数学建模初等模型
- 格式:ppt
- 大小:1.47 MB
- 文档页数:47
第二章 初等模型如果研究对象的机理比较简单,一般用静态、线性、确定性模型描述就能达到建模的目的时,我们基本上可以用初等数学的方法来构造和求解模型。
通过下面的几个实例我们能够看到,用很简单的数学方法就可以解决一些有趣的实际问题。
需要强调的是,衡量一个模型的优劣完全在于它的应用效果,而不是它看它采用了多么高深的数学方法。
进一步说,对于某个实际问题我们如果能够用初等方法和所谓的高等方法建立了两个模型,而它们的应用效果相差无几的话,那么受人们欢迎并采用的,一定是前者而非后者。
§2.1公平的席位分配设有A 、B 两个单位,各有人数1p 、2p 个,现在要求按人数选出q 个代表召开一次代表会议。
那么怎样分配这q 个席位呢?一般的方法是令:q p p p q 211*1+= q p p p q 212*2+= (2.1)若*1q ,*2q 恰好是两个整数,就以*1q ,*2q 分别作为A ,B 两个单位的席位数,即可以获得一个完全合理的分配方案。
当*1q ,*2q 不是两个整数时,那么怎样分配才合理呢?下面我们就来讨论这个问题。
首先给出一种自然的想法,也就是通常所执行的方法。
即由(2.1)式计算出的*1q ,*2q ,用][*i i q q =表示*i q 的整数部分。
当*1q -1q >*2q -2q 时,则用1q +1与2q 分别作为A ,B 两个单位的席位数;当*2q -2q >*1q -1q 时,则用1q 与2q +1分别作为A ,B 两个单位的席位数;而当*2q -2q =*1q -1q 时,就只能由A ,B 两个单位协商来确定那多余的一个席位了。
这个方法的优点是简单、方便,并被很多人所接受,同时也容易推广到m (m >2)个单位的席位分配问题。
但是这个分配方案是存在弊病的,它有明显的不合理性。
例1 某学校有3个系共200名学生,其中甲系100名,乙系60名,丙系40名。
若学生代表会议设20个席位,公平而又简单的席位分配办法是按学生人数的比例分配,显然甲乙丙三系分别应占有10、6、4个席位。
数学建模初等模型
数学建模是将现实世界的问题抽象化为数学模型,并利用数学方法和技巧来分析和解决这些问题的过程。
在数学建模中,初等模型是指使用基本的数学概念和方法来描述和解决问题的模型。
常见的初等模型包括线性模型、指数模型、对数模型、多项式模型等。
线性模型是最简单的初等模型之一,它假设变量之间的关系是线性的,可以用直线来表示。
指数模型描述的是变量之间的指数关系,对数模型则描述的是变量之间的对数关系。
多项式模型可以用多项式函数来描述变量之间的关系。
使用初等模型进行数学建模时,我们需要确定问题中的关键变量和它们之间的关系,然后建立数学方程或函数来表示这些关系。
通过对这些方程或函数进行求解和分析,我们可以得到问题的解答或结论。
初等模型的优点是简单易懂,容易理解和应用。
它适用于一些简单的实际问题,例如人口增长、物体运动、投资收益等。
但初等模型也有一些限制,它对问题的描述和解决方法有一定的限制性,不能很好地处理复杂的问题。
总之,初等模型是数学建模中的一种简单模型,通过使用基本的数学
概念和方法来描述和解决问题。
它易于理解和应用,适用于一些简单的实际问题。
但在处理复杂问题时,可能需要借助更高级的数学模型和技巧来进行建模和分析。