转向压裂
- 格式:doc
- 大小:333.50 KB
- 文档页数:24
1概述我国发现的油气藏中60%以上为低渗透油气藏,往往具有非连续、非均质、各向异性的特点。
低渗透油藏必须进行压裂改造,才能获得较好的开发效果。
随着开采程度的深入,老裂缝控制的原油已近全部采出,常规压裂技术已不能满足这类油藏开采的需求。
经过调研,利用桥堵作用堵塞裂缝,形成缝内转向的新裂缝的压裂工艺,逐步成为低渗储层重复改造的首选工艺,该压裂工艺具有现场施工操作简单,施工过程可控性和操作性较强,增产效果明显的特点。
目前,缝内转向压裂工艺已在国内多个低渗透油田中应用,并取得显著增油效果。
其中,靖安油田对13口井实施了缝内转向压裂措施,实施后平均单井日增油5.3t ,累计增油6791.6t。
朝阳沟油田扶余油层开展了6口井的缝内转向压裂增产试验,平均单井初期日增油量3.1t,单井阶段累计增油329t [1]。
长庆姬塬油田在低渗透油藏缝内转向压裂技术研究与试验杜姗(大庆油田有限责任公司呼伦贝尔分公司)摘要:Y 油田属于低孔低渗透油田,储层物性差,断块破碎,低产低注现象突出,难采储量占比大,随着开采程度的深入,老裂缝控制的原油已接近全部采出,常规重复压裂增产效果逐年变差。
为提高低渗透油田单井产量,2022年在Y 油田开展了老井缝内暂堵转向压裂试验,通过分析缝内转向压裂技术在Y 油田老井改造中的应用效果,评价其在低渗透油气田的适用性,现场试验10口井,平均单井日增油1.1t,当年累计增油1108t,措施增产效果明显。
该试验的成功实施为低渗透油田剩余油的有效挖潜探索了一条新途径。
关键词:低渗透油田;缝内转向;压裂;暂堵剂DOI :10.3969/j.issn.2095-1493.2023.07.001Research and test of in-seam steering fracturing technology in low permeability reservoirs DU ShanHulunbuir Branch of Daqing Oilfield Co .,Ltd .Abstract:The Y oilfield is a low porosity and low permeability oilfield,with poor reservoir physical properties,broken block,low production and low injection,and a large proportion of difficult to re-cover reserves.With the deepening of exploitation degree,the crude oil controlled by old fractures has been nearly fully recovered,and the stimulation effect of conventional re-fracturing has become worse year by year.In order to improve the production of a single well in the low permeability oilfield,the Y oilfield has carried out a temporary plugging and steering fracturing test in the old well fractures in 2022.By analyzing the application effect of in-seam fracture steering fracturing technology in the re-construction of old wells in Y oilfield,the applicability in low permeability oil and gas fields is evaluated.Field tests have been conducted on ten wells,with an average daily oil increasing of 1.1t per well and a cumulative oil increase of 1108t in the same year.The measures have obvious effect.Most impor-tantly,the successful implementation of this test has explored a new way for effectively tapping the po-tential of remaining oil in low permeability oilfields .Keywords:low permeation oilfield;in-seam steering;fracture;temporary plugging agent作者简介:杜姗,工程师,2009年毕业于东北石油大学(油气田开发工程专业),从事压裂工艺设计工作,189****2563,**********************.cn,黑龙江省大庆市让胡路区呼伦贝尔分公司地质工艺研究所工艺室,163000。
第一章概述 (2)第二章技术原理 (4)一、暂堵转向重复压裂技术原理: (4)二、破裂机理研究 (5)三、重复压裂裂缝延伸方式 (7)第三章重复转向压裂时机研究 (11)1、影响重复压裂效果因素 (11)2、选井选层原则 (11)3、压裂时机确定 (11)第四章暂堵剂(转向剂) (12)1、堵剂性能要求: (12)2、堵剂体系 (12)3、水溶性高分子材料堵剂 (13)4、配套的压裂液 (15)第五章转向压裂配套工艺技术 (15)1、缝内转向压裂工艺技术 (15)2. 缝口转向压裂工艺技术 (17)3、控制缝高压裂技术 (19)4、端部脱砂压裂技术 (20)第六章工艺评价 (20)1.裂缝监测 (20)2.施工压力 (20)3.产能变化 (21)第一章概述我国发现的油气藏中60%以上为低渗透油气藏,往往具有非连续、非均质、各向异性的特点。
低渗油藏必须进行压裂改造,才能获得较好的效果。
随着开采程度的深入,老裂缝控制的原油已近全部采出,传统的平面水力裂缝设计方法和压裂技术已不能满足这类油藏开采的需求。
可以实施暂堵转向重复压裂,在纵向和平面上开启新层,开采出老裂缝控制区以外的原油,有效的稳油控水、提高原油产量和油田采收率,实现油田的可持续发展。
目前,国内外的重复压裂实践主要有以下三种方式:①层内压出新裂缝;②继续延伸原有裂缝;③转向重复压裂。
对于重复压裂中出现的裂缝转向,目前认为主要有三种不同方式:①地应力反转;②定向射孔诱导;③桥堵转向压裂工艺。
对于低渗储层,由于出现地应力场反转的难度较大,而采用定向射孔压裂造成裂缝转向,对储层伤害较大。
近些年,利用桥堵作用堵塞裂缝,形成转向的新裂缝的压裂工艺(缝内转向与缝口转向),经过现场实践,增产显著,逐步成为低渗储层重复改造的首选工艺。
在大规模试验研究的基础上,经过工艺优化配套,建立了以缝内转向压裂工艺为主导的低渗透重复压裂新模式。
它有效地在疏通原有人工主裂缝基础上形成了新的支裂缝,沟通了“死油区”,扩大油井泄油面积。
白豹油田油井缝内转向压裂工艺应用效果及影响因素摘要:随着开采程度的深入,老裂缝控制的原油已近全部采出,目前缝内转向压裂工艺技术是在压裂过程中实时加入暂堵剂,在纵向和平面上开启新层,有效地在疏通原有人工主裂缝基础上形成了新的支裂缝,沟通了“死油区”,扩大油井泄油面积,提高单井产能。
关键词:缝内转向压裂效果影响因素白豹油田主要开发层系为三叠系延长组,油层物性差,非均质性强,属于典型的特低渗透岩性油藏,目前该区块注水井长期注水,采油井不见效,严重影响单井产量,为确保油田的高效开发,提高采收率,目前缝内转向压裂是最有效的途径之一,开采出老裂缝控制区以外的原油,有效的稳油控水、提高原油产量和油田采收率。
一、缝内转向压裂工艺技术1.缝内转向压裂工艺原理缝内转向压裂工艺:依据岩石破裂机理,通过桥堵剂(缝内暂堵转向剂)对储层内先前的水力压裂老裂缝形成颗粒桥堵作用,提高井底及水力压裂裂缝净压力,超过老裂缝中薄弱部位的破裂压力,从而沟通天然微裂缝及形成新裂缝,这样的工艺过程即缝内转向压裂工艺。
借助于缝内转向剂在主裂缝产生桥堵作用,使主裂缝内产生升压效应,从而压开新的支裂缝或沟通更多微裂缝,在增大油层泄流面积的同时,促使压裂裂缝向注水水线靠近,缩短注水见效时间,提高注水见效效果,使油井在增产的同时能够保持稳产,从而提高采收率。
2.实现裂缝转向的力学条件裂缝延伸遵循能量最小原则,常规压裂裂缝延伸方向受控的力学条件是:σHmax+T>P≥σHmin+T若能使P≥σHmax+T,即当缝内压力升高幅度ΔP≥σHmax-σHmin,压裂裂缝可摆脱水平应力的束缚,改变延伸和扩展方向。
P:缝内压力T:岩石扩张强度σHmax:水平最大主应力σHmin:水平最小主应力提高裂缝内压力是实现裂缝转向的必要条件。
3.缝内转向压裂工艺技术的实施3.1施工工艺在缝内转向压裂施工中,桥堵剂的加入采取通过混砂池中加入,通过主压车高压柱塞泵注入地层。
转向压裂技术在低渗稠油藏中的应用X赵占杰(中油辽河油田公司,辽宁盘锦 124125) 摘 要:在老井常规重复压裂过程中,常常只是重新压开原缝,而原有的人工裂缝附近产层的生产潜能越来越小,措施增油效果逐年下降。
因此,使裂缝转向,压开新缝是老井增产的有效方法。
本文分析了转向压裂技术的原理、特点,并结合现场实例,提出了转向压裂技术。
关键词:重复压裂;转向压裂;低渗油藏 中图分类号:T E357.1+3 文献标识码:A 文章编号:1006—7981(2012)06—0111—03 Y 油田属于复杂断块油田,构造复杂、断块多且小,油气藏埋藏深,非均质性严重,随着油田开发的不断深入,大部分主力油层已逐步进入高含水期,稳产的难度越来越大,为提高产能,部分井面临重复压裂改造。
而重复压裂也会出现如下问题:一是由于在地应力的影响下,常规同井同层重复压裂可以恢复老裂缝的导流能力,但对注采井网注入水的驱替体积及地层中孔隙压力的分布形式的影响是有限的;二是对于进入中高含水开发期的油田来说,常规的同井同层重复压裂会提高地层向生产井的供液能力,有可能导致重复压裂后施工井的含水率急剧上升。
为了解决这些问题,在重复压裂中使用了转向压裂技术,有效的解决了重复压裂中出现失效的问题。
1 转向压裂1.1 转向压裂原理图1 应力转向示意图重复压裂[1]产生的裂缝方向取决于地应力状态,以及注水等对它的影响。
油藏中形成一条水力裂缝,将导致一个椭圆形压降区。
裂缝的椭圆形区域将产生双向附加应力,当诱导的应力差大到足以改变两个水平应力分量时,原来水力裂缝的最小主应力方向即成为最大主应力方向。
这时重复压裂产生的新裂缝将沿着新的主应力平面扩展。
但在距井筒一段距离之后,由于原地应力场的应力变化很小,裂缝仍沿原来的方向向前延伸。
如图(1)所示。
转向压裂技术是应用裂缝转向剂在压裂中暂堵老缝或已加砂缝,造出新缝或使压裂砂在裂缝中均匀分布,从而使流体在地层中发生转向,达到提高单井产量和油藏采收率的目的。
提高改造体积的新裂缝转向压裂技术及其应用随着我国经济的不断发展,对石油资源的需求也变得非常大,为了满足这个需求,就需要加强对石油工作的开采。
在石油的开采过程中会遇到很多开采问题,为了有效提高油田的开采量,会运用到裂缝转向压裂技术,对于这项技术的运用,会受到很多方面因素的影响。
只有掌握这些方面的影响,采取针对性的压裂技术,才能让裂缝转向压裂技术在油田中发挥更大的作用,分析不同时期采用压裂技术后对油田的影响,采取相应的改进措施,只有这样才能提高我国油田的开采水平,为我国的石油资源做出更大的贡献。
标签:裂缝转向;改造体积;压裂技术随着我国油田行业的不断发展,对各种油田的开采也变得越来越多,为了提高油田的开采率,可以采用裂缝转向压裂技术来进行开采。
通过大量的实验和数据,为裂缝转向压裂技术的改进提供了良好的方案。
因为压裂技术的特殊性,如果采用单井压裂的技术,往往会存在着一些不足,通过分析影响裂缝转向压裂技术的因素,对于工艺的改进有很好的参考价值,只有不断的创新开采技术,才能进一步提高油田的开采率,进而提升我国石油在国际上的竞争力。
1裂缝转向原因水平井压裂裂缝转向是由于多种原因的综合作用而形成的,其中最主要的因素是由于裂缝起裂时附近井筒的应力分布模式而造成,当压力与水平井井眼破裂压力一致时,井壁上的切向应力会起到最小主应力的作用,导致纵向裂缝的形成,通常情况下,水平井眼走向与理论裂缝会保持垂直状态,则裂缝从井眼处起裂时会重新定向或者是发生扭曲。
当注入压裂液或者产气时,裂缝的扭曲部分会发生收缩作用,扭曲型裂缝和转向型裂缝比较相似,转向型裂缝的上下部分裂缝会转向两个不同的平面,由于水平井的应力相对集中,所以井筒方位或者是地应力状态都会沿着纵向起裂。
当水平井井筒方为垂直于裂缝时,其列的纵向裂缝会从井筒中延伸出来转向横向型裂缝方向,由于多种因素的影响,多重裂缝的宽度会小于单条裂缝的宽度。
2实现裂缝转向的途径在进行压裂的过程中,需要加入一定量的支撑剂,加入支撑剂后人工裂缝可以达到一定缝长,当应力场达到一定数值以后停止加砂,进行强制闭合和快速放喷,由于第1次支撑剂和强制放喷的作用,会导致人工裂缝附近产生应力集中的现象,造成应力场重新分布。
定向射孔转向压裂裂缝延伸形态研究第九采油厂赵艳波摘要:本文根据断裂力学理论,建立了基于复合应力强度因子的裂缝延伸和转向判据模型,推导确定了缝内压力分布、复合应力强度因子及裂缝扩展方向角的计算公式,编制了定向射孔转向压裂裂缝延伸形态的模拟软件,分析了射孔角度、水平最大地应力和水平最小地应力差值对转向裂缝形态影响程度,为定向射孔转向压裂的施工设计提供了理论依据。
主题词:定向射孔转向压裂断裂力学1 前言至2003年底,九厂总探明原油地质储量2.82×108t,已投入开发油气田18个,动用地质储量6533×104t,未动用探明储量2.16×108t,分为39个区块,但大部分区块都具有储层埋藏深、物性差、丰度低,渗透率低的特点,自然产能较低,在目前的技术经济条件下,开发动用难度较大,常规投产甚至不出油,必须经过油层压裂改造,而常规压裂效果也不好,所以需要研究新的压裂工艺。
如能在单个油层中压开多条裂缝,可大幅度提高地层的渗流能力,使束缚油变为可动油,增加泄油面积,提高油层的动用程度,达到经济有效开发的目的。
近年来定向射孔技术的发展,为利用射孔方向控制裂缝转向,在单个油层中压开多条裂缝,提供了现场实施的可能。
但需要对射孔参数、地应力和裂缝方向、形态的关系进行研究,以指导定向射孔转向压裂的施工设计。
我们用三维弹塑性有限元模型,对裸眼井的射孔参数对裂缝起裂方向的影响进行了理论研究,研究表明,对于裂缝的起裂方位有重要影响的射孔参数是射孔方位角,而射孔参数中孔眼直径和射孔穿深仅仅对破裂压力有影响,对于裂缝的起裂方位几乎没有影响,射孔密度对于裂缝的起裂方位影响也比较小。
对于套管完井的油井,裂缝的起裂位置与射孔方向一致。
定向射孔水力压裂裂缝延伸模型包括两部分,一是裂缝尺寸模型,用于确定裂缝的长度,平均缝宽、最大缝宽随时间的变化关系;二是裂缝形状,研究在特定射孔方案和地应力等条件下,水力裂缝的延伸形状和过程。
可降解纤维转向压裂技术2014年2月18日星期二提纲一、可降解纤维转向压裂技术原理二、可降解纤维简介三、可降解纤维现场应用(一)定义纤维转向是一项应用于套管固井或者裸眼完井的改造技术。
压裂(酸化)转向是通过铺设可降解的纤维来暂时堵塞改造层段,使液体进入其它层段,从而实施液体的转向,达到改造其它层段的目的。
(一)定义可降解纤维转向压裂具有2层含义:形成新裂缝----通过一次或多次加入高强度纤维,临时封堵前次裂缝(缝口封堵),迫使流体转向,达到压开多条新裂缝的目的。
(一)定义可降解纤维转向压裂具有2层含义:形成网状裂缝----通过一次或多次加入适度强度纤维,临时增加裂缝内净压力,在一定的水平两向应力差条件下,产生二次破裂,进而改变裂缝方位,达到形成网状裂缝。
(二)转向关键纤维加入,裂缝转向的关键点:✓储层应力差✓纤维加量及强度根据断裂力学理论,水力裂缝总是从物性好、断裂韧性低、闭合应力低、破裂压力低、抗张强度低的层段优先起裂;当纤维封堵压力高于层间压力差,下次压裂将会重开裂缝,达到分段压裂的要求。
通过测井解释数据,进行地应力剖面分析,从而判断是否适合纤维转向,并优化纤维加量及强度,优选射孔点。
纤维转向示意图(三)使用方法及过程•某段压裂施工,携砂液阶段加入纤维;•纤维随着携砂液进入裂缝,开始桥堵部分裂缝壁面;•纤维进一步堆积,缝内净压力升高,迫使流体进入缝内另一个闭合压力较低的地方,从而开启此处裂缝;•如此循环,达到缝内开启很多裂缝,形成网络裂缝的目的;•在改造结束后,纤维开始降解,恢复裂缝与井筒的流通通道。
•某段压裂结束,加入纤维;•纤维进入炮眼堆积,并完全阻塞裂缝近井筒的流通通道;•流体压力增加并开启下一个闭合压力较大的裂缝;•液体流入下一个裂缝,进行下一级的改造;•在改造结束后,纤维开始降解,恢复裂缝与井筒的流通通道。
层间使用方法及过程层内使用方法及过程(四)技术优点(五)适用范围该技术成本低,易实施,适用于以下特殊情况:•重复压裂-全井段已射孔•完井管柱不允许多级压裂工具,如筛管完井•井下分级工具应用有风险•层间地应力差值小•层内两向应力差值小提纲一、可降解纤维转向压裂技术原理二、可降解纤维简介三、可降解纤维现场应用(一)合成及降解机理•可降解纤维是由水溶性的二元醇与水溶性的二元酸在高温及催化剂的作用下聚合而成的热塑性聚合物。
第一章概述 (2)第二章技术原理 (4)一、暂堵转向重复压裂技术原理: (4)二、破裂机理研究 (5)三、重复压裂裂缝延伸方式 (8)第三章重复转向压裂时机研究 (11)1、影响重复压裂效果因素 (11)2、选井选层原则 (11)3、压裂时机确定 (12)第四章暂堵剂(转向剂) (12)1、堵剂性能要求: (12)2、堵剂体系 (12)3、水溶性高分子材料堵剂 (13)4、配套的压裂液 (15)第五章转向压裂配套工艺技术 (16)1、缝内转向压裂工艺技术 (16)2. 缝口转向压裂工艺技术 (18)3、控制缝高压裂技术 (19)4、端部脱砂压裂技术 (20)第六章工艺评价 (21)1.裂缝监测 (21)2.施工压力 (21)3.产能变化 (21)第一章概述我国发现的油气藏中60%以上为低渗透油气藏,往往具有非连续、非均质、各向异性的特点。
低渗油藏必须进行压裂改造,才能获得较好的效果。
随着开采程度的深入,老裂缝控制的原油已近全部采出,传统的平面水力裂缝设计方法和压裂技术已不能满足这类油藏开采的需求。
可以实施暂堵转向重复压裂,在纵向和平面上开启新层,开采出老裂缝控制区以外的原油,有效的稳油控水、提高原油产量和油田采收率,实现油田的可持续发展。
目前,国内外的重复压裂实践主要有以下三种方式:①层内压出新裂缝;②继续延伸原有裂缝;③转向重复压裂。
对于重复压裂中出现的裂缝转向,目前认为主要有三种不同方式:①地应力反转;②定向射孔诱导;③桥堵转向压裂工艺。
对于低渗储层,由于出现地应力场反转的难度较大,而采用定向射孔压裂造成裂缝转向,对储层伤害较大。
近些年,利用桥堵作用堵塞裂缝,形成转向的新裂缝的压裂工艺(缝内转向与缝口转向),经过现场实践,增产显著,逐步成为低渗储层重复改造的首选工艺。
在大规模试验研究的基础上,经过工艺优化配套,建立了以缝内转向压裂工艺为主导的低渗透重复压裂新模式。
它有效地在疏通原有人工主裂缝基础上形成了新的支裂缝,沟通了“死油区”,扩大油井泄油面积。
低渗透油田缝内转向压裂工艺的关键技术是缝内转向剂技术。
依靠该技术产品,实现了裂缝延伸的暂时停止,达到了在缝内某一位置实现裂缝转向的目标。
为证实缝内转向压裂沟通微裂缝和形成新裂缝,利用微地震法在施工时裂缝延伸进行动态监测。
综合分析水力压裂裂缝延伸监测结果、重复压裂效果、施工压力特征,能证明缝内转向重复压裂在疏通原有裂缝的基础上,是否产生了沟通微裂缝或者形成新裂缝。
缝内转向压裂工艺在低渗透油田应用概况:在老井上的应用概况:2002-2007年,缝内转向压裂工艺在老井上推广应用487口井,增产效果明显。
安塞油田应用332口井,日增油1.40t,陇东油田68口井,日增油1.95t。
已逐渐成为长庆、低渗透油田老井重复压裂主要推广技术之一。
在新井上的应用概况:2006年缝内转向压裂工艺技术在新井共推广应用46口井,在储层条件明显差于常规压裂井的前提下,试油产量及投产产量接近或高于常规压裂井。
这说明以缝内转向压裂工艺为主体的复合压裂技术对储层的改造更为彻底,因此油井生产能力要高于常规压裂井。
3.转向压裂与常规重复压裂对比常规重复压裂主要以解除堵塞及延长老裂缝为目的,而转向压裂主要以形成新裂缝为目标,分析认为相对于常规重复压裂,转向压裂具有较好的发展优势(见表1)。
第二章技术原理一、暂堵转向重复压裂技术原理:转向压裂:在压裂施工中,应用化学暂堵剂的桥堵作用暂堵老缝或已加砂缝,,提升井底静压力,使流体在地层中发生转向,形成不同于老裂缝方向的新裂缝或使压裂砂在裂缝中均匀分布,从而在储层中打开新的流体流动通道,更大范围地沟通老裂缝未动用的油气层,增加油气产量,这样的工艺过程称之为转向压裂。
主要作用有:纵向剖面的新层启动;重复压裂的平面上的裂缝转向;裂缝单向延伸的控制。
可广泛应用于重复压裂、细分层压裂、套变井及落物井压裂。
暂堵转向重复压裂技术的实施方法是在施工过程中实时地向地层中加入化学暂堵剂,该剂为粘弹性的固体小颗粒,遵循流体向阻力最小方向流动的原则,转向剂颗粒进入井筒的炮眼,部分进入地层中的裂缝或高渗透层,在炮眼处和高渗透带产生滤饼桥堵,可以形成高于裂缝破裂压力的压差值,使后续工作液不能向裂缝和高渗透带进入,从而压裂液进入高应力区或新裂缝层,促使新缝的产生和支撑剂的铺置变化。
产生桥堵的转向剂在施工完成后溶于地层水或压裂液,不对地层产生污染。
针对不同储层特性、不同封堵控制的作用,经过拟合计算确定不同的有效用量。
通过特殊工艺技术,可实现支撑剂均匀分布。
二、破裂机理研究根据弹性力学理论和岩石破裂准则,裂缝总是沿着垂直于最小水平主应力的方向启裂,因此,重复压裂井中的应力场分布决定了重压新裂缝的启裂和延伸。
1、储层原地应力场地下岩石的应力状态,可以用三个相互垂直且不相等的主应力表示。
2、诱导应力场(1)裂缝诱导应力场x=0处,诱导应力最大,离缝越远,诱导应力越小,一定距离处,诱导应力变为零;缝口诱导应力最大,缝端诱导应力最小;垂直于裂缝方向诱导水平应力大,裂缝方向诱导水平应力小。
地应力 测量井径变化岩心测试大小方位水力压裂测试阶梯式注入/返排测试方法 测井资料解释声波测定 地电测定(2)生产诱导应力场油井长期生产,通常会导致地层孔隙压力下降,引起原地应力状态的改变。
研究表明:孔隙压力减少,使水平应力降低。
且在裂缝方向强于垂直于裂缝方向的区域。
所以最大水平主应力减小得比最小水平主应力多。
3、破裂机理研究初次人工裂缝诱导应力以及生产诱导应力改变了油气井周围的应力分布状况。
当诱导应力差足以改变地层中的初始应力差,则在井筒和初始裂缝周围的椭圆形区域内应力重定向,从而新裂缝发生转向。
三、重复压裂裂缝延伸方式1、新裂缝延伸规律重复压裂能否形成新裂缝,主要取决于储层地应力场变化的结果。
垂直于裂缝方向附加的诱导应力大,裂缝方向上附加诱导应力小,可能使σxmin+σx诱导>σymax+σy诱导,重复压裂裂缝的重新定向就有可能发生。
井筒附近重复压裂新裂缝将以与初始裂缝呈90 °的方位角延伸。
距井筒一段距离后,裂缝仍沿原来的方位延伸。
2、裂缝转向后扩展方向(1)储层岩石应力强度因子应力强度因子是描述缝端附近应力场强弱的重要参数。
压剪情况下含裂缝单元体的受力条件如下图所示:根据断裂力学理论,裂缝端部应力强度因子:a K Iπσα-= a K II πτα-=已知 I K 和II K ,即可计算出等效应力强度因子和裂缝扩展角度 0θ :IC II I eq K K K K =⎥⎦⎤⎢⎣⎡-=θθθsin 232cos 2cos 2⎪⎪⎭⎫ ⎝⎛+++=22220983arcsin II I II I II II I K K K K K K K θ 等效应力强度因子eq K = IC K 时,裂缝开始延伸 。
3、裂缝转向后延伸方向与缝长具体步骤:(1) 计算 I K 、II K 和 eq K ;(2) 裂缝开裂判断。
( eq K 、IC K )(3)根据得到的 0 ,沿着原裂缝逆时针方向令裂缝扩展某一小量长度Δa ,求出新 eq K ;(4)判断裂缝是否继续扩展 ,若扩展,计算 θ1 ;(5)计算重复压裂转向裂缝延伸轨迹坐标方程和转向裂缝延伸长度。
(6)当裂缝与初始水力裂缝平行或者eq K 《IC K 时,转向裂缝延伸完毕,否则,回到步骤(3)继续计算 。
因此,垂直裂缝井新裂缝的延伸可能由三部分组成 :1. 应力转向区内垂直初始裂缝缝长方向,穿透深度为'xf L ;2. 应力转向区后,逐渐转向到初始裂缝缝长方向,穿透深度为 ''xf L ;3. 转向到原始水力裂缝方向并稳定延伸。
第三章重复转向压裂时机研究1、影响重复压裂效果因素地质因素:剩余可采储量、地层压力、有效渗透率、有效厚度、地下原油粘度、含水率。
工程因素:裂缝方位:支撑裂缝诱导应力、生产诱导应力;重复压裂材料:压裂液、支撑剂。
2、选井选层原则1、油井控制足够的剩余可采储量和地层能量;2、前次压裂的规模偏小,产量下降较快的井;3、前次压裂的支撑裂缝已失效,产量下降快;4、前次压裂施工失败的井;5、前次压裂目的层跨度大,油层未得到充分改造。
3、压裂时机确定重复压裂时机是重复压裂成败的关键之一,通常有如下两个确定准则:1.当第一次压裂失效后进行重复压裂;2.当地层压力系数达到一定值时进行重复压裂。
第四章暂堵剂(转向剂)1、堵剂性能要求:强度高、形成滤饼、可溶性好、有利于返排、方法操作简单、时间可控。
2、堵剂体系1.悬浮性堵剂:因为紊流作用和炮眼变形难以形成很大的压差阻力,封堵率只能达到70%,不能形成滤饼。
2.地下交联型堵剂:小剂量达不到所需压力,剂量大会形成新的伤害,虽然可以形成滤饼但地下反应不稳定,达不到所需的强度。
3.地面一次交联的颗粒堵剂:小剂量达不到所需压力,剂量大会形成新的伤害,虽然可以形成滤饼但地下反应不稳定,达不到所需的强度;地面一次交联的颗粒堵剂,自身强度大,但因为在地下很难形成滤饼,同样存在封堵率不好,压裂液滤失问题。
4.通常选用水溶性高分子材料堵剂:承压能力高、易形成滤饼、封堵率高,水溶性好,且用量少,压后完全溶解无污染。
该堵剂是在地面高温高压条件下,经交联反应以及物理法的势能活化得到的颗粒型堵剂(白色或棕褐色有机组分颗粒,粒径6—8mm)。
是化学反应与物理势能相互催化的复合体。
其一次交联是在生产时完成物化反应,形成颗粒。
在应用时,颗粒随液体进入炮眼和裂缝后,在压力差下获得势能后继续反应交联,形成高强度的滤饼。
3、水溶性高分子材料堵剂1.暂堵剂的强度采用人造充填岩心的方法,通过使用岩心流动实验仪测定其突破压力,来确定暂堵剂的强度,岩心使用压裂砂充填而成,充填后的岩心试验结果见表1.暂堵剂的耐压差为10—85Mpa。
表1 岩心封堵实验结果2.溶解时间及水不溶物实验结果显示,在50℃的条件下,暂堵剂在水中的溶解时间为1小时,在10%的KCl液中溶解时间为1.5小时,在压裂液中溶解时间为2.5小时。
将盛有蒸馏水和暂堵剂的烧杯放入30℃的水浴中,盖上表面皿,恒温溶解3小时,通过一系列搅拌得到暂堵剂不溶物的百分比(表2)。
表2 水不溶物测定3.应用范围此暂堵剂广泛应用于重复压裂,细分层压裂、套变井及落物井压裂,近年来在转向压裂,多裂缝压裂,有效缝长控制领域中得到了广泛的应用:(1)多层合压时,可在纵向剖面上动用新层,改善油藏产出剖面;(2)在同层压裂中堵老缝,造新缝,使新裂缝在平面上相对于原有裂缝发生转向,沟通新的泄油区;(3)控制支撑剂铺置方向,控制有效缝长,改善裂缝内支撑剂的用效分布,用于微裂缝发育条件下的压裂,减少滤失。
降低砂堵风险;(4)在套变井\落物井上实现分层压裂。