n 10
(2)因为事件B={(1,2,3),(1,2,4),(1,2,5),(1,3,4), (1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5)}, 所以事件B包含的基本事件数m=9. 所以P(B)= m 9 .
n 10
【素养·探】 本题主要考查计算古典概型的概率问题,突出考查了数 学抽象与数学运算的核心素养. 本例条件不变,若事件C={三个数字的和不小于10},求 事件C的概率.
12
概率.
(2)若甲、乙两人每人停车的时长在每个时段的可能
性相同,求甲、乙两人停车费之和为28元的概率.
【思维·引】(1)利用互斥事件的概率公式求解. (2)利用古典概型的概率公式求解.
【解析】(1)设“一次停车不超过1小时”为事件
A,“一次停车1到2小时”为事件B,“一次停车2到3小
时”为事件C,“一次停车3到4小时”为事件D.
(3)某人买彩票,是否中奖是古典概型. ( )
(4)一个古典概型的基本事件数为n,则每一个基本事件
出现的概率都是 1 . ( )
n
提示:(1)×.区间[0,6]上的有理数有无数个. (2)√.基本事件为(甲、乙),(甲、丙),(乙、丙),共3个. (3)×.中奖、不中奖的可能性不相同,不中奖的可能性 较大. (4)√.古典概型中每个基本事件出现的概率相同.
由已知得P(B)= 1 ,P(C+D)= 5 .
3
12
又事件A,B,C,D互斥,所以P(A)=1-1- 5 =1 .
3 12 4
所以甲的停车费为6元的概率为 1 .
4
(2)易知甲、乙停车时间的基本事件有(1,1),(1,2), (1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3, 2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个. 而“停车费之和为28元”的事件有(1,3),(2,2),(3,1), 共3个,所以所求概率为 3.