第9章_隐马尔可夫模型案例
- 格式:ppt
- 大小:7.12 MB
- 文档页数:99
隐马尔可夫模型及其典型应⽤【原】隐马尔可夫模型及其典型应⽤----by stackupdown ⽬录前⾔本⽂要介绍的是隐马尔可夫模型及其应⽤。
我们从⼀个史学家开始,假设他在看某国的史料时,⾟⾟苦苦地统计了上下数年,发现了粮⾷的增长和下降的⼀段,他会结合历史去分析⼀些问题。
但是如果史书的其他记载得太少,他就找不到问题的所在,所以⽆从下⼿。
⼜⽐如,⼀个⼈出去旅⾏,相信民间的传说,海藻的湿度跟未来的天⽓有关,未来不同天⽓,海藻的湿度不⼀样,但是海藻有⼀定概率是错的。
尽管如此,他还是想要根据这个来估计明天天⽓的可能性[1]。
这两个问题是跟时间相关的问题,有些这样的问题是解决不了的,有些则不然,我们在接下来的⽂章⾥会讲到相关问题的数学抽象和解决⽅法。
正⽂⼀、随机过程我们在⾃然世界中会遇到各种不确定的过程,它们的发⽣是不确定的,这种过程称为随机过程。
像花粉的布朗运动、股票市值、天⽓变化都是随机过程[2]。
马尔科夫随机过程是⼀类随机过程。
它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。
该过程有以下的性质:指定⼀个时间点,则未来时间的状态只与现在有关,跟它的过去没有关系。
在现实⽣活中的马尔科夫过程是我们⼈为抽象进⾏简化的,如果我们认为⼀个事物的未来跟过去的变化没有太⼤关系,那么我们就可以把它抽象成马尔科夫过程[2]。
⽐如我们的天⽓,很不严谨地说,可以抽象成马尔科夫过程,从今天晴天转移到明天多云、下⾬的转移只取决于今天的天⽓,⽽跟前天的天⽓⽆关。
如下图,这样我们按照概率的知识就可以得到今天下⾬,明天放晴的概率:P(明天晴|今天⾬)=0.4 这就当做是我们最简单的⼀个模型了[3]。
马尔科夫过程的假设很简单,就是概率不依赖于之前的序列,写成公式:就好像⼀条鱼不知道⾃⼰之前的运动轨迹,只知道⾃⼰在哪⾥,接着它就会按照现在的位置随机选择⼀个⽅向去游动了。
鱼的前前后后的运动形成了⼀条链。
在⼀个马尔科夫模型中,我们可以利⽤它来计算概率,⽽且由于它是单个状态的转移,我们看起来它就像是⼀条链⼀样,状态从头到尾移动。
隐马尔科夫模型在金融风险管理中的应用案例隐马尔科夫模型(Hidden Markov Model,HMM)是一种用于描述随机过程的统计模型,它可以描述一个含有隐藏状态的马尔科夫链。
在金融领域,隐马尔科夫模型被广泛应用于风险管理和预测。
本文将介绍隐马尔科夫模型在金融风险管理中的应用案例,并探讨其优势和局限性。
一、HMM在金融市场波动预测中的应用HMM可以用于对金融市场的波动进行预测。
通过对历史数据进行分析,可以建立HMM模型来描述金融市场的波动特征。
利用HMM模型,可以预测金融市场未来一段时间内的波动情况,为投资者提供决策依据。
例如,利用HMM模型可以对股票价格的未来走势进行预测,帮助投资者制定交易策略。
二、HMM在信用风险评估中的应用在金融风险管理中,信用风险是一个重要的问题。
利用HMM模型,可以对个体或机构的信用风险进行评估。
通过分析历史数据和市场信息,可以建立HMM模型来描述不同借款人或机构的信用状态转移过程,从而对其未来的信用风险进行预测。
这对于银行等金融机构来说,是非常重要的风险管理工具。
三、HMM在市场情绪分析中的应用金融市场的波动往往受到投资者情绪的影响。
利用HMM模型,可以对市场情绪进行分析和预测。
通过分析市场交易数据和相关新闻事件,可以建立HMM模型来描述投资者情绪的转移过程,从而预测市场未来的情绪变化。
这对于投资者来说,可以帮助他们更好地把握市场风向,做出更明智的投资决策。
四、HMM在风险事件识别中的应用金融市场存在着各种风险事件,如市场风险、操作风险、信用风险等。
利用HMM模型,可以对这些风险事件进行识别和监测。
通过对市场数据和风险事件的关联性进行建模,可以建立HMM模型来描述不同风险事件之间的转移过程,从而帮助金融机构及时识别和应对各种风险。
在金融风险管理中,HMM模型的应用具有一定的优势。
首先,HMM能够较好地描述时间序列数据和状态转移过程,适用于金融市场的复杂波动情况。
其次,HMM模型灵活性较强,可以根据实际情况进行参数调整和模型优化。
隐马尔可夫模型维基百科,自由的百科全书跳转到:导航, 搜索隐马尔可夫模型状态变迁图(例子)x—隐含状态y—可观察的输出a—转换概率(transition probabilities)b—输出概率(output probabilities)隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。
其难点是从可观察的参数中确定该过程的隐含参数。
然后利用这些参数来作进一步的分析,例如模式识别。
在正常的马尔可夫模型中,状态对于观察者来说是直接可见的。
这样状态的转换概率便是全部的参数。
而在隐马尔可夫模型中,状态并不是直接可见的,但受状态影响的某些变量则是可见的。
每一个状态在可能输出的符号上都有一概率分布。
因此输出符号的序列能够透露出状态序列的一些信息。
目录[隐藏]∙ 1 马尔可夫模型的演化∙ 2 使用隐马尔可夫模型o 2.1 具体实例o 2.2 隐马尔可夫模型的应用∙ 3 历史∙ 4 参见∙ 5 注解∙ 6 参考书目∙7 外部连接[编辑]马尔可夫模型的演化上边的图示强调了HMM的状态变迁。
有时,明确的表示出模型的演化也是有用的,我们用x(t1)与x(t2)来表达不同时刻t1和t2的状态。
在这个图中,每一个时间块(x(t), y(t))都可以向前或向后延伸。
通常,时间的起点被设置为t=0 或t=1.另外,最近的一些方法使用Junction tree算法来解决这三个问题。
[编辑]具体实例假设你有一个住得很远的朋友,他每天跟你打电话告诉你他那天作了什么.你的朋友仅仅对三种活动感兴趣:公园散步,购物以及清理房间.他选择做什么事情只凭天气.你对于他所住的地方的天气情况并不了解,但是你知道总的趋势.在他告诉你每天所做的事情基础上,你想要猜测他所在地的天气情况.你认为天气的运行就像一个马尔可夫链.其有两个状态 "雨"和"晴",但是你无法直接观察它们,也就是说,它们对于你是隐藏的.每天,你的朋友有一定的概率进行下列活动:"散步", "购物", 或 "清理".因为你朋友告诉你他的活动,所以这些活动就是你的观察数据.这整个系统就是一个隐马尔可夫模型HMM.你知道这个地区的总的天气趋势,并且平时知道你朋友会做的事情.也就是说这个隐马尔可夫模型的参数是已知的.你可以用程序语言(Python)写下来:states = ('Rainy', 'Sunny')observations = ('walk', 'shop', 'clean')start_probability = {'Rainy': 0.6, 'Sunny': 0.4}transition_probability = {'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},}emission_probability = {'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},}在这些代码中,start_probability代表了你对于你朋友第一次给你打电话时的天气情况的不确定性(你知道的只是那个地方平均起来下雨多些).在这里,这个特定的概率分布并非平衡的,平衡概率应该接近(在给定变迁概率的情况下){'Rainy': 0.571, 'Sunny': 0.429}< transition_probability表示基于马尔可夫链模型的天气变迁,在这个例子中,如果今天下雨,那么明天天晴的概率只有30%.代码emission_probability表示了你朋友每天作某件事的概率.如果下雨,有 50% 的概率他在清理房间;如果天晴,则有60%的概率他在外头散步.这个例子在Viterbi算法页上有更多的解释。