高一数学-规律总结(古典概型) 精品
- 格式:doc
- 大小:14.51 KB
- 文档页数:1
古典概型中的有序和无序问题求古典概型中某事件的概率的关键是列举基本事件,在列举基本事件的时候,同学们会发现,有些事件和顺序有关,有些事件和顺序无关,那么到底哪些事件应该考虑顺序,哪些事件应该不考虑顺序呢?解:因为抓出球的数目大于2,所以用树形图表示会比较清晰。
用1,2表示白球,用a 表示红球,b 表示黄球.所有基本事件用树形图列举如下:基本事件总数为:46=24⨯其中得分不大于1分的基本事件共有18个。
183(3244P ∴==抓个球得分不大于1分) 如果我们不考虑抽取顺序,所有基本事件可以表示为:从上面的树形图可以看出,基本事件总数为4,其中得分不大于1分的基本事件有3个。
3(34P ∴=抓个球得分不大于1分) 考虑顺序和不考虑顺序的结果是一样的,为什么会这样呢?细心的同学会发现下面六个基本事件(1,2,a), (1,a,2), (2,1,a), (2,a,1), (a,1,2), (a,2,1),如果不考虑抽取顺序,其实表示的是同一个结果:抽到2个白球,1个红球。
原来当不考虑顺序时的每一个基本事件都有6个考虑顺序的基本事件和它对应,每个事件都扩大6倍,这样,在用公式()A P A =所包含的基本事件数基本事件总数计算概率时,分子分母同时扩大6倍,所以结果相同。
而我们列举基本事件时,指列举“一次试验中可能出现的每一个基本结果”而既然在上面所求的问题中,考虑顺序的六个事件表示的是同一个结果,所以对于此类问题,我们在解答时不考虑顺序.那么,是不是所有的基本事件都可以看作无序的呢? 例2.一个盒子里有点数分别为1,2,3,4的4张牌,有放回的连续抽取两次,求“两张牌点数之和不小于6的概率”。
解:考虑顺序时,所有的基本事件可以表示为:(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4)(3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4)基本事件共有4416⨯=个,其中符合题意的如划线所示,共有6个。
古典概型(一)高中数学 1.理解古典概型的概念及特点.2.掌握利用古典概型概率公式解决简单的概率计算问题.导语 研究随机现象,最重要的是知道随机事件发生的可能性大小.对随机事件发生可能性大小的度量(数值)称为事件的概率(probability),事件A的概率用P(A)表示.我们知道,通过试验和观察的方法可以得到一些事件的概率估计,但这种方法耗时多,而且得到的仅是概率的近似值.能否通过建立适当的数学模型,直接计算随机事件的概率呢?一、古典概型的定义问题1 我们讨论过彩票摇号试验、抛掷一枚均匀硬币的试验及掷一枚质地均匀骰子的试验,它们的共同特征有哪些?提示 样本空间的样本点是有限个,每个样本点发生的可能性相等.知识梳理 一般地,若试验E具有以下特征:(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.称试验E为古典概型试验,其数学模型称为古典概率模型,简称古典概型.例1 下列概率模型是古典概型吗?为什么?(1)从区间[1,10]内任意取出一个实数,求取到实数2的概率;(2)向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;(3)从1,2,3,…,100这100个整数中任意取出一个整数,求取到偶数的概率.解 (1)不是古典概型,因为区间[1,10]中有无限多个实数,取出的实数有无限多种结果,与古典概型定义中“所有可能结果只有有限个”矛盾.(2)不是古典概型,因为硬币不均匀导致“正面朝上”与“反面朝上”发生的可能性不相等,与古典概型定义中“每一个试验结果出现的可能性相同”矛盾.(3)是古典概型,因为在试验中所有可能出现的结果是有限的,而且每个整数被抽到的可能性相等.反思感悟 古典概型需满足两个条件(1)样本点总数有限.(2)各个样本点出现的可能性相等.跟踪训练1 下列问题中是古典概型的是( )A .种下一粒杨树种子,求其能长成大树的概率B .掷一枚质地不均匀的骰子,求掷出1点的概率C .在区间[1,4]上任取一数,求这个数大于1.5的概率D .同时掷两枚质地均匀的骰子,求向上的点数之和是5的概率答案 D解析 A ,B 两项中的样本点的出现不是等可能的;C 项中样本点的个数是无限多个;D 项中样本点的出现是等可能的,且是有限个.故选D.二、古典概型概率的计算问题2 在掷骰子的试验中,记A 事件为“点数为偶数”,A 事件包含哪些样本点?A 事件发生的概率是多少?提示 A ={2,4,6}.对于抛掷骰子试验,出现各个点的可能性相同,记出现1点,2点,…,6点的事件分别为A 1,A 2,…,A 6,记事件“出现偶数点”为B ,则P (A 1)=P (A 2)=…=P (A 6),又P (A 1)+P (A 2)+…+P (A 6)=P (必然事件)=1,所以P (A 1)=P (A 2)=…=P (A 6)=,P (B )==.163612知识梳理 一般地,设试验E 是古典概型,样本空间Ω包含n 个样本点,事件A 包含其中的k 个样本点,则定义事件A 的概率P (A )==.kn n (A )n (Ω)例2 一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球.求:(1)样本空间的样本点的总数n ;(2)事件“摸出2个黑球”包含的样本点的个数;(3)摸出2个黑球的概率.解 由于4个球的大小相等,摸出每个球的可能性是均等的,所以是古典概型.(1)将黑球编号为黑1,黑2,黑3,从装有4个球的口袋内摸出2个球,样本空间Ω={(黑1,黑2),(黑1,黑3),(黑1,白),(黑2,黑3),(黑2,白),(黑3,白)},共有6个样本点,所以n =6.(2)事件“摸出2个黑球”={(黑1,黑2),(黑2,黑3),(黑1,黑3)},共有3个样本点.(3)样本点总数n =6,事件“摸出两个黑球”包含的样本点个数m =3,故P ==,即摸出36122个黑球的概率为.12反思感悟 利用古典概型概率计算公式计算概率的步骤(1)确定样本空间的样本点的总数n .(2)确定所求事件A 包含的样本点的个数m .(3)P (A )=.mn 跟踪训练2 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是________.答案 23解析 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P ==.4623三、较复杂的古典概型的概率计算例3 先后抛掷两枚质地均匀的骰子.(1)求点数之和为7的概率;(2)求掷出两个4点的概率;(3)求点数之和能被3整除的概率.解 如图所示,从图中容易看出样本点与所描点一一对应,共36个,且每个样本点出现的可能性相等.(1)记“点数之和为7”为事件A ,从图中可以看出,事件A 包含的样本点共有6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6).故P (A )==.63616(2)记“掷出两个4点”为事件B ,从图中可以看出,事件B 包含的样本点只有1个,即(4,4).故P (B )=.136(3)记“点数之和能被3整除”为事件C ,则事件C 包含的样本点共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P (C )==.123613反思感悟 在求概率时,若事件可以表示成有序数对的形式,则可以把全体样本点用平面直角坐标系中的点表示,即采用图表的形式可以准确地找出样本点的个数.故采用数形结合法求概率可以使解决问题的过程变得形象、直观,更方便.跟踪训练3 某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.解 (1)由题意知,从6个国家中任选2个国家,其一切可能的结果有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 3,B 1),(A 3,B 2),(A 3,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3),共15个.所选2个国家都是亚洲国家的事件所包含的样本点有(A 1,A 2),(A 1,A 3),(A 2,A 3),共3个,则所求事件的概率为P ==.31515(2)从亚洲国家和欧洲国家中各任选1个,其一切可能的结果有(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 3,B 1),(A 3,B 2),(A 3,B 3),共9个.包括A 1但不包括B 1的事件所包含的样本点有(A 1,B 2),(A 1,B 3),共2个,则所求事件的概率为P =.291.知识清单:(1)古典概型.(2)古典概型的概率公式.2.方法归纳:常用列举法(列表法、树状图)求样本点的总数.3.常见误区:在列举样本点的个数时,要按照一定顺序,做到不重、不漏.1.(多选)下列试验是古典概型的是( )A .在适宜的条件下种一粒种子,发芽的概率B .口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球为白球的概率C .向一个圆面内部随机地投一个点,该点落在圆心的概率D .10个人站成一排,其中甲、乙相邻的概率答案 BD解析 A 不是等可能事件,C 不满足有限性.2.在50瓶牛奶中,有5瓶已经过了保质期,从中任取一瓶,取到已经过保质期的牛奶的概率是( )A .0.02 B .0.05C .0.1 D .0.9答案 C解析 由题意知,该题是一个古典概型,因为在50瓶牛奶中任取1瓶有50种不同的取法,取到已过保质期的牛奶有5种不同的取法,根据古典概型公式求得概率是=0.1.故选C.5503.将一枚骰子先后投掷两次,两次向上点数之和为5的倍数的概率为________.答案 736解析 将一枚骰子投掷两次,样本点个数为36,且每个样本点出现的可能性相等,其中“将一枚骰子投掷两次,两次向上点数之和为5的倍数”所包含的样本点有(1,4),(4,1),(2,3),(3,2),(5,5),(6,4),(4,6),共7个,故“将一枚骰子先后投掷两次,两次向上点数之和为5的倍数”的概率为.7364.从1,2,3,4,5中任意取出两个不同的数,则其和为5的概率是________.答案 0.2解析 两数之和等于5有两种情况(1,4)和(2,3),总的样本点有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,且每个样本点出现的可能性相等,所以P ==0.2.210课时对点练1.下列是古典概型的是( )A .任意抛掷两枚骰子,所得点数之和作为样本点B .求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为样本点C .在甲、乙、丙、丁4名志愿者中,任选一名志愿者去参加跳高项目,求甲被选中的概率D .抛掷一枚均匀硬币至首次出现正面为止,抛掷的次数作为样本点答案 C解析 A 项中由于点数的和出现的可能性不相等,故A 不是;B 项中的样本点的个数是无限的,故B 不是;C 项中满足古典概型的有限性和等可能性,故C 是古典概型;D 项中样本点既不是有限个也不具有等可能性,故D 不是.2.一个家庭有两个小孩,则所有可能的样本点有( )A .(男,女),(男,男),(女,女)B .(男,女),(女,男)C .(男,男),(男,女),(女,男),(女,女)D .(男,男),(女,女)答案 C解析 两个孩子出生有先后之分.3.若书架上放的工具书、故事书、图画书分别是5本、3本、2本,则随机抽出一本是故事书的概率为( )A. B. C. D.153103512答案 B解析 样本点总数为10,“抽出一本是故事书”包含3个样本点,所以其概率为.3104.甲、乙、丙三名同学站成一排,甲站在中间的概率是( )A. B. C. D.16121323答案 C解析 样本点有:(甲,乙,丙)、(甲,丙,乙)、(乙,甲,丙)、(乙,丙,甲)、(丙,甲,乙)、(丙,乙,甲),共6个.甲站在中间的样本点包括:(乙,甲,丙)、(丙,甲,乙),共2个,所以甲站在中间的概率P ==.26135.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A. B. C. D.13122334答案 C解析 试验的样本空间Ω={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},共6个样本点,且每个样本点出现的可能性相同,数字之和为奇数的有4个样本点,所以所求概率为.236.(多选)投掷一枚质地均匀的正方体骰子,四位同学各自发表了以下见解,其中正确的有( )A .“出现点数为奇数”的概率等于“出现点数为偶数”的概率B .只要连掷6次,一定会“出现1点”C .投掷前默念几次“出现6点”,投掷结果“出现6点”的可能性就会加大D .连续投掷3次,出现的点数之和不可能等于19答案 AD解析 掷一枚骰子,出现奇数点和出现偶数点的概率都是,故A 正确;“出现1点”是随12机事件,故B 错误;概率是客观存在的,不因为人的意念而改变,故C 错误;连续掷3次,若每次都出现最大点数6,则三次之和为18,故D 正确.7.在1,2,3,4四个数中,可重复地选取两个数,其中一个数是另一个数的2倍的概率是________.答案 14解析 用列举法知,可重复地选取两个数共有16个样本点,且每个样本点出现的可能性相等,其中一个数是另一个数的2倍的有(1,2),(2,1),(2,4),(4,2)共4个样本点,故所求的概率为=.416148.从1,2,3,4,5这5个数字中不放回地任取两数,则两数都是奇数的概率是________.若有放回地任取两数,则两数都是偶数的概率是________.答案 310425解析 从5个数字中不放回地任取两数,样本点有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,且每个样本点出现的可能性相等.因为都为奇数的样本点有(1,3),(1,5),(3,5),共3个,所以所求概率P =.从5个数字中有放回的任取两数,310样本点共有25个,且每个样本点出现的可能性相等,都为偶数的样本点有(2,4),(4,2),(2,2),(4,4)共4个,故概率P =.4259.袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其它球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作是一个样本点概率模型,该模型是不是古典概型?(2)若按球的颜色为样本点,有多少个样本点?以这些样本点建立概率模型,该模型是不是古典概型?解 (1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为样本点的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个样本点,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”.因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为.111因为白球有5个,所以一次摸球摸中白球的可能性为.511同理可知,摸中黑球、红球的可能性均为.311显然这三个样本点出现的可能性不相等,所以以颜色为样本点的概率模型不是古典概型.10.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球.(1)共有多少个样本点?(2)摸出的2只球都是白球的概率是多少?解 (1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下样本点(摸到1,2号球用(1,2)表示):(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).因此,共有10个样本点.(2)上述10个样本点发生的可能性相同,且只有3个样本点是摸到两只白球(记为事件A ),即(1,2),(1,3),(2,3),故P (A )=.故摸出2只球都是白球的概率为.31031011.一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为( )A. B. C. D.12131425答案 A解析 把2个红球分别标记为红1、红2,2个白球分别标记为白1、白2,本试验样本空间所包含的样本点共有16个,其中取出的2个球同色包含的样本点有8个:(红1,红1),(红1,红2),(红2,红1),(红2,红2),(白1,白1),(白1,白2),(白2,白1),(白2,白2).故所求概率P ==.8161212.从集合A ={-1,1,2}中随机选取一个数记为k ,从集合B ={-2,1,2}中随机选取一个数为b ,则直线y =kx +b 不经过第三象限的概率为( )A. B. C. D.29134959答案 A解析 直线y =kx +b 不经过第三象限,即Error!选取出的两个数记为(k ,b ),则该试验的样本空间Ω={(-1,-2),(-1,1),(-1,2),(1,-2),(1,1),(1,2),(2,-2),(2,1),(2,2)},共9个样本点,符合题意的有(-1,1),(-1,2),共2个样本点,所以所求概率为.2913.每年3月为学雷锋活动月,某班有青年志愿者5名,其中男生3人,女生2人,现需选出2名青年志愿者到社区做公益宣传活动,则选出的2名青年志愿者性别相同的概率为( )A. B. 3525C. D.15310答案 B解析 设3名男生分别用A ,B ,C 表示,2名女生分别用a ,b 表示,则从5人中选出2名青年志愿者的样本空间Ω={(A ,B ),(A ,C ),(A ,a ),(A ,b ),(B ,C ),(B ,a ),(B ,b ),(C ,a ),(C ,b ),(a ,b )},共有10个样本点,其中选出的2名志愿者性别相同包含的样本点有(A ,B ),(A ,C ),(B ,C ),(a ,b ),共有4个,则选出的2名青年志愿者性别相同的概率P ==.4102514.一次掷两枚均匀的骰子,得到的点数为m 和n ,则关于x 的方程x 2+(m +n )x +4=0无实数根的概率是________.答案 112解析 总的样本点个数为36,且每个样本点出现的可能性相等.因为方程无实根,所以Δ=(m +n )2-16<0.即m +n <4,其中有(1,1),(1,2),(2,1),共3个样本点.所以所求概率为=.33611215.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A. B. C. D.192971849答案 D解析 记“|a -b |≤1”为事件A ,由于a ,b ∈{1,2,3,4,5,6},则事件A 包含的样本点有:(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5),(5,6),(6,5),(6,6),共16个,而依题意得,样本点总数为36,且每个样本点出现的可能性相等.因此他们“心有灵犀”的概率P ==.16364916.某区的区大代表中有教师6人,分别来自甲、乙、丙、丁四个学校,其中甲校教师记为A 1,A 2,乙校教师记为B 1,B 2,丙校教师记为C ,丁校教师记为D .现从这6名教师代表中选出3名教师组成十九大报告宣讲团,要求甲、乙、丙、丁四个学校中,每校至多选出1名.(1)请列出十九大报告宣讲团组成人员的全部样本点;(2)求教师A 1被选中的概率;(3)求宣讲团中没有乙校教师代表的概率.解 (1)从6名教师代表中选出3名教师组成十九大报告宣讲团,组成人员的全部样本点有12个,分别为:(A 1,B 1,C ),(A 1,B 1,D ),(A 1,B 2,C ),(A 1,B 2,D ),(A 1,C ,D ),(A 2,B 1,C ),(A 2,B 1,D ),(A 2,B 2,C ),(A 2,B 2,D ),(A 2,C ,D ),(B 1,C ,D ),(B 2,C ,D ).(2)组成人员的全部样本点中,A 1被选中的样本点有(A 1,B 1,C ),(A 1,B 1,D ),(A 1,B 2,C ),(A 1,B 2,D ),(A 1,C ,D ),共5个,所以教师A 1被选中的概率为P =.512(3)宣讲团中没有乙校教师代表的样本点有(A 1,C ,D ),(A 2,C ,D ),共2个,所以宣讲团中没有乙校教师代表的概率为P ==.21216。
古典概型中的有序和无序问题求古典概型中某事件的概率的关键是列举基本事件,在列举基本事件的时候,同学们会发现,有些事件和顺序有关,有些事件和顺序无关,那么到底哪些事件应该考虑顺序,哪些事件应该不考虑顺序呢?例1 一个袋子中有白球2个,红黄球各1个,规定:现依次从袋子中抓3个球,求得分不大于1分的概率.解:因为抓出球的数目大于2,所以用树形图表示会比较清晰。
用1,2表示白球,用a 表示红球,b 表示黄球.所有基本事件用树形图列举如下:基本事件总数为:46=24⨯其中得分不大于1分的基本事件共有18个。
183(3244P ∴==抓个球得分不大于1分) 如果我们不考虑抽取顺序,所有基本事件可以表示为:从上面的树形图可以看出,基本事件总数为4,其中得分不大于1分的基本事件有3个。
3(34P ∴=抓个球得分不大于1分) 考虑顺序和不考虑顺序的结果是一样的,为什么会这样呢?细心的同学会发现下面六个基本事件(1,2,a), (1,a,2), (2,1,a), (2,a,1), (a,1,2), (a,2,1),如果不考虑抽取顺序,其实表示的是同一个结果:抽到2个白球,1个红球。
原来当不考虑顺序时的每一个基本事件都有6个考虑顺序的基本事件和它对应,每个事件都扩大6倍,这样,在用公式()AP A=所包含的基本事件数基本事件总数计算概率时,分子分母同时扩大6倍,所以结果相同。
而我们列举基本事件时,指列举“一次试验中可能出现的每一个基本结果”而既然在上面所求的问题中,考虑顺序的六个事件表示的是同一个结果,所以对于此类问题,我们在解答时不考虑顺序.那么,是不是所有的基本事件都可以看作无序的呢?例2.一个盒子里有点数分别为1,2,3,4的4张牌,有放回的连续抽取两次,求“两张牌点数之和不小于6的概率”。
解:考虑顺序时,所有的基本事件可以表示为:(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4)(3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4) 基本事件共有4416⨯=个,其中符合题意的如划线所示,共有6个。
古典概型【学习目标】1.正确理解古典概型的特点;2.掌握古典概型的概率计算公式;3.了解整数型随机数的产生与随机模拟实验.【要点梳理】要点一、古典概型1.基本事件:试验结果中不能再分的最简单的随机事件称为基本事件.基本事件的特点:(1)每个基本事件的发生都是等可能的.(2)因为试验结果是有限个,所以基本事件也只有有限个.(3)任意两个基本事件都是互斥的,一次试验只能出现一个结果,即产生一个基本事件.(4)基本事件是试验中不能再分的最简单的随机事件,其他事件都可以用基本事件的和的形式来表示.2.古典概型的定义:(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.3.计算古典概型的概率的基本步骤为:(1)计算所求事件A所包含的基本事件个数m;(2)计算基本事件的总数n;(3)应用公式()mP An=计算概率.4.古典概型的概率公式:()AP A=包含的基本事件的个数基本事件的总数.应用公式的关键在于准确计算事件A所包含的基本事件的个数和基本事件的总数.要点诠释:古典概型的判断:如果一个概率模型是古典概型,则其必须满足以上两个条件,有一条不满足则必不是古典概型.如“掷均匀的骰子和硬币”问题满足以上两个条件,所以是古典概型问题;若骰子或硬币不均匀,则每个基本事件出现的可能性不同,从而不是古典概型问题;“在线段AB上任取一点C,求AC>BC的概率”问题,因为基本事件为无限个,所以也不是古典概型问题.要点二、随机数的产生1.随机数的产生方法:一般用试验的方法,如把数字标在小球上,搅拌均匀,用统计中的抽签法等抽样方法,可以产生某个范围内的随机数.在计算器或计算机中可以应用随机函数产生某个范围的伪随机数,当作随机数来应用.2.随机模拟法(蒙特卡罗法):用计算机或计算器模拟试验的方法,具体步骤如下:(1)用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;(2)统计代表某意义的随机数的个数M和总的随机数个数N;(3)计算频率()n Mf AN=作为所求概率的近似值.要点诠释:1.对于抽签法等抽样方法试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间.2.随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数.3.随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的重要考试采用产生随机数的方法把考生分配到各个考场中.【典型例题】类型一:等可能事件概念的理解例1.判断下列说法是否正确,并说明理由。
第52讲古典概型一、考情分析1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率.二、知识梳理1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特征的概率模型称为古典的概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.(2)每一个试验结果出现的可能性相同.3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每1n;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=m n.4.古典概型的概率公式P(A)事件A包含的可能结果数试验的所有可能结果数.[微点提醒]概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.三、经典例题考点一基本事件及古典概型的判断【例1】袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解(1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A:“摸到白球”,B:“摸到黑球”,C:“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为5 11,同理可知摸到黑球、红球的可能性均为3 11,显然这三个基本事件出现的可能性不相等,故以颜色为划分基本事件的依据的概率模型不是古典概型.规律方法古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x,y)可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同.(3)排列组合法:在求一些较复杂的基本事件个数时,可利用排列或组合的知识.考点二简单的古典概型的概率【例2】 (1)两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为()A.12 B.14 C.13 D.16(2)设袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,则取出此2球所得分数之和为3分的概率为________.解析(1)两名同学分3本不同的书,基本事件有(0,3),(1a,2),(1b,2),(1c,2),(2,1a),(2,1b),(2,1c),(3,0),共8个,其中一人没有分到书,另一人分到3本书的基本事件有2个,∴一人没有分到书,另一人分得3本书的概率p=28=14.(2)袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,基本事件总数n=6×6=36,取出此2球所得分数之和为3分,包含第一次抽到红球,第二次抽到黄球或者第一次抽到黄球,第二次抽到红球,基本事件个数m=2×3+3×2=12,所以取出此2球所得分数之和为3分的概率p=mn=1236=13.答案(1)B(2)1 3规律方法计算古典概型事件的概率可分三步:(1)计算基本事件总个数n;(2)计算事件A所包含的基本事件的个数m;(3)代入公式求出概率p.考点三古典概型的交汇问题多维探究角度1古典概型与平面向量的交汇【例3-1】设平面向量a=(m,1),b=(2,n),其中m,n∈{1,2,3,4},记“a⊥(a -b)”为事件A,则事件A发生的概率为()A.18 B.14 C.13 D.12解析有序数对(m,n)的所有可能情况为4×4=16个,由a⊥(a-b)得m2-2m+1-n =0,即n=(m-1)2.由于m,n∈{1,2,3,4},故事件A包含的基本事件为(2,1)和(3,4),共2个,所以P(A)=216=18.答案 A角度2古典概型与解析几何的交汇【例3-2】将一颗骰子先后投掷两次分别得到点数a,b,则直线ax+by=0与圆(x-2)2+y2=2有公共点的概率为________.解析依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a,b)有6×6=36种,其中满足直线ax+by=0与圆(x-2)2+y2=2有公共点,即满足2aa2+b2≤2,即a≤b的数组(a,b)有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率为2136=712.答案7 12角度3古典概型与函数的交汇【例3-3】已知函数f(x)=13x3+ax2+b2x+1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为()A.79 B.13 C.59 D.23解析f′(x)=x2+2ax+b2,由题意知f′(x)=0有两个不等实根,即Δ=4(a2-b2)>0,∴a>b,有序数对(a,b)所有结果为3×3=9种,其中满足a>b有(1,0),(2,0),(3,0),(2,1),(3,1),(3,2)共6种,故所求概率p=69=23.答案 D角度4古典概型与统计的交汇【例3-4】 (2019·济宁模拟)某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.(注:分组区间为[60,70),[70,80),[80,90),[90,100])(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?(2)在(1)中所述的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.解(1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30,女生优秀人数为100×(0.015+0.03)×10=45.(2)因为样本容量与总体中的个体数的比是530+45=115,所以样本中包含的男生人数为30×115=2,女生人数为45×115=3.则从5人中任意选取2人共有C25=10种,抽取的2人中没有一名男生有C23=3种,则至少有一名男生有C25-C23=7种.故至少有一名男生的概率为p=710,即选取的2人中至少有一名男生的概率为710.规律方法求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件;(2)判断事件是否为古典概型;(3)选用合适的方法确定基本事件个数;(4)代入古典概型的概率公式求解.[方法技巧]1.古典概型计算三步曲第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;第三,事件A是什么,它包含的基本事件有多少个.2.确定基本事件个数的方法列举法、列表法、树状图法或利用排列、组合.四、课时作业1.(2020·山东潍坊·月考)算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如,在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65,若在个、十、百、千位档中随机选择一档拨上一颗下珠,再随机选择两个档位各拨一颗上珠,则所拨数字小于600的概率为()A.38B.524C.34D.724【答案】D【解析】在个、十、百、千位档中随机选择一档拨上一颗下珠,再随机选择两个档位各拨一颗上珠,所有的数有124424C C=个,其中小于600的有1213327C C C-=个,∴所求概率为724P=.2.(2020·山东省实验中学高三月考)公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”.《周髀算经》中记录着商高同周公的一段对话.商高说:“故折矩,勾广三,股修四,径隅五.”大意为“当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5”.以后人们就把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理.勾股数组是满足的正整数组.若在不超过10的正整数中,随机选取3个不同的数,则能组成勾股数组的概率是()A.110B.15C.160D.1120【答案】C【解析】在不超过10的正整数中,随机选取3个不同的数,共有种组合方法,能组成勾股数组的情况有和()6,8,10,所以所求概率为2112060P==.3.(2020·宁夏高三其他(理))《孙子算经》是中国古代重要的数学著作.其中的一道题“今有木,方三尺,高三尺,欲方五寸作枕一枚.问:得几何?”意思是:“有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作多少个?”现有这样的一个正方体木料,其外周已涂上油漆,则从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率为( )A.B.827C.49D.14【答案】C【解析】有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作216个,由正方体的结构及锯木块的方法,可知一面带有红漆的木块是每个面的中间那16块,共有6×16=96个,∴从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率:p.4.(2020·江西月考(理))生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须相邻安排的概率为( )A.710B.760C.D.【答案】B【解析】由题意知基本事件总数66720n A==,“数”必须排在前两节,“礼”和“乐”必须相邻可以分两类安排:①“数”排在第一位,“礼”和“乐”两门课程相邻排课,则礼,乐相邻的位置有4个,考虑两者的顺序,有2种情况,剩下的3个全排列,安排在其他三个位置,有336A=种情况,故有42648⨯⨯=种②“数”排第二位,“礼”和“乐”两门课程相邻排课,则礼,乐相邻的位置有3个,考虑两者的顺序,有2种情况,剩下的3个全排列,安排在其他三个位置,有336A=种情况,则有32636⨯⨯=种情况,由分类加法原理知满足“数”必须排在前两节,“礼”和“乐”必须相邻安排共有483684+=种情况,所以满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为84772060 P==.5.(2020·云南高三月考(理))袋中共有完全相同的4只小球、编号为1,2,3,4,现从中任取2只小球,则取出的2只球编号之和是奇数的概率为()A.25B.35C.13D.23【答案】D【解析】解:在编号为1,2,3,4的小球中任取2只小球,则有,,,,,,共6种取法,则取出的2只球编号之和是奇数的有,,,,共4种取法,所以取出的2只球编号之和是奇数的概率为,故选:D.6.(2020·辽宁丹东·高三期末(文))从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.110B.35C.310D.25【答案】D【详解】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数n=5×5=25,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共有m=10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p=7.(2020·江苏高三月考)若从甲、乙、丙、丁4人中选出3名代表参加学校会议,则甲被选中的概率为()A.14B.13C.12D.34【答案】D【解析】任选3名代表的所有基本事件为:甲乙丙,甲乙丁,甲丙丁,乙丙丁,共4个,基本含有甲的事件有3个,∴所求概率为34P=.8.(2020·辽宁高三月考)《三十六计》是中华民族珍贵的文化遗产之一,是一部传习久远的兵法奇书,与《孙子兵法》合称我国古代兵法谋略学的双壁.三十六计共分胜战计、敌战计、攻战计、混战计、并战计、败战计六套,每一套都包含六计,合三十六个计策,如果从这36个计策中任取2个计策,则这2个计策都来自同一套的概率为()A.121B.114C.17D.142【答案】C【解析】解:由已知从这36个计策中任取2个计策总共有236C种,其中2个计策都来自同一套的有266C种,故所求概率262366C6651C36357 P⨯⨯===⨯.9.(2020·河南高三月考(理))2019年北京世园会的吉祥物“小萌芽”“小萌花”是一对代表着生命与希望、勤劳与美好、活泼可爱的园艺小兄妹.造型创意来自东方文化中百子图的“吉祥娃娃”,通过头饰、道具、服装创意的巧妙组合,被赋予了普及园艺知识、传播绿色理念的特殊使命.现从5张分别印有“小萌芽”“小萌花”“牡丹花”“菊花”“杜鹃花”的这5个图案的卡片(卡片的形状、大小、质地均相同)中随机选取3张,则“小萌芽”和“小萌花”卡片都在内的概率为()A.35B.310C.25D.23【答案】B【解析】给印有“小萌芽”“小萌花”“牡丹花”“菊花”“杜鹃花”的这5个图案的卡片分别编号,记作1,2,3,4,5,从中抽取三张,所包含的基本事件有:,,,,,,,,,,共10个;则“小萌芽”和“小萌花”卡片都在内所包含的基本事件有:,,,共3个;因此所求的概率为310 P=.10.(2020·福建漳州·高三其他(文))由共青团中央宣传部、中共山东省委宣传部、共青团山东省委、山东广播电视台联合出品的《国学小名士》第三季于2019年11月24日晚在山东卫视首播.本期最精彩的节目是π的飞花令:出题者依次给出π所含数字3.141592653……答题者则需要说出含有此数字的诗句.雷海为、杨强、马博文、张益铭与飞花令少女贺莉然同场PK,赛况激烈让人屏住呼吸,最终π的飞花令突破204位.某校某班级开元旦联欢会,同学们也举行了一场π的飞花令,为了增加趣味性,他们的规则如下:答题者先掷两个骰子,得到的点数分别记为,x y,再取出π的小数点后第x位和第y位的数字,然后说出含有这两个数字的一个诗句,若能说出则可获得奖品.按照这个规则,取出的两个数字相同的概率为()A.118B.16C.736D.29【答案】D【解析】取出π的小数点后第x位和第y位的数字,基本事件共有36个:取出的两个数字相同的基本事件共有8个:,其中括号内的第一个数表示第x 位的取值,第二个数表示第y 位的取值, 所以取出的两个数字相同的概率为82369P ==,故选:D.11.(2020·全国高三月考(文))从3,5,7,9,10中任取3个数作为边长,不能够围成三角形的概率为( ) A .310B .710C .15D .25【答案】A【解析】依题意,从3,5,7,9,10中任取3个数作为边长,所包含的情况有,, ,,,,,,,,共10个基本事件;其中不能围成三角形的有,,,共3个基本事件; 故所求概率310P =. 12.(2020·全国高三月考)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”.下图是在“赵爽弦图”的基础上创作出的一个“数学风车”,其中正方形ABCD 内部为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的.我们将图中阴影所在的四个三角形称为同一片“风叶”的概率为( ) A .37B .47C .314D .【答案】A【解析】由题意,从“数学风车”的八个顶点中任取两个顶点的基本事件有种, 其中这两个顶点取自同一片“风叶”的基本事件有234C 12=,根据古典概型的概率计算公式,可得所求概率123287P ==. 13.(2020·江苏南通·月考)《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(表示一根阳线,表示一根阴线),从八卦中任取一卦,这一卦的三根线中恰有2根阳线和1根阴线的概率为( )A.18B.14C.38D.12【答案】C【解析】先算任取一卦的所有等可能结果共8卦,其中恰有2根阳线和1根阴线的基本事件有3卦,∴概率为3 8 .14.(2020·安徽高三月考(理))疫情期间部分中小学进行在线学习,某市教育局为了解学生线上学习情况,准备从10所学校(其中6所中学4所小学)随机选出3所进行调研,其中M中学与N 小学同时被选中的概率为()A.15B.18C.115D.320【答案】C【解析】从10所学校(其中6所中学4所小学)随机选出3所,所包含的基本事件共个,其中M中学与N小学被选中包含个基本事件,故所求概率为8112015P==.15.(2020·四川巴中·高三零模(文))2013年华人数学家张益唐证明了孪生素数(素数即质数)猜想的一个弱化形式.素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷个素数p,使得2p+是素数,素数对称为孪生素数.则从不超过15的素数中任取两个素数,这两个素数组成孪生素数对的概率为()A.115B.215C.15D.415【答案】C【解析】不超过15的素数有2,3,5,7,11,13,共6个,则从不超过15的素数中任取两个素数共有种根据素数对称为孪生素数,则由不超过15的素数组成的孪生素数对为(3,5),(5,7),(11,13),共有3组,能够组成孪生素数的概率为31155 P==16.(2020·四川巴中·高三零模(理))2013年华人数学家张益唐证明了孪生素数(素数即质数)猜想的一个弱化形式.素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷个素数p,使得2p+是素数,素数对称为孪生素数.则从不超过20的素数中任取两个素数,这两个素数组成孪生素数对的概率为()A .114B .328C .17D .528【答案】C【解析】解:依题意,20以内的素数有2,3,5,7,11,13,17,19共有8个,从中选两个共包含个基本事件,而20以内的孪生素数有(3,5),,(11,13),(17,19)共四对,包含4个基本事件, 所以从20以内的素数中任取两个, 其中能构成孪生素数的概率为.17.(2020·全国高三其他(文))从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .14B .38C .12D .58【答案】B【解析】从写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,基本事件的个数为4416⨯=,抽得的第一张卡片上的数大于第二张卡片上的数的基本事件为,,,,,共6个,因此抽得的第一张卡片上的数大于第二张卡片上的数的概率为.18.(2020·全国高三其他(理))2019年成都世界警察与消防员运动会期间,需安排甲、乙、丙、丁四名志愿者去,,A B C 三个场馆参与服务工作,要求每个场馆至少一人,则甲乙被安排到同一个场馆的概率为( )A .112 B .18 C .16D .14【答案】C【解析】由题意将甲乙看成一个整体,满足要求的安排方式种类有,总的安排方式的种类有,所以甲乙被安排到同一个场馆的概率为1P 6m n ==. 19.(2020·湖南高三月考(文))设O 为邻边不相等的矩形ABCD 的对角线交点,在O ,A ,,C ,D 中任取3点,则取到的3点构成直角三角形的概率为( )A .15B .12C .25D .45【答案】C【解析】如图,从O ,A ,,C ,D ,这5个点中任取3个有{},,O A B ,,,,,,,{},,A B D ,{},,A C D ,共10种不同取法,取到的3点构成直角三角形:,{},,A B D ,{},,A C D ,共4种情况,由古典概型的概率计算公式知,取到的3点构成直角三角形的概率为,故选:C.20.(2020·沙坪坝·重庆一中高三其他(文))小王到重庆游玩,计划用两天的时间打卡“朝天门”、“解放碑”、“洪崖洞”、“磁器口”、“南山一棵树”五个网红景点.若将这五个景点随机安排在两天时间里,第一天游览两个,第二天游览三个,则“朝天门”和“解放碑”恰好在同一天游览的概率为( ) A .15B .25C .35D .45【答案】B【解析】五个网红景点分别记为,,,,A B C D E ,则两天的游览安排有,(),AC BDE ,,,(),BC ADE ,,,(),CD ABE ,(),CE ABD ,(),DE ABC ,共10种方法,其中“朝天门”和“解放碑”(即,A B )恰好在同一天游览的情况有4种, 故“朝天门”和“解放碑”恰好在同一天游览的概率为.21.(2020·河南洛阳·高三月考(文))我国的旅游资源丰富,是人们假期旅游的好去处,小五现从大理、黄果树瀑布、阳朔、张家界和青海湖中任选两处去旅游,则恰好选中青海湖的概率为______. 【答案】25【解析】依次将大理、黄果树瀑布、阳朔、张家界和青海湖编号为1,2,3,4,5, 则从中任选两处的所有可能情况有,,,,,,,,,,共10种, 恰好选中青海湖的情况有,,,,共4种, 则由古典概型的概率公式得所求概率为.22.(2020·广西南宁三中高三其他(理))《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古典小说四大名著.若在这四大名著中,任取2种进行阅读,则取到《红楼梦》的概率为________. 【答案】12【解析】4本名著选两本共有种,选取的两本中含有《红楼梦》的共有种, 所以任取2种进行阅读,则取到《红楼梦》的概率为:3162P ==. 23.(2020·陕西高三零模(文))某胸科医院感染科有3名男医生和2名女医生,现需要这5名医生中任意抽取2名医生成立一个临时新型冠状病毒诊治小组抽取的2名医生恰好都是男医生的概率_____. 【答案】310【解析】记3名男医生分别为A 、、C ,2名女医生分别为d 、e ,从这5名医生中任意抽取2名医生的所有可能结果为:AB 、AC 、Ad 、Ae 、BC 、Bd 、Be 、Cd 、Ce 、de ,共10种,其中抽取的2名医生恰好都是男医生的可能结果有AB 、AC 、BC ,共3种, 所以所求概率为310. 24.(2020·沙坪坝·重庆南开中学高三月考)2020年国庆档上映的影片有《夺冠》,《我和我的家乡》,《一点就到家》,《急先锋》,《木兰·横空出世》,《姜子牙》,其中后两部为动画片.甲、乙两位同学都跟随家人观影,甲观看了六部中的两部,乙观看了六部中的一部,则甲、乙两人观看了同一部动画片的概率为________. 【答案】19【解析】甲观看了六部中的两部共有种, 乙观看了六部中的一部共有种, 则甲、乙两人观影共有15690⨯=种, 则甲、乙两人观看同一部动画片共有11252510C C ⋅=⨯=种,所以甲、乙两人观看了同一部动画片的概率为,故答案为:1925.(2020·北京高三其他)2020年岁末年初,“新冠肺炎”疫情以其汹汹袭来之势席卷了我国的武汉,在这关键的时刻,在党中央的正确指导下,以巨大的魄力,惊人的壮举,勇敢的付出,及时阻断了疫情的传播,让这片土地成为了世界上最温暖的家园;通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份“新冠肺炎”疫情得到了控制.如表统计了2月12日到2月18日连续七天全国的治愈人数:(单位:例)请根据以上信息,回答下列问题:(Ⅰ)记前四天治愈人数的平均数和方差分别为1x 和21s ,后三天治愈人数的平均数和方差分别为2x 和22s ,判断1x 与2x ,21s 与22s 的大小(直接写出结论); (Ⅱ)从这七天中任取连续的两天,则后一天的治愈人数比前一天的治愈人数多于200例的概率;(Ⅲ)设集合,1)|i i x x +表示2月i 日的治愈人数,12i =,13,,17},从集合M 中任取两个元素,设其中满足1i i x x +<的个数为X ,求X 的分布列和数学期望()E X . 【解析】解:(Ⅰ)记前四天治愈人数的平均数和方差分别为1x 和21s , 后三天治愈人数的平均数和方差分别为2x 和22s , 则12x x <,2212s s <.(Ⅱ)设事件A :“从这七天中任取连续的两天,则后一天的治愈人数比前一天的治愈人数多 于 200 例”.从这七天中任选取连续的两天,共有 6 种选法, 其中 13 日和 14 日,16 日和 17 日符合要求,所以从这七天中任取连续的两天,则后一天的治愈人数比前一天的治愈人数多于200例的概率为:(P 21)63A ==. (Ⅲ)设集合,1)|i i x x +表示2月i 日的治愈人数,12i =,13,,17},从集合M 中任取两个元素,设其中满足1i i x x +<的个数为X ,由题意可知X 的可能取值为 0,1,2,(P 222610)15C X C ===,(P 11242681)15C C X C ===, (P 242622)5C X C ===,的分布列为:数学期望1824()012151553E X =⨯+⨯+⨯=.。