含参不等式组的解法
- 格式:docx
- 大小:37.08 KB
- 文档页数:2
不等式含参题型及解题方法初一下册在初中数学中,不等式是一个重要的概念,也是常见的题型之一。
初一下册的不等式主要包括含有参数的不等式,也就是题目中会给出一个或多个参数,需要我们在参数的取值范围内解决不等式。
下面我们来介绍一些常见的不等式题型及解题方法。
1.基本不等式的解法基本不等式一般是指只有加减乘除运算的不等式,例如x + 3 > 7。
这类不等式的解法与方程的解法类似,需要进行移项和化简。
对于不等式题目,我们要先消去不等式号两边的括号,然后将未知数(即参数)移到左侧,常数移到右侧。
最后,如果有乘除运算,需要根据乘除法的性质进行变形。
解出不等式的解集后,需要在给定参数的取值范围内判断解集的合法性。
2.基本不等式组的解法基本不等式组是指同时含有两个或多个不等式的题目,例如x + 2 > 4x - 1 < 3对于这类题目,我们首先要解决每个不等式,得到它们的解集。
然后将这些解集取交集,即得到整个不等式组的解集。
需要注意的是,如果不等式组的解集为空集,则表示该不等式组没有解。
3.组合不等式的解法组合不等式是指含有和或积的的不等式,例如2x + 3 > 7对于这类不等式,我们需要对每个不等式进行分析,将组合项拆开成多个不等式的和或积,并求解每个不等式。
最后,将每个不等式的解集合并,得到整个组合不等式的解集。
4.几何意义的不等式问题有时候,不等式问题可以通过几何图形来解决。
考虑一道题目:面积为12平方单位的矩形,宽度是a个单位,求长度的取值范围。
我们可以通过矩形的面积公式S = a * b,将题目转化为不等式a * b = 12。
然后我们可以根据不等式的性质,在平面直角坐标系上画出b =12/a的图像。
这个图像表示了矩形的可能形状,我们可以通过几何的方法解决这道题目。
以上介绍的是初一下册常见的不等式题型及解题方法。
不等式在数学中占有重要地位,对于初中阶段的学生来说,掌握不等式题型及解题方法十分重要。
含有参数的不等式组解法一般来说,含有参数的不等式组的解法可以分为以下几步:第一步:确定参数的取值范围。
根据问题的条件或约束,找出参数可以取得的范围。
这通常需要对问题进行分析和推理。
第二步:将未知数用符号表示。
用一个字母(通常是x)表示不等式中的未知数。
第三步:将所有不等式整理成标准形式。
标准形式是指不等式两边都是关于x的多项式,并且不等号是"≥"或"≤",而不是">"或"<"。
如果不等式中有分数、根式或绝对值等,可以通过一系列代数运算将其转化为标准形式。
第四步:通过分析求解。
根据参数的取值范围,可以分析出不等式中的未知数的取值范围。
进而,通过对不等式中两边同时进行一系列代数运算,可以推导出满足条件的解集。
第五步:对参数取值范围的讨论。
有时,不等式的解集对参数的取值范围有限制。
这时,需要根据参数的取值范围对解集进行讨论。
这通常需要对不等式进行分析和推导,以找出对应于不同参数取值范围的解集。
下面我们通过一个例子来说明含有参数的不等式组的解法。
例题:设0<a<b<c,解不等式组:,x-a,+,x-b,+,x-c,≤a+b+c解法:首先,确定参数的取值范围。
由于0<a<b<c,所以参数a、b、c 的取值范围是存在实数并满足0<a<b<c的范围。
然后,将未知数用符号表示。
我们用x表示不等式中的未知数。
接下来,将不等式整理成标准形式。
由于不等式中已经是绝对值不等式的形式,所以不需要进行额外的变形。
然后,通过分析求解。
根据绝对值的定义,我们可以得到以下三个不等式:1.当x≤a时,x-a,=a-x。
2.当a<x≤b时,x-a,=x-a,x-b,=x-b。
3.当x>b时,x-b,=x-b,x-c,=x-c。
将这三个不等式分别代入原始不等式,我们可以得到以下三个不等式:1.a-x+b-x+c-x≤a+b+c,即-3x+2b+c≤3a+2c。
含参数的不等式的解法解含参数的不等式的一般步骤如下:步骤1:确定参数的取值范围对于含参数的不等式,首先要确定参数可以取哪些值。
常见的含参数的不等式有以下几种类型:1.参数出现在不等式的左右两侧:例如,a,x,<b,x,其中a和b是参数。
如果参数a和b都是非负数,则取值范围为[0,+∞),如果参数a为负数而b为非负数,则取值范围为(-∞,+∞)。
2. 参数出现在不等式的系数中:例如,ax + b > 0,其中a和b是参数。
对于一次不等式,如果参数a为正数,则取值范围为(-∞, -b/a);如果参数a为负数,则取值范围为(-b/a, +∞)。
对于二次不等式,需要讨论a的正负和零的情况,进而确定取值范围。
3.参数出现在不等式的指数中:例如,x^a>b,其中a和b是参数。
对于参数b,需要讨论它的正负和零的情况,进而确定取值范围。
对于参数a,如果它为正数,则不等式的解集为(0,+∞);如果它为负数,则不等式的解集为(-∞,0)。
步骤2:解参数的不等式在确定参数的取值范围之后,可以根据具体的参数取值情况来解不等式。
根据参数的不同取值情况,采用不同的解法。
1.解参数出现在不等式的左右两侧的不等式:-如果参数都是非负数,则可以直接从不等式中消去绝对值符号,并分析绝对值的取值范围,最后得到一个简单的数学不等式。
-如果参数一个是负数一个是非负数,则需要分情况讨论,考虑不等式两侧的符号。
2.解参数出现在不等式的系数中的不等式:-如果参数是一个正数或负数,则根据参数的正负讨论不等式两侧的符号,并得到一个简单的数学不等式。
-如果参数是一个未知数,可以根据参数的取值范围来讨论参数与未知数的关系,然后解不等式。
3.解参数出现在不等式的指数中的不等式:-如果参数b是负数,则需要讨论不等式两侧的符号并得到一个简单的数学不等式。
步骤3:解不等式在解决了参数的不等式之后,可以根据参数的取值范围来解不等式,得到不等式的解集。
不等式含参题型及解题方法初一下册初一下册学习数学时,不等式含参题型是一个重要的知识点。
学生需要掌握不等式的性质和解题方法,以便能够熟练地解决各种不等式问题。
本文将深入探讨不等式含参题型及解题方法,希望能够帮助学生更好地理解和掌握这一知识点。
一、不等式含参题型的基本概念不等式含参题型是指在不等式中含有未知数的题型。
通常情况下,不等式含参题型可以用代数的方法解决。
学生在解题时需要根据不等式的性质和解题方法进行分析和推演,最终得出解的过程。
不等式含参题型有以下几种常见形式:1.一元一次不等式:形如ax+b>c或ax+b≤c的不等式,其中a、b、c为常数,x为未知数。
2.一元二次不等式:形如ax^2+bx+c>0或ax^2+bx+c≥0的不等式,其中a、b、c为常数,x为未知数。
3.绝对值不等式:形如|ax+b|<c或|ax+b|≥c的不等式,其中a、b、c为常数,x为未知数。
二、不等式含参题型的解题方法解不等式的关键在于将不等式化为可以比较大小的形式,并找出未知数的取值范围。
下面将分别介绍解一元一次不等式、一元二次不等式和绝对值不等式的方法。
1.解一元一次不等式解一元一次不等式的方法主要有两种:用图形法和用代数法。
(1)图形法:将不等式对应的不等式式画出来,从图像上找出解集。
(2)代数法:通过代数运算和不等式的性质将不等式化为常见的形式,找出解的范围。
2.解一元二次不等式解一元二次不等式的方法通常采用代数法。
(1)先将不等式移项,将不等式转化为二次函数的问题。
(2)通过判别式求解二次不等式的解集,得出解的范围。
3.解绝对值不等式解绝对值不等式的方法也通常采用代数法。
(1)将绝对值不等式根据不同情况进行讨论:当ax+b≥0时,|ax+b|=ax+b;当ax+b<0时,|ax+b|=-(ax+b)。
(2)进一步化简绝对值不等式,得出解的情况。
三、不等式含参题型的解题技巧在解不等式含参题型时,学生可以借助一些解题技巧来提高解题效率和准确性。
考点透视含参不等式问题较为复杂,常与导数、函数、方程等知识相结合.这类问题侧重于考查不等式的性质、简单基本函数的图象和性质、导数的性质等,对同学们的运算和分析能力有较高的要求.下面举例说明解答含参不等式问题的几种常用方法.一、判别式法判别式法主要适用于求解含参二次不等式问题.解答这类问题主要有三个步骤:第一步,根据二次不等式构造一元二次方程;第二步,运用二次方程的判别式,建立关于参数的新不等式;第三步,解新不等式,求得问题的答案.例1.若ax2-2ax+1≥0在R上恒成立,则实数a的取值范围为_____.解:当a=0时,1≥0,不等式ax2-2ax+1≥0成立;当a≠0时,{a>0,Δ≤0,解得0<a≤1;综上所述,实数a的取值范围为0≤a≤1.该二次不等式的二次项和一次项中含有参数,需分a=0和a≠0两种情况进行讨论.运用判别式法求解含参一元二次不等式问题,需先根据不等式构造一元二次函数和一元二次方程;然后根据一元二次方程的根的分布情况,建立关于判别式、根与系数、对称轴的不等式,从而求得参数的取值范围.二、分离参数法分离参数法适用于求解变量和参数可分离的不等式问题.解题时,需先判断出参数系数的正负;然后根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;再求出含变量一边的式子的最值;最后求出参数的取值范围.例2.当x∈()1,+∞时,(e x-1-1)ln x≥a(x-1)2恒成立,则实数a的取值范围为_____.解:因为x∈()1,+∞,则x-1>0,由(e x-1-1)ln x≥a(x-1)2,可得e x-1-1x-1⋅ln xx-1≥a,即e x-1-1x-1⋅1x-1ln x≥a,则e x-1-1x-1⋅1e ln x-1ln x≥a,令f()x=e x-1x()x>0,则f′()x=()x-1e x+1x2,令g()x=()x-1e x+1,则g′()x=xe x>0,所以g()x在()0,+∞上单调递增,则g()x>g()0=0,即f′()x>0,所以f()x在()0,+∞上单调递增,则f()x>0,令h()x=ln x-x+1,则h′()x=1-xx<0,则h()x在()1,+∞上单调递减,则h()x<h()1=0,即ln x-x+1<0,则x-1>ln x,所以f()x-1>f()ln x>0,即e x-1-1x-1>eln x-1ln x>0,可得e x-1-1x-1⋅1e ln x-1ln x>1,则a≤1,解答本题,要先将不等式进行整理,使参数和变量分离;再构造出函数f()x=e x-1x()x>0,将问题转化为函数最值问题.对其求导,判断其单调性,即可求得参数的取值范围.三、函数性质法若含参不等式中含有简单基本函数,则可直接将不等式进行变形,将其构造成函数,把问题转化为f(x,a)≥0、f(x,a)<0、f(x,a)≥g(x,a)、f(x,a)<g(x,a)等函数不等式问题.再根据简单基本函数的单调性,以及导数与函数单调性之间的关系,判断出函数的单调性,即可根据函数的单调性,求得函数的最值,顺利求出问题的答案.例3.若不等式sin x-ln()x+1+e x≥1+x+ax2-13x3恒成立,则a的取值范围为_____.解:由x>-1得,sin x-ln(x+1)+e x-x-1-ax2+13x3≥0,设f(x)=sin x-ln(x+1)+e x-x-1-ax2+13x3,则g(x)=f′(x)=cos x-1x+1+e x-1-2ax+x2,则h(x)=g′(x)=-sin x+1(x+1)2+e x-2a+2x,则z(x)=h′(x)=-cos x-2(x+1)3+e x+2,z′(x)=sin x+6(x+1)4+e x,当x>-1时,z′(x)>0,则h(x)单调递增,又当x∈(-1,0)时,z(x)<0,则h(x)单调递减,当x∈(0,+∞)时,z(x)>0,则h(x)单调递增,又h(0)=2-2a,①当2-2a≥0,即1≥a时,h(0)≥0,则当x∈(-1,+∞)孙小芳35考点透视时,h (x )≥0,此时g (x )单调递增,又g (0)=0,故当x ∈(-1,0)时,g (x )<0,则f (x )单调递减,当x ∈(0,+∞)时,g (x )>0时,f (x )单调递增,所以f (x )min =f (0),又f (0)=0,故f (x )≥0恒成立,满足题意;②当2-2a <0,即a >1时,h (0)<0,x →+∞,h (x )→+∞,故存在x 0>0,且h (x 0)=0,则当x ∈(-1,x 0)时,h (x )<0,则g (x )单调递减,当x ∈(x 0,+∞)时,h (x )>0,所以g (x )单调递增,又g (0)=0,故g (x 0)<0,x →+∞,g (x )→+∞,故存在x 1>x 0,且g (x 1)=0,所以当x ∈(-1,x 1)时,g (x )<0,则f (x )单调递减,又因为f (0)=0,所以f (x )<f (0)=0,与f (x )≥0恒成立不相符;综上所述,a ≤1.根据不等式构造函数f (x )=sin x -ln(x +1)+e x -x -1-ax 2+13x 3,通过多次求导,判断出导函数的符号,进而判断出函数的单调性,求得函数最值.求得使f (x )min ≥0成立时a 的取值范围,即可解题.四、主参换位法主参换位法,也叫反客为主法,适用于解答已知参数的范围求自变量取值范围的不等式问题.解答这类问题一般分三个步骤:第一步,将原不等式转化成关于参数的不等式;第二步,以参数为自变量,构造函数式,将问题转化为函数问题;第三步,根据函数的性质、图象讨论不等式成立的情形,建立关系即可解题.例4.已知函数f ()x =ax 2+bx -6,不等式f ()x ≤0的解集为[]-3,2.若当0≤m ≤4时,不等式mf ()x +6m <x +1恒成立,求实数x 的取值范围.解:由题意知:-3,2是方程ax 2+bx -6=0的根,且a >0,∴ìíîïï-b a=-3+2,-6a=(-3)×2,解得a =1,b =1.∴f ()x =x 2+x -6,∴mf ()x +6m <x +1可变形为()x 2+x m -x -1<0,令g ()m =()x 2+x m -x -1,∴{g (0)<0,g (4)<0,即{-x -1<0,4x 2+3x -1<0,解得ìíîx >-1,-1<x <14,-1<x <14.解答本题主要采用了主参换位法.因为已知参数m 的取值范围,故把m 当成自变量,通过主参换位,将问题转化为g ()m =()x 2+x m -x -1对任意0≤m ≤4恒成立,根据一次函数的性质,列出不等式组,即可解题.五、数形结合法当把不等式两边的式子看成两个函数式时,可根据其几何意义画出两个函数的图象,分析两个曲线间的位置,确保不等式恒成立,即可通过数形结合,求得参数的取值范围.例5.若关于x 的不等式||||kx -4-x 2-3≤3k 2+1恒成立,则k 的取值范围是_____.解:由题意可得4-x 2≥0,得-2≤x ≤2,则||||kx -4-x 2-3≤3k 2+1可转化为:||kx -4-x 23,设直线l :kx -y -3=0,上半圆C :x 2+y 2=4()y >0,即y =4-x 2,半径为r =2,||kx -4-x 2≤3表示圆C 小于或等于3,如图,设圆心(原点O )到直线l 的距离为d ,由于圆C 上半部分上的点到直线l 的最大距离为d +r =d +2,所以d +2≤3,即d ≤1,即||0-0-3k 2+1≤1,解得k ≤-22或k ≥22,所以k 的取值范围为(]-∞,-22⋃[)22,+∞.解答本题,需挖掘代数式的几何意义,采用数形结合法,将原问题转化为使圆C 上半部分上的任意一点到直线l 的距离小于或等于3时参数的取值范围.分析直线与圆的位置关系,便可建立新不等式.由此可见,求解含参不等式问题的方法多样.但由于不等式与函数的关系紧密,且利用函数的单调性和图象容易建立不等关系式,因此函数思想是破解含参不等式问题的主要思想.(作者单位:江苏省南京市大厂高级中学)36。
初中数学含参不等式组知识点及解法一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.要点诠释: (1)这里的“几个”不等式是两个、三个或三个以上.(2) 这几个一元一次不等式必须含有同一个未知数.二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(3) 有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2. 一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释: (1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.解含参的一元二次方程的解法,在具体问题里面,按分类的需要有讨论如下四种情况:(1)二次项的系数;(2)判别式;(3)不等号方向(4)根的大小。
含参数的一元二次不等式的解法:二次项系数为常数(能分解因式先分解因式,不能得先考虑0≥∆) 例1、解关于x 的不等式0)1(2>++-a x a x 。
解:0)1)((2>--x a x1,0)1)((==⇒=--x a x x a x 令 为方程的两个根(因为a 与1的大小关系不知,所以要分类讨论)(1)当1<a 时,不等式的解集为}1|{a x x x <>或(2)当1>a 时,不等式的解集为}1|{<>x a x x 或(3)当1=a 时,不等式的解集为}1|{≠x x综上所述:(1)当1<a 时,不等式的解集为}1|{a x x x <>或(2)当1>a 时,不等式的解集为}1|{<>x a x x 或(3)当1=a 时,不等式的解集为}1|{≠x x例2、解关于x 的不等式022≤-+k kx x分析:此不等式为含参数k 的不等式,当k 值不同时相应的二次方程的判别式的值也不同,故应先从讨论判别式入手.解 )8(82+=+=∆k k k k(1) 当02,08,02=-+>-<>∆k kx x k k 方程时或既有两个不相等的实根。
含有参数的不等式组解法在解不等式组时,我们常常需要考虑参数的存在,并将其纳入我们的解法中。
含有参数的不等式组解法相较于一般的不等式组解法更为复杂,因为我们需要找到参数的取值范围,使得不等式组的解集合在该参数范围内成立。
本文将介绍一种生动、全面、有指导意义的含有参数的不等式组解法。
首先,我们需要明确什么是含有参数的不等式组。
通常,不等式组是由多个不等式组成的方程系统。
而含有参数的不等式组是指在不等式组中存在一个或多个未知参数,我们需要求出这些参数的取值范围使得不等式组成立。
解决含有参数的不等式组的第一步是观察不等式组中是否存在特殊的条件或关系。
通过观察可以发现,有时候不等式组中的不等式之间存在特殊的关系,比如不等式是相互约束的、对称的或有递增或递减的性质。
这些特殊的关系对于求解参数的取值范围非常重要,我们需要利用这些关系来简化不等式组的求解过程。
其次,我们需要以图像的方式来理解含有参数的不等式组。
通过绘制不等式组的图像,我们能够更加直观地看清不等式之间的关系,并能够更好地找到参数的取值范围。
同时,绘制图像也能够帮助我们将不等式组与坐标系联系起来,从而更好地理解概念和思考问题。
在解含有参数的不等式组时,我们还需要采用代数方法。
通过代数方法,我们可以将含有参数的不等式组转化为一般的不等式组,从而更好地求解问题。
常用的代数方法包括代入法、消元法、换元法等。
通过灵活运用这些方法,我们能够将含有参数的不等式组转化为一般的不等式组,并进一步求解出参数的取值范围。
最后,我们需要检验参数的解集是否满足不等式组。
求解出参数的取值范围后,我们需要将这些取值代入不等式组,并检验不等式组是否成立。
如果成立,则这些参数是不等式组的解集;如果不成立,则需要重新找到参数的取值范围。
通过反复检验和调整,我们能够找到合适的参数的取值范围,进而找到不等式组的解集。
综上所述,解含有参数的不等式组是一个相对复杂的问题,需要我们综合运用观察、图像、代数等方法来解决。
含参数的不等式组是指不等式中含有某个参数,需要求出该参数的取值范围使得不等
式组的解存在或满足某种条件。
以下是解含参数的不等式组的一般步骤:
1. 列出不等式组
首先需要根据问题的具体条件列出含有参数的不等式组表达式,包括不等式的符号和
参数的系数和变量。
2. 对每个不等式进行分析
对于每个不等式,需要根据符号及系数来分析其解的取值范围,从而得到该参数的约
束条件。
若不等式为一次不等式,则可以使用代数方法求出其解;若不等式为二次不
等式,则需要使用平方根解法等方法。
3. 将约束条件组合起来
将得到的每个约束条件组合起来,作为参数的取值范围。
通常来说,解析式的形式越
简单,越容易定位参数取值范围。
4. 判断不等式组解的存在性
根据参数的取值范围和不等式组的解的性质,判断该不等式组是否有解或满足某种条件。
可以使用图像法或算法确定解的情况,同时需要注意区分解的类型和数量等问题。
5. 求解不等式组
如果不等式组的解存在,可以使用代入法、换元法等方法求出解析式,并根据问题的
具体条件验证解的正确性。
需要注意的是,含参数的不等式组的求解需要灵活运用数学方法和技巧,在求解过程
中还需注意对角线法则等问题,防止求解错误。
含参不等式恒成立问题具有较强的综合性,且难度一般较大,通常会综合考查方程、函数、导数、不等式等知识点的应用.解答这类问题,可以从不同的角度入手,寻找到不同的解题思路.下面介绍几个破解含参不等式问题的“妙招”,以帮助大家提升解题的效率.一、数形结合数形结合法是解答数学问题的常用方法.通过数与形之间的相互转化,将不等式恒成立问题转化为函数图象的交点、位置关系问题,即可通过研究图形,破解不等式恒成立问题.在研究图形时,要特别关注临界的情形,如有1个交点、有2个交点、相切等情形.例1.若当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,求a 的取值范围.解:设f 1(x )=(x -1)2,f 2(x )=log a x ,在同一个平面直角坐标系中画出两个函数的图象,如图所示.要使不等式(x -1)2<log a x 在x ∈(1,2)上恒成立,需使f 2(x )=log a x 的图象始终在f 1(x )=(x -1)2的上方,即使a >1,由图可知,在x ∈(1,2)上,f 1(x )∈()0,4,且f 1(x )=(x -1)2的最高点为(2,4),当x =2时,由f 2(x )=log a x =4得a =2,所以a 的取值范围为(1,2].不等式两边的式子都是简单基本函数,于是分别画出两个函数的图象,将不等式恒成立问题转化为f 2(x )=log a x 的图象始终在f 1(x )=(x -1)2的上方的位置关系问题.结合图形来分析f 2(x )=log a x 的图象始终在f 1(x )=(x -1)2的上方的临界情形:两个图象的最高点在同一个位置,即可解题.二、分离参数对于含有参数的不等式恒成立问题,通常需将参数与变量分离,可先将不等式化为一边有参数、另一边无参数的形式;再根据已知条件,讨论不含有参数的式子的取值范围,进而确定参数的取值范围.例2.已知函数f ()x =ax -4x -x 2,当x ∈(0,4]时,f ()x <0恒成立,求实数a 的取值范围.解:由f ()x =ax -4x -x 2<0可得a<,因为函数g ()x在x ∈(0,4]上为减函数,所以在x ∈(0,4]上,函数g ()x>g ()4=0,故a <0,即实数a 的取值范围为(-∞,0).解答本题,要先将实数a 与变量x 分离开;再根据g ()x 的单调性求得当x ∈(0,4]时g ()x 的值域,进而求出实数a 的取值范围.在分离参数时,要注意判断参数的正负值是否会对不等式的符号产生影响.三、分类讨论由于参数的取值往往不确定,所以在解答不等式恒成立问题时,我们通常需要对参数或某些变量进行分类讨论.确定分类讨论的标准和对象是用分类讨论法解题的关键.例3.设f ()x =x 2-2mx +2,当x ∈[-1,+∞)时,f ()x =x 2-2mx +2≥0恒成立,求参数m 的取值范围.解:设F ()x =x 2-2mx +2-m ,则问题就转化为当x ∈[-1,+∞)时,F ()x =x 2-2mx +2-m ≥0恒成立.①当△=4()m -1()m -2<0,即-2<m <1时,F ()x =x 2-2mx +2-m >0恒成立;②当△=4()m -1()m -2≥0时,ìíîïïïï△≥0,F ()-1≥0,--2m 2≤-1,即ìíîïïïï4()m -1()m +2≥0,m +3≥0,--2m 2≤-1,解得-3≤m ≤-2.综上所述,参数m 的取值范围为[-3,1).该不等式为二次式,且二次项的系数大于0,但方程的判别式对函数F ()x 和m 的取值有影响.于是采用分类讨论法,分△≥0和△<0两种情况讨论F ()x ≥0时m 的取值.虽然不等式恒成立问题的难度较大,但是我们只要掌握了解答此类问题的几个“妙招”,就能在解题时做到游刃有余.(作者单位:华东师范大学盐城实验中学)O47Copyright ©博看网. All Rights Reserved.。
不等式(3)----含参不等式的解法当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。
我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。
解参数不等式一直是高考所考查的重点内容。
(一)几类常见的含参数不等式一、含参数的一元二次不等式的解法:例1:解关于的x 不等式2(1)410()m x x m R +-+≤∈分析:当m+1=0时,它是一个关于x 的一元一次不等式;当m+1≠1时,还需对m+1>0及m+1<0来分类讨论,并结合判别式及图象的开口方向进行分类讨论:⑴当m<-1时,⊿=4(3-m )>0,图象开口向下,与x 轴有两个不同交点,不等式的解集取两边。
⑵当-1<m<3时,⊿=4(3-m )>0, 图象开口向上,与x 轴有两个不同交点,不等式的解集取中间。
⑶当m=3时,⊿=4(3-m )=0,图象开口向上,与x 轴只有一个公共点,不等式的解为方程24410x x -+=的根。
⑷当m>3时,⊿=4(3-m )<0,图象开口向上全部在x 轴的上方,不等式的解集为∅。
解:11,|;4m x x ⎧⎫=-≥⎨⎬⎩⎭当时原不等式的解集为 ⎭⎬⎫⎩⎨⎧+-+≤≤+--<<-⎭⎬⎫⎩⎨⎧+-+≤+--≥-<∆=+-+-≠132132|,31132132|1);34014)1(12m m x m m x m m m x m m x x m m x x m m 原不等式的解集为时当或时,原不等式的解集为则当-(=的判别式时,当 当m=3时,原不等式的解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当m>3时, 原不等式的解集为∅。
含参不等式组的解法
在数学中,含参不等式组是一类常见的数学问题。
含参不等式组
中含有未知数,并且不等式中的不等式常数(即系数和常数项)均含
有参数,因此需要通过对参数的不同取值进行分析,得到不等式组的解。
在解决含参不等式组的问题时,需要掌握一些重要的技巧和方法,下面我们就来详细了解一下。
首先,对于含参不等式组,我们需要对其进行分类讨论。
一般情
况下,含参不等式组可以分为两类:一类是一元不等式组,即只含有
一个未知数的不等式组,另一类是多元不等式组,即含有多个未知数
的不等式组。
对于不同类型的含参不等式组,需要采用不同的方法进
行解答。
对于一元不等式组,我们常用的解题方法有以下几种:代数法、
图像法、函数法、极值法等。
其中代数法是最常用的方法。
我们可以
通过变量替换、置换、解方程等代数方法来找到解题的思路。
对于一
元不等式组,我们还可以通过图像法来得到解的范围。
将不等式中的
各项表示成两条直线,然后找到两条直线的交点,直线上方的部分即
为不等式解的范围。
函数法是在原函数图像变形后的函数图像进行判
断解的范围,其计算方法较为简单;而极值法则是通过对函数的一阶
导数和二阶导数进行判定,得出函数的极值,从而确定不等式的解。
对于多元不等式组,我们需要采用代数法、几何法、线性规划、
拉格朗日乘数法等方法进行解决。
代数法仍然是最常用的方法。
我们
需要采用类似于一元不等式组的代数方法,通过消元、替换、解方程
等技巧,将多元不等式组转化为一元或二元不等式组,进而得到其解
的范围。
几何法则是通过对多元不等式组中各项函数的几何特性进行
分析。
利用二维平面或三维空间中的图像,可以清晰地表示出函数之
间的关系,从而得到不等式的解。
线性规划是一种常用的数学方法,
它可以找到满足约束条件的最优解,常用于工程、经济、管理等领域。
拉格朗日乘数法则是通过对函数的一阶偏导数等条件进行分析,并添
加拉格朗日乘数来解决多元不等式组的问题。
总之,解决含参不等式组的问题需要掌握一些基本的解题方法和
技巧,同时需要对数学知识有一定的理解和掌握。
通过不断的实践和
练习,我们可以更轻松地解决含参不等式组的问题。