初等模型(一)
- 格式:ppt
- 大小:664.02 KB
- 文档页数:48
湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
A 题 飞机的降落曲线在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线。
根据经验,一架水平飞行的飞机,其降落曲线是一条S 形曲线。
如下图所示,已知飞机的飞行高度为h ,飞机的着陆点为原点O ,且在整个降落过程中,飞机的水平速度始终保持为常数u 。
出于安全考虑,飞机垂直加速度的最大绝对值不得超过g /10,此处g 是重力加速度。
(1)若飞机从0x x 处开始下降,试确定出飞机的降落曲线; (2)求开始下降点0x 所能允许的最小值。
B 题 铅球的投掷问题众所周知,铅球的投掷运动是运动员单手托住7.264kg(16磅)重的铅球在直径为2.135m 的投掷圆内将铅球掷出并且使铅球落入开角为45o 的有效扇形区域内。
以铅球的落地点与投掷圆间的距离度量铅球投掷的远度,并以铅球投掷远度的大小评定运动员的成绩。
在铅球的训练和比赛中,铅球投掷距离的远与近是人们最关心的问题。
而对于教练和运动员最为关心的问题是如何使铅球掷得最远。
影响铅球投掷远度的因素有哪些?建立一个数学模型,将预测的投掷距离表示为初始速度和出手角度的函数。
最优的出手角度是什么?如果在采用你所建议的出手角度时,该运动员不能使初始速度达到最大,那么他应该更关心出手角度还是出手速度?应该怎样折中?哪些是影响远度的主要因素?在平时训练中,应该更注意哪些方面的训练?试通过组建数学模型对上述问题进行分析,给教练和运动员以理论指导。
参考数据资料如下:实验报告:一、问题分析在研究飞机下落过程中,需要分析飞机下降的降落曲线,根据经验应该是一条五次多项式。
以降落点为原点O建立直角坐标系。
第一节初等模型解决实际问题,应尽可能用简单而且初等的方法建模,方法简单而初等,容易被更多的人理解接受和采用,就更有价值。
下面举的例子,虽然不是很复杂,但告诉我们,只要仔细地观察生活,你就会发现,在我们周围处处存在着可用数学解决的问题。
一、代数法建模[例8.1.1] 椅子问题在我们周围的日常生活中,到处都会遇到数学问题,就看我们是否留心观察和善于联想,比如有这样一个问题(你或许认为这个问题与数学毫不相干):4条腿长度相等的椅子放在起伏不平的地面上,4条腿能否一定同时着地?模型假设:(1)椅子的四条腿一样长,4脚的连线是正方形。
(2)地面是数学上的光滑曲面,即沿任意方向,切面能连续移动。
建模的关键在于恰当地寻找表示椅子位置的变量,并把要证明的“着地”这个结论归结为某个简单的数学关系。
假定椅子中心不动,4条腿着地点视为几何学上的点,用A、B、C、D表示,将AC、BD连线看作x轴、y轴,建立如图8.1.1所示的坐标系。
引入坐标系后,将几何问题代数化,即用代数方法去研究这个几何问题。
图8.1.1人们习惯于,当一次放不平稳椅子时,总是转动一下椅子(这里假定椅子中心不动),因而将转动椅子联想到坐标轴的旋转。
设为对角线AC转动后与初始位置x轴夹角,如果定义距离为椅脚到地面的竖直长度。
则“着地”就是椅脚与地面的距离等于零,由于椅子位于不同位置,椅脚与地面距离不同,因而这个距离为的函数,设──A、C两脚与地面距离之和;──B、D两脚与地面距离之和。
因地面光滑,显然,连续,而椅子在任何位置总有三只脚可同时“着地”,即对任意的,,总有一个为零,有。
不失一般性,设于是椅子问题抽象成如下数学问题:假设:,是的连续函数,且对任意,。
求证:存在,使得。
证明:令,则将椅子转动,对角线互换,由和,有,,从而。
而在上连续,由介值定理,必存在使得。
即。
又因对任意,从而。
即在方向上椅子四条腿能同时“着地”。
椅子问题的解决是学习运用类比法的一个很好实例,从中可受到一定启发,学习到一些建模技巧:转动椅子与坐标轴旋转联系起来;用一元变量表示转动位置;巧妙地将“距离”用的函数表示,而且只设两个函数,(注意椅子有4只脚!);由三点定一平面得到;利用转动并采用了介值定理使得问题解决得非常巧妙而简单。
数学建模初等模型
数学建模是将现实世界的问题抽象化为数学模型,并利用数学方法和技巧来分析和解决这些问题的过程。
在数学建模中,初等模型是指使用基本的数学概念和方法来描述和解决问题的模型。
常见的初等模型包括线性模型、指数模型、对数模型、多项式模型等。
线性模型是最简单的初等模型之一,它假设变量之间的关系是线性的,可以用直线来表示。
指数模型描述的是变量之间的指数关系,对数模型则描述的是变量之间的对数关系。
多项式模型可以用多项式函数来描述变量之间的关系。
使用初等模型进行数学建模时,我们需要确定问题中的关键变量和它们之间的关系,然后建立数学方程或函数来表示这些关系。
通过对这些方程或函数进行求解和分析,我们可以得到问题的解答或结论。
初等模型的优点是简单易懂,容易理解和应用。
它适用于一些简单的实际问题,例如人口增长、物体运动、投资收益等。
但初等模型也有一些限制,它对问题的描述和解决方法有一定的限制性,不能很好地处理复杂的问题。
总之,初等模型是数学建模中的一种简单模型,通过使用基本的数学
概念和方法来描述和解决问题。
它易于理解和应用,适用于一些简单的实际问题。
但在处理复杂问题时,可能需要借助更高级的数学模型和技巧来进行建模和分析。
一些经典初等数学模型
1. 走迷宫:在一个有迷宫的场地内,从起点到终点,找到最短的路线。
2. 鸡兔同笼:已知笼子里面有若干只鸡和兔子,总共有头和只脚,求鸡和兔子的数量。
3. 填数字:在一个九宫格里填入数字1到9,每行、每列、每个宫内数字互不重复。
4. 数列求和:给定一个数列,求其中任意连续段的和,或者整个数列的和。
5. 球与盒子:有若干个不同颜色的球和盒子,球可以放入盒子中,求有多少种不同的放法。
6. 求根公式:已知二次方程的系数,求解出这个二次方程的根。
7. 绳子问题:两根不同长度的绳子分别燃烧完的时间不同,如何用这两根绳子在规定时间内测量出一个15分钟的时间。
8. 凸包问题:给定一些点的坐标,如何找到能够包住所有点的最小凸多边形。
9. 最小生成树:给定一个连通的无向图,找到一棵包含所有节点的生成树,使得边的权值之和最小。
10. 铺地砖:已知一个矩形地面,和两种不同形状的砖块,如何将这些砖块拼接在一起,使得地面完全被铺满。
第一章 初等方法建模如果研究对象的机理比较简单,一般用静态、线性、确定性模型描述就能达到建模目的时,我们基本上可以用初等数学的方法来构造和求解模型。
通过下面介绍的若干例子能够看到,用很简单的数学方法已经可以解决一些饶有兴味的实际问题。
需要强调的是,如果对于某个实际问题可以用初等的方法解决,就不要用更高等的方法。
§1 双层玻璃窗的功效背景 将双层玻璃窗与用同样多材料做成的单层窗的热传导进行对比,对双层窗能减少多少热量损失给出定量分析结果。
模型假设1、热量的传播只有传导,没有对流,即假定窗户的密封性能很好,两层玻璃间的空气是不流动的。
2、室内温度1T 和室外温度2T 保持不变,热传导过程已处于稳定状态,即沿热传导方向,单位时间通过单位面积的热量是常数。
3、玻璃材料均匀,热传导系数是常数。
模型构成与求解记 a T —内层玻璃的外侧温度b T —外层玻璃的内侧温度1K —玻璃的热传导系数2K —空气的热传导系数空气Q —单位时间通过双层窗单位面积的热量'Q —单位时间通过单层窗单位面积的热量 由热传导过程的物理定律:dT K Q ∆=,得到 dT T K l T T K d T T K Q b b a a 21211-=-=-= (1) d T T K Q 2211'-= (2) 从(1)中消去b a T T ,,可得dl h K K h S S d T T K Q ==+-=,,)2()(21211 (3) 22+='S Q Q (4) 显然Q Q '<,且S 越大,比例越悬殊,331108~104--⨯⨯=K (焦耳/CM ·秒·度),42105.2-⨯=K (焦耳/CM ·秒·度),于是31~1621=K K ,做最保守的估计,即取1621=K K ,由(3)、(4)即有 dl h h Q Q =+=',181 (5)下面是经典古文名句赏析!!不需要的朋友,可以下载后编辑删除!!谢谢经典古文名篇(一);1.陋室铭刘禹锡(唐)字梦得《刘梦得文集》;山不在高,有仙则名;2.马说韩愈(唐)字退之《昌黎先生集》;世有伯乐,然后有千里马;马之千里者,一食(shí)或尽粟一石(dàn);策之不以其道,食(sì)之不能尽其材(才),鸣之;3.师说韩愈(唐);古之学者必有师;嗟乎!师道之不传也久矣!欲人之无惑也难矣!古之圣;圣人无常师;李氏子蟠,年十七经典古文名篇(一)1. 陋室铭刘禹锡(唐)字梦得《刘梦得文集》山不在高,有仙则名。