的加法运算。
2.过程与方法目标:通过数轴的使用,学生能够直观地理解有理数的加法,培养学生的数形结合思想。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生积极思考、合作探究的学习态度。
四. 说教学重难点1.教学重点:有理数的加法运算方法,加法的运算律。
2.教学难点:对有理数加法概念的理解,数轴的使用。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过数形结合的方式理解有理数的加法,培养学生的独立思考能力和合作探究能力。
2.教学手段:使用多媒体课件,辅助学生直观地理解有理数的加法,同时利用数轴帮助学生进行运算。
六. 说教学过程1.导入新课:通过简单的实例,引导学生复习已学的数的概念,为新课的学习做好铺垫。
2.探究新知:引导学生通过数轴观察,发现有理数加法的规律,引导学生总结出加法的运算律。
3.巩固新知:通过例题讲解,让学生动手练习,巩固对加法运算的理解。
4.拓展应用:引导学生将加法运算应用于实际问题中,培养学生的应用能力。
5.小结:对本节课的内容进行总结,强调重点知识。
6.布置作业:布置适量的作业,巩固所学知识。
1.3.1有理数加法的相关运算律一、教学目标:1、让学生熟练掌握三个或三个以上有理数相加的运算,并能灵活运用加法的交换律和结合律使运算简便;培养学生的类比能力。
2、培养学生的观察能力和思维能力,经历对有理数的运算,领悟解决问题应选择适当的方法。
3、使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。
二、学情分析:学生能利用有理数加法法则进行有理数加法运算。
但由于负数引入,学生在计算时候会出现“符号”等错误。
在学习运算律时需不断重复加法法则,以达到运算准确,培养学生运用运算律进行简化运算的能力。
三、教学重点:有理数的加法运算律的理解与掌握。
教学难点:灵活运用加法运算律使运算简便。
四、教学过程:(一)复习回顾问题1.在小学中我们学过哪些加法的运算律?;问题2. 加法的运算律是不是也可以扩充到有理数范围?【设计意图】再现熟悉的简单的内容,使学生能回忆起加法交换律和结合律。
引出本课时的内容。
(二)探究活动,导入新课1、请完成下列计算(1)(-8)+(-9)(-9)+(-8)(2) 4+(-7)(-7)+4(3) 6+(-2)(-2)+6(4) [2+(-3)]+(-8) 2+[(-3)+(-8)](5) 10+[(-10)+(-5)] [10+(-10)]+(-5)问题3:说一说,你发现了什么?小组讨论。
让小组代表发言,师板书:在有理数的运算中,加法交换律和结合律仍成立。
加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
(a+b)+c=a+(b+c)【设计意图】放手让学生去探究,合作学习。
渗透字母表示数的意识,体验公式表达的简洁美和对称美(三)、举例应用,巩固课堂例2、计算:16+(-25)+24+(-35);解:原式=16+24+(-25)+(-35)=[(16+24) ] +[(-25)+(-35)]=40+(-60)=-20问题4:此题你是怎样使计算简化的?依据是什么?2、利用简便算法计算下列各题( 1 ) 999+(- 120)+ 1+20( 2 )(-2.48)+4.33+( -7.52 )+( -4.33 ) (3) 65+(-71)+(-61)+(-76) 师生共同完成。
人教版七年级数学上册1.3.1《有理数的加法》教学设计一. 教材分析人教版七年级数学上册1.3.1《有理数的加法》是学生在学习了有理数的概念之后,进一步探讨有理数之间的运算。
本节内容通过实例引入有理数的加法,使学生掌握有理数加法的法则,并能灵活运用这些法则进行计算。
教材中提供了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数的概念和基本的运算有一定的了解。
但是,对于有理数的加法,学生可能还存在一些困惑,如符号的判断、运算顺序等。
因此,在教学过程中,教师需要耐心引导,让学生逐步理解和掌握有理数加法的运算方法。
三. 教学目标1.知识与技能:使学生掌握有理数加法的运算方法,能正确进行有理数的加法计算。
2.过程与方法:通过实例分析,让学生学会运用有理数加法法则解决实际问题。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.重点:有理数加法的运算方法。
2.难点:符号的判断和运算顺序。
五. 教学方法1.情境教学法:通过生活实例引入有理数加法,让学生在实际情境中感受和理解有理数加法的意义。
2.引导发现法:教师引导学生观察、分析、总结有理数加法的运算规律。
3.合作学习法:学生分组讨论,共同解决问题,培养学生的团队合作能力。
六. 教学准备1.教学课件:制作课件,展示有理数加法的实例和运算规律。
2.练习题:准备一些有关有理数加法的练习题,用于巩固所学知识。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用生活中的实例,如购物时找零,引入有理数加法的概念。
引导学生观察实例中的有理数加法运算,激发学生的学习兴趣。
2.呈现(10分钟)展示教材中的例题,引导学生观察和分析例题中的有理数加法运算。
教师讲解例题,让学生理解有理数加法的运算方法,并总结出有理数加法的法则。
3.操练(10分钟)学生分组讨论,共同解决一些有关有理数加法的练习题。
1.3.1 有理数的加法《第2课时有理数加法的运算律及运用》教案【教学目标】1.理解有理数加法的运算律,并能熟练的运用运算律简化运算;(重点) 2.经历探索有理数加法的运算律的过程,体验探索归纳的数学方法.【教学过程】一、情境导入宋国有个非常喜欢猴子的老人.他养了一群猴子,整天与猴子在一起,因此能够懂得猴子们的心意.因为粮食缺乏,老人想限制口粮.那天,他故意先对猴子们说:“以后给你们吃桃子,早晨三颗晚上四颗,好不好?”众猴子听了都很愤怒.老人马上改口说:“那就早上四颗晚上三颗吧,够了吗?”众猴子非常高兴,大蹦大跳起来.大家听完故事,请说说你的看法.二、合作探究探究点一:加法运算律计算:(1)31+(-28)+28+69;(2)16+(-25)+24+(-35);(3)(+635)+(-523)+(425)+(1+123).解析:(1)把互为相反数的两数相加;(2)可把符号相同的数相加;(3)可把相加得到整数的数相加.解:(1)31+(-28)+28+69=31+[(-28)+28]+69=31+0+69=100;(2)16+(-25)+24+(-35)=16+24+(-25)+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20;(3)(+635)+(-523)+(425)+(1+123)=(635+425)+(-523)+(223)=11+(-3)=8.方法总结:合理地运用有理数的加法运算律可使计算简化.在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有互为相反数的两数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.探究点二:有理数加法运算律的应用某公路养护小组乘车沿南北方向巡视维修,某天早晨他们从A 地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下.(单位:km)+18,-9,+7,-14,+13,-6,-8.(1)B 地在A 地何方,相距多少千米?(2)若汽车行驶1km 耗油a L ,求该天耗油多少L?解析:(1)首先把题目的已知数据相加,然后根据结果的正负即可确定B 地在A 何方,相距多少千米;(2)首先把所给的数据的绝对值相加,然后乘以a 即可求解.解:(1)(+18)+(-9)+(+7)+(-14)+(+13)+(-6)+(-8)=[(+18)+(+7)+(+13)]+[(-9)+(-14)+(-6)+(-8)]=38+(-37)=1(km)故B 地在A 地正北,相距1千米;(2)该天共耗油:(18+9+7+14+13+6+8)a =75a (L).答:该天耗油75a L.方法总结:解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,其次是要正确理解题目意图,选择正确的方式解答.三、板书设计有理数加法运算律⎩⎨⎧交换律:a +b =b +a 结合律:(a +b )+c =a +(b +c )【教学反思】本节课教学以故事引入,在学生已有的知识经验上建构新知,主动探索有理数加法交换律和结合律,从而激发他们学习的兴趣,使他们由被动地接受学习变成一种主动探索获取知识.课堂中学生通过自主互助交流,不断地总结规律、方法和解题技巧.1.3有理数的加减法《1.3.1 有理数的加法》同步练习能力提升1.如果两个有理数的和是负数,那么这两个数()A.一定都是负数B.一定是0与一个负数C.一定是一个正数与一个负数D.可能是一个正数与一个负数,可能都是负数,也可能是0和一个负数2.有理数a,b在数轴上的位置如图,则a+b的值()A.大于0B.小于0C.小于aD.大于b3.若a与1互为相反数,则|a+1|等于()A.2B.-2C.0D.-14.若三个有理数a+b+c=0,则()A.三个数一定同号B.三个数一定都是0C.一定有两个数互为相反数D.一定有一个数等于其余两个数的和的相反数5.若x的相反数是-2,|y|=4,则x+y的值为.6.绝对值小于2 016的整数有个,它们的和是.7.计算:(-1)+(+2)+(-3)+(+4)+…+(-99)+(+100)+…+(+2 014)+(-2 015)+(+2 016)+(-2 017)= .8.计算:(1)(-5)+(-4);(2)|(-7)+(-2)|+(-3);(3)(-0.6)+0.2+(-11.4)+0.8;(4).9.在抗洪抢险中,人民解放军驾驶冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,规定向东为正,当天航行记录如下(单位:km):16,-8,13,-9,12,-6,10.(1)B地在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.45 L,则这一天共消耗了多少升油?★10.阅读(1)小题中的方法,计算第(2)小题.(1)-5+17.解:原式==[(-5)+(-9)+(-3)+17]+=0+=-.(2)上述这种方法叫做拆项法,依照上述方法计算:+4 034+.创新应用★11.用[x]表示不超过x的整数中最大的整数,如[2.23]=2,[-3.24]=-4.请计算:(1)[3.5]+[-3];(2)[-7.25]+.★12.在如图所示的圆圈内填上不同的整数,使得每条线上的3个数之和为0,写出三种不同的答案.参考答案能力提升1.D2.A从数轴上可知:-1<a<0,b>1,即a,b异号,且|b|>|a|,故a+b>0.3.C4.D5.-2或6因为|4|=4,|-4|=4,所以y=±4.又因为x的相反数为-2,所以x=2.再将x,y的值代入x+y求值.6.4 03107.-1 009原式=[(-1)+(+2)]+[(-3)+(+4)]+…+[(-99)+(+100)]+…+[(-2013)+(+2014)]+[(-2015)+(+2016)]+(-2017)=-1009.8.解:(1)(-5)+(-4)=-(5+4)=-9.(2)|(-7)+(-2)|+(-3)=|-9|+(-3)=9+(-3)=6.(3)(-0.6)+0.2+(-11.4)+0.8=(0.2+0.8)+[(-0.6)+(-11.4)]=1+(-12)=-11.(4)=(-8)+ (+4)=-4.9.解:(1)16+(-8)+13+(-9)+12+(-6)+10=28(km),B地在A地的东侧,且两地相距28km.(2)|16|+|-8|+|13|+|-9|+|12|+|-6|+|10|=74(km),74×0.45=33.3(L),这一天共消耗油33.3L.10.解:(2)原式=+4034+=[(-2017)+(-2016)+(-1)+4034]+=0+=-2.创新应用11.解:(1)原式=3+(-3)=0.(2)原式=-8+(-1)=-9.12.解:本题答案不唯一,如:1.3.1 有理数的加法《第2课时有理数加法的运算律及运用》导学案【学习目标】:1.能概括出有理数的加法交换律和结合律.2.灵活熟练地运用加法交换律、结合律简化运算.【重点】:掌握有理数的加法交换律和结合律.【难点】:运用加法交换律、结合律简化运算.【自主学习】一、知识链接1.填空:3+2=2+3 这里运用了加法的( )25+39+75=(____ +_____ )+____ =___ +(_____+_____)这里运用了加法的()2.有理数的加法法则:⑴同号两数相加,___________________________________;⑵异号两数相加,绝对值相等时,___________;绝对值不相等时,____________________________________________.⑶一个数同0相加,_________________ .3.计算(1)(-15)+(-3)(2)6+(-2.3)(3)(-0.75)+0二、新知预习1.试一试:(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算的结果:□+○和○+□(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算的结果:(□+○)+◇和□+(○+◇)2.你能发现什么?请说说自己的猜想.3.概括:通过实例说明加法的交换律和结合律对于有理数同样适用.加法的交换律:文字概括:字母表示:加法的结合律:文字概括:字母表示:三、自学自测计算:(1)16 +(-25)+ 24 +(-35);(2)(—2.48)+(+4.3)+(—7.52)+(—4.3)四、我的疑惑_________________________________________________________________ ____________________________________________________________【课堂探究】一、要点探究探究点1:加法运算律问题1:观察下面的算式,你们能再举一些数字也符合这样的结论吗?试试看!(1)3+(-5)=-2,-5+3=-2;(2)[3+(-5)]+(-7)=-9,3+[(-5)+(-7)]=-9.问题2:通过上面的计算和对比你能发现什么?你能用字母表示出这个规律吗?要点归纳:加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)例1:计算:16+(-25)+24+(-35)思考:怎样使计算简化的?这样做的根据是什么?要点归纳:把正数与负数分别相加,从而计算简化,这样做既运用加法交换律又运用加法的结合律.例2 计算(1)(-2.48)+4.33+(-7.52)+(-4.33)(2)65+(-76)+(-61)思考:回顾以上例题的解答,将怎样的加数结合在一起,可使运算简便?要点归纳:(1)互为相反数的两个数可先相加;(2)几个数相加得整数时,可先相加;(3)同分母的分数可以先相加;(4)符号相同的数可以先相加.探究点2:有理数加法运算律的应用例3 每袋小麦的标准重量为90千克,10袋小麦称重记录如图所示,与标准重量比较,10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少?例4 某一出租车一天下午以文化中心为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+9,-3,-5,+4,-8,+6,-3,-6,-4,+10.(1)将最后一名乘客送到目的地时出租车离出发地多远?在出发地的什么方向上?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?某日小明在一条南北方向的公路上跑步,他从A地出发,每隔10分钟记录下自己的跑步情况(向南为正方向,单位:米):-1008,1100,-976,1010,-827,9461小时后他停下来休息,此时他在A地的什么方向?距A地多远?小明共跑了多少米?【当堂检测】1.计算:(1)23+(-17)+6+(-22);(2)(-2)+3+1+(-3)+2+(-4).2.计算:3.上周五股民新民买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元):则在星期五收盘时,每股的价格是多少?4.10筐苹果,以每筐30千克为基准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2, -4, 2.5, 3, -0.5, 1.5, 3, -1, 0, -2.5.问这10筐苹果总共重多少千克?。
1.3.1有理数加法
教学内容:
教科书第16—18页1.3.1有理数加法(第一课时)
教学目标:1,在现实背景中理解有理数加法的意义.
2,经历探索有理数加法法则的过程,理解有理数的加法法则.3,能积极地参与探究有理数加法法则的活动,并学会与他人交流合作.
4,能较为熟练地进行有理数的加法运算,并能解决简单的实际间题.
5,在教学中适当渗透分类讨论思想
教学重点和难点:
重点:异号两数相加
难点:和的符号的确定
教学方法:
启发引导,讲练结合
教学过程:
(一)、创设情境,引入新知
回顾用正负数表示数量的实际例子;
在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?
师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题.(出示课题)
借助数轴来讨论有理数的加法.I
一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作-5 m .
(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义.(2)交流汇报.(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)
(3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?
(4)在学生归纳的基础上,教师出示有理
数加法法则.
有理数加法法则:
1,同号两数相加,取相同的符号,并把绝对值相加.
2,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
3,一个数同。
相加,仍得这个数.
例1计算:
(1)(-3)+(-9); (2)(-5)+13;
(3)0十(-7); (4)(-4.7)+3.9.
教师板演,让学生说出每一步运算所依据的法则.请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等)
(二)、巩固练习:教材18页练习1、2
拓展练习:一、填空题:
1._____+15=23
2. 18+____=12
3.(-9)+_____=-20
4._____+(-9)=-4
5.____+19=0
6.(-2)+____=12
(1)(-3)+(-8)= ; (2)9+(-5)= ;
(3)5+(-3)= ; (4)7+(-7)= ;
(5)8+(-1)= ; (6)(-8)+1 = ;
(7)(-6)+0 = ; (8)0+(-2) = ;
二、计算题:
(1)(+3)+(+4) (2)121
+(-1.5); (3)21+(-32
).
(4)(-31)+(-32
)(5)(-2.6)+(-8.7)
(6)-(-2)+(-6)
三、解答题
1.已知│a │= 8,│b │= 2.
计算(1)当a 、b 同号时,求a+b 的值;
(2)当a 、b 异号时,求a+b 的值.
(3)求31
3的相反数与-22
3的绝对值的和.
(4)某市一天早晨的气温是10℃,上午上升2℃,半夜又下降15℃,则半夜的气温是多少.
2.已知│x │=4,│y │=5,则│x+y │的值为 ( )
A .1
B .9
C .9或1
D .±9或±1
(三)课后小结:总结有理数加法法则
(四)课后作业:24页第一题
(五)板书设计:
(六)、课后反思:。