提高改造体积的新裂缝转向压裂技术及其应用
- 格式:doc
- 大小:25.00 KB
- 文档页数:3
段内多缝体积压裂技术在女深002-8-H1井应用
向凌云;王素兵;齐天俊;周文高;曾亚楠
【期刊名称】《钻采工艺》
【年(卷),期】2015(000)001
【摘要】段内多裂缝体积压裂是在压裂过程中加入暂堵剂临时封堵前次裂缝迫使
流体转向来压开多条新裂缝的新技术,是提高单井有效改造体积,从而提高单井产量和最终采收率的重要手段。
女深002-8-H1井储层改造段具有岩性较致密、基
质渗透率低、储层物性较差、非均质性强、裸眼井段长的特点,该井在工具分段的基础上,辅以段内暂堵实现段内多裂缝体积压裂改造,压裂后最终获得了高产气流。
【总页数】3页(P119-121)
【作者】向凌云;王素兵;齐天俊;周文高;曾亚楠
【作者单位】川庆钻探工程有限公司井下作业公司;川庆钻探工程有限公司井下作
业公司;川庆钻探工程有限公司井下作业公司;川庆钻探工程有限公司井下作业公司;川庆钻探工程有限公司地质勘探开发研究院
【正文语种】中文
【相关文献】
1.缝内填砂暂堵分段体积压裂技术在页岩气水平井中的应用 [J], 梁兴;朱炬辉;石孝志;张俊成;刘臣;何封;李然
2.段内暂堵转向缝网压裂技术在页岩气水平复杂井段的应用 [J], 董志刚;李黔
3.致密砂岩气藏水平井段内多缝体积压裂技术的应用及其效果分析 [J], 吴则鑫
4.水平井段内多簇清水体积压裂技术及现场试验 [J], 王波;王佳;罗兆;罗垚;王健;赵
春艳;吕蓓
5.苏里格气田水平井段内精细分簇压裂技术研究与应用 [J], 武月荣;高岗;谷向东因版权原因,仅展示原文概要,查看原文内容请购买。
体积压裂改造技术在辽河低渗透砂岩储层压裂中的应用摘要:在低渗透砂岩油藏的勘探开发中,往往需要通过压裂来确定该储层是否具有工业流油能力,而压裂工艺技术的选择对于影响和提高储层压裂效果非常关键。
辽河油田针对探区内低渗透砂岩油藏勘探开发实际,通过对低渗透砂岩储层压裂技术进行系统化、精细化研究,形成了具有针对性的低渗透砂岩储层综合压裂改造工艺技术——体积压裂改造技术,为辽河油田在低渗透砂岩储层的勘探工作提供坚实的技术保障。
关键词:体积压裂改造技术;低渗透砂岩储层;辽河油田前言体积压裂改造技术,广义上讲是在分层压裂技术的基础上提高纵向动用程度,提高了储层的渗透能力,扩大了储层的泄油面积。
狭义上讲是通过压裂的手段产生缝网,从而达到改造目的,将主裂缝与天然裂缝及岩石层理相沟通,通过分簇射孔、大规模压裂手段,将主裂缝与次生裂缝交织,在次生裂缝上再次进行破裂成二级次生裂缝,以此类推,形成复杂的裂缝网格系统。
裂缝网格系统可以最大限度的接触储层基质,从而使油气运移距离缩至最短,这样大大提高了储层的渗透率,实现对储层的全面改造,该技术不仅能提高产量,而且能减少油藏有效利用的下限,提高油藏的利用率和采收率。
1.体积压裂改造实现条件体积压裂改造实现条件一个储层是否满足体积压裂改造的条件,在众多因素中以下三个是最为重要的因素,分别为岩石矿物组分、天然裂缝发育情况以及岩石力学特征。
(1)若要实现体积改造形成复杂缝网,储层所要具备的首要条件是岩石矿物为脆性特征。
储层矿物中如果石英和碳酸盐岩两类占的比例大,那么则有益于形成复杂缝网;储层矿物中如果泥岩占的比例大,那么储层有明显的塑形。
(2)若要实现体积改造形成复杂缝网,储层所要具备的前提条件是自身发育天然裂缝及层理。
(3)若要实现体积改造形成复杂缝网,储层的岩石力学特征是判断是否能够形成复杂缝网的重要参数。
一般情况下,通过杨氏模量以及泊松比计算出储层的脆性指数,同时由于泊松比和杨氏模量的单位有很大的不同,为了评价每个参数对岩石脆性的影响,将其单位进行均一化处理,得到表示岩石脆性特征参数,目前除了用杨氏模量和泊松比计算岩石脆性参数外,还可以通过岩石矿物组分来计算岩石脆性指数。
试论石油开发中体积压裂技术的应用摘要:体积压裂技术以其优越的技术性能,在石油开发工程中得到了广泛的应用,但是应用难点是,影响网状裂缝形成的因素较多。
为了更好地加强网状裂缝的应用,本文首先讨论了体积压裂技术在油田开发中的应用优势;其次,对体积压裂技术在油田开发中的应用进行了探讨,并就如何加强它在应用过程中的作用提出了自己的看法;再次,对应用过程中的注意事项进行了分析,持续改进应用效果,帮助油品开发提高效益。
关键词:体积压裂技术;油料开发;应用据相应统计,目前我国低压渗透率较低,油其仓储层数量较多。
这些储层得到了很好的利用和开发。
合理利用的体积,可以缓解目前中国石油资源的短缺,可以进一步提高开发技术。
为了提高油田开发效率,在采油过程中不断加强体积压裂技术的具体应用,有必要充分掌握技术和应用优势,认真分析和总结影响体积压裂的因素。
不断提高应用效益,提高经济发展整体效益。
1 体积压裂技术概况体积压裂技术的整体方法与过去的传统方法完全不同。
体积压裂技术主要采用多种方法,在加压过程中产生更多的裂缝,并与较好的渗透区域连通,充分发挥天然裂缝增产和主裂缝增产的开发优势。
在埋藏油中,人工裂缝的膨胀能力明显大于静压裂缝。
当埋藏油本身的最小和最大应力差,当胶结面与截面面裂缝和自然临界压力时,容易产生多重裂缝。
通过人为的劈裂和交叉扭转,初步形成柱导联网络,类似于多重裂缝,但更为复杂。
主裂缝仍然存在,如果喷嘴周围的编织接头压力低于应力差,如果柱延伸到一定长度,编织接头将被密封。
随着情况的出现,编织缝和主缝往往会形成一定的角度。
此时,裂纹恢复到主裂纹的形状。
分支间隙和主间隙被分成一定的部分,统称为间隙网络。
形成这种间隙的剥离称为体积剥离技术过程。
2 提高油气田体积压裂技术水平的策略2.1 把握体积压裂工艺特点体积压裂技术在实际应用的过程当中有着较好的特性和优点,为了更好的强化实际应用的效果,就必须要对特性进行进一步的探讨。
根据相关统计,发现我国低渗低压油气藏占量非常多,实现对其的开采和利用,能够有效缓解我国目前石油资源的紧张局面,该类石油开发存在一定难度,可以在开发当中积极应用体积压裂技术,全面提高石油开发效率。
一、体积压裂技术概述常规压裂增产理念主要是在压裂时抑制次生裂缝的扩展,主要形成一条主裂缝,产能源自裂缝的高渗流能力;体积压裂与常规压裂改造理念相反,压裂时通过各种工艺形成更多的裂缝,沟通更大的渗流区域,充分发挥主裂缝和天然裂缝增产优势。
当水力压裂时人工裂缝中产生的裂缝延伸净压力大于储层本身存在的最大最小应力差值,以及储层天然裂缝或者胶结面张开需要的临界压力时,人工裂缝就有极大机会在储层中出现多个分支缝,人工主裂缝和分支缝相互穿过,扭曲,交叉,形成初步的缝网结构。
这种结构类似与多裂缝形态,但比多裂缝稍显复杂,缝网仍然以主裂缝为主体,分支缝分布在主裂缝周围。
当主裂缝延伸一定长度以后,其缝内净压力小于应力差时,其分支裂缝会闭合,或者张开一些与主裂缝成一定角度的分支缝,裂缝形态会回归到主裂缝形态。
形成的这种主裂缝与分支缝不断交错分布的裂缝形态就叫做缝网,实现这种裂缝形态的压裂技术被称作体积压裂技术。
二、体积压裂技术在石油开发中的应用1.裂缝封堵压裂技术裂缝封堵技术包括缝内封堵以及缝口封堵。
缝内封堵与“端部脱砂”压裂技术核心机理类似,均是通过一定的裂缝封堵来增加裂缝中的净压力。
缝内封堵相对更加注重微观,天然裂缝发育储层,压裂时一般会开启多条裂缝并同时延伸,裂缝之间相互作用,裂缝狭窄,不利于加砂压裂提高砂比,对支撑剂颗粒大小要求较高,同时还增加了液体的滤失作用。
其一般采用粉砂或者缝内暂堵剂对主裂缝进行封堵,缝内净压力逐渐升高,达到一定程度便可改变原有裂缝走向,产生分支裂缝。
采用缝内暂堵进行缝网压裂时,缝网系统由人工主裂缝与天然裂缝或弱面形成的次生网络组成。
缝口封堵,常常也叫缝口暂堵压裂,其技术伴随着多簇射孔压裂而发展,通过北美页岩气生产测井分析,大约50%的射孔簇无效,29%的射孔簇低效,而21%的射孔簇贡献了70%的产量。
体积压裂体积压裂是指在水力压裂过程中,使天然裂缝不断扩张和脆性岩石产生剪切滑移,形成天然裂缝与人工裂缝相互交错的裂缝网络,从而增加改造体积,提高初始产量和最终采收率。
1.1 体积压裂机理体积压裂的作用机理:通过水力压裂对储层实施改造,在形成一条或者多条主裂缝的同时,使天然裂缝不断扩张和脆性岩石产生剪切滑移,实现对天然裂缝、岩石层理的沟通,以及在主裂缝的侧向强制形成次生裂缝,并在次生裂缝上继续分支形成二级次生裂缝,以此类推,形成天然裂缝与人工裂缝相互交错的裂缝网络。
从而将可以进行渗流的有效储层打碎,实现长、宽、高三维方向的全面改造,增大渗流面积及导流能力,提高初始产量和最终采收率。
体积压裂的提出,是基于体积改造这一全新的现代理论而提出。
体积改造理念的出现,颠覆了经典压裂理论,是现代压裂理论发展的基础。
常规压裂技术是建立在以线弹性断裂力学为基础的经典理论下的技术。
该技术的最大特点就是假设压裂人工裂缝起裂为张开型,且沿井筒射孔层段形成双翼对称裂缝。
以1条主裂缝实现对储层渗流能力的改善,主裂缝的垂向上仍然是基质向裂缝的“长距离”渗流,最大的缺点是垂向主裂缝的渗流能力未得到改善,主流通道无法改善储层的整体渗流能力。
后期的研究中尽管研究了裂缝的非平面扩展,但也仅限于多裂缝、弯曲裂缝、T 型缝等复杂裂缝的分析与表征,但理论上未有突破。
而“体积改造”依据其定义,形成的是复杂的网状裂缝系统,裂缝的起裂与扩展不简单是裂缝的张性破坏,而且还存在剪切、滑移、错断等复杂的力学行为(图1)。
1.2 体积压裂的地层条件1)天然裂缝发育,且天然裂缝方位与最小主地应力方位一致。
在此情况下,压裂裂缝方位与天然裂缝方位垂直,容易形成相互交错的网络裂缝。
天然裂缝的开启所需要的净压力较岩石基质破裂压力低50%。
同样,有模型研究复杂天然裂缝与人工裂缝的关系,以及天然裂缝开启的应力变化等,建立了天然裂缝发育与扩展模型,研究表明,在体积改造中,天然裂缝系统会更容易先于基岩开启,原生和次生裂缝的存在能够增加复杂裂缝的可能性,从而极大地增大改造体积。
石油开发中体积压裂技术的应用
体积压裂技术是一种通过利用高压水射流将岩石裂开,并将人工砂等杂质注入其中,
以增加油井产量的技术手段。
该技术是一种先进的石油开发技术,被广泛应用于国外石油
资源的勘探与开发中。
近年来,中国也已开始在石油开发中大规模运用体积压裂技术。
石油开发中体积压裂技术的应用,首先需要进行岩石力学特征分析,以确定岩石脆性,并确定注水量、注砂量等参数。
随后,需要利用高压水射流将岩石裂开,并在裂缝中注入
人工砂、水泥等杂质。
这些杂质的注入将填满裂缝,增加岩石的孔隙率和渗透率,从而提
高油井产量。
此外,注入的杂质还能增加岩石的支撑力和稳定性,延长压裂裂缝的维持时
间和有效期限。
石油开发中体积压裂技术的应用需要严格按照规范操作,避免因施工不当而引起的损失。
注砂量应以岩石孔隙度为基础,注水量应以地质条件和井口状况为参考,避免造成地
层破坏或过度压裂。
此外,压裂液的选用也是影响体积压裂效果的重要因素。
常用的压裂
液包括水基液、油基液和乳化液等,选用时应根据液体稠度、滤失性和压力适应性等参数
进行选择。
石油开发中体积压裂技术的应用有着显著的经济效益和社会效益。
它能够有效提高油
井产量,延长油田的寿命,增加就业机会,推动当地经济发展。
在石油资源日益减少的情
况下,增加油井产出成为各国开发石油资源的重要途径。
因此,石油开发中体积压裂技术
的应用将成为未来石油资源开发的重要手段之一。
提高改造体积的新裂缝转向压裂技术及其应用
随着我国经济的不断发展,对石油资源的需求也变得非常大,为了满足这个需求,就需要加强对石油工作的开采。
在石油的开采过程中会遇到很多开采问题,为了有效提高油田的开采量,会运用到裂缝转向压裂技术,对于这项技术的运用,会受到很多方面因素的影响。
只有掌握这些方面的影响,采取针对性的压裂技术,才能让裂缝转向压裂技术在油田中发挥更大的作用,分析不同时期采用压裂技术后对油田的影响,采取相应的改进措施,只有这样才能提高我国油田的开采水平,为我国的石油资源做出更大的贡献。
标签:裂缝转向;改造体积;压裂技术
随着我国油田行业的不断发展,对各种油田的开采也变得越来越多,为了提高油田的开采率,可以采用裂缝转向压裂技术来进行开采。
通过大量的实验和数据,为裂缝转向压裂技术的改进提供了良好的方案。
因为压裂技术的特殊性,如果采用单井压裂的技术,往往会存在着一些不足,通过分析影响裂缝转向压裂技术的因素,对于工艺的改进有很好的参考价值,只有不断的创新开采技术,才能进一步提高油田的开采率,进而提升我国石油在国际上的竞争力。
1裂缝转向原因
水平井压裂裂缝转向是由于多种原因的综合作用而形成的,其中最主要的因素是由于裂缝起裂时附近井筒的应力分布模式而造成,当压力与水平井井眼破裂压力一致时,井壁上的切向应力会起到最小主应力的作用,导致纵向裂缝的形成,通常情况下,水平井眼走向与理论裂缝会保持垂直状态,则裂缝从井眼处起裂时会重新定向或者是发生扭曲。
当注入压裂液或者产气时,裂缝的扭曲部分会发生收缩作用,扭曲型裂缝和转向型裂缝比较相似,转向型裂缝的上下部分裂缝会转向两个不同的平面,由于水平井的应力相对集中,所以井筒方位或者是地应力状态都会沿着纵向起裂。
当水平井井筒方为垂直于裂缝时,其列的纵向裂缝会从井筒中延伸出来转向横向型裂缝方向,由于多种因素的影响,多重裂缝的宽度会小于单条裂缝的宽度。
2实现裂缝转向的途径
在进行压裂的过程中,需要加入一定量的支撑剂,加入支撑剂后人工裂缝可以达到一定缝长,当应力场达到一定数值以后停止加砂,进行强制闭合和快速放喷,由于第1次支撑剂和强制放喷的作用,会导致人工裂缝附近产生应力集中的现象,造成应力场重新分布。
地层中2个水平主应力差距会变小;再次进行施工时,对施工参数优化,可以使人工裂缝发生转向,转向距离大于连续施工采用转向剂所造成的转向距离,由此可以说明,2级施工模式的转向效果较好。
3应力场变化分析
3.1支撑剂对应力场变化的影响
由于人工裂缝位于垂直地层最小水平主应力的平面内,在进行第1次加砂压裂以后,物地层的物理条件会发生变化,引起地层水最小水平主应力的增加,在这些因素的综合作用下,地层中的两个水平主应力差值减小,该差值与支撑裂缝宽度成正比。
由此可以看出,初次支撑裂缝的存在会导致地层应力场发生变化,在最小水平主应力和最大水平主应力重新分布以后,人工裂缝附近的裂缝方向会发生转向,通过优化设计继续施工,可以实现裂缝转向,从而可以提高改造体积。
3.2强制闭合和快速反排对应力场的影响
裂缝强制闭合和快速反排会导致地层岩石的体积发生应变。
体积应变是指岩石多孔介质在变形过程中岩体的体积会发生改变,在流一固耦合渗流和变形模型间起着传递耦合的作用。
利用数值模拟可以得出,地层最小水平主应力和最大水平主应力之间的差值,进而可以确定进行第2次施工的设计参数。
由于裂缝强制闭合和快速反排会对最小水平主应力和最大水平主应力的差值产生影响,在进行裂缝强制闭合和快速反排后,地层中最小水平主应力和最大水平主应力的差值会变小,根据所得差值进行人工裂缝优化,继续加砂可以实现裂缝转向。
通过大量的实验证明并结合储层的实际特点,可以得出在一样的地质条件下,如果想要新裂缝转向压裂技术发挥得更好,充分发挥自身的作用,在进行新裂缝转向压裂技术设计时就应该减少缝间距的影响,缩短人工裂缝和天然裂缝之间的距离,并且需要对施工的规模进行扩大,才能提高人工裂缝的波及范围以及转向功能,使人工裂缝和天然裂缝形成裂缝网络,进而提高油层中的渗流能力,在很大程度上能够提高油井的开采量。
4应用分析
以辽宁油田Z井为例,该井在于地层的孔隙度为7.5%,渗透率为0.27×10-3平方微米,地层中的含油饱和度为35%,非均质性较强,天然裂缝发育较差。
2009年对该井进行压裂改造,压裂后的产油量为0.9m3/d,压力效果不明显。
重新勘探以后,通过数据可以看出,该储层含油丰富度较高,主要是由于压裂后只形成了1条无法与其他渗流区域沟通的人工裂缝。
利用新型裂缝转向技术的适应性进行分析,利用新型压裂缝转向技术对同层位、同含油特征的井段进行优化设计,采用2级施工模式实现转向裂缝。
于2010年进行施工,第1级施工再加上35m3以后,优化放喷返排液量为120m3,并计算2个水平压力之间的差值。
通过重新设计工艺参数,确定2级施工加砂为45m3。
进行调整以后实现了裂缝转向目的,成功压裂之后产油量达到了 4.5m3/d,截止至2011年底,该景段的产油量为2.5m3/d,累计产油量达到1560m3
5结束语
工业和社会经济的飞速发展,对石油资源的需求量越来越大,针对我国现在石油资源比较紧缺的现状,对石油的开采工艺提供了更高的要求,只有改善和创新现有的技术,才能提高油田的开采量,在这个环节中裂缝转向压裂技术应用的范围越来越广,想要将这项技术的优势发挥出来,必须要根据现有的工艺进行创新,并且了解影响压裂技术的因素,才能提高裂缝转向压裂技术在油田中的应用。
參考文献
[1]邹国庆,车明光,季晓红,吴英明.超高压裂缝型气藏分层压裂技术及应用[J].天然气地球科学,2012(02):171-175.
[2]王兴东.重复压裂裂缝转向技术在头台油田的应用[J].长江大学学报(自然科学版),2011(05):102-103.
[3]陈志刚,杨富,陶荣德,张旭升.缝内转向压裂工艺技术在姬塬油田老井改造中的应用及评价[J].石油化工应用,2019,38(02):84-89.。