初中数学解题技巧
- 格式:docx
- 大小:41.48 KB
- 文档页数:7
初中数学解题技巧大全数学是一门需要掌握解题技巧的学科。
在初中阶段,学生需要逐渐掌握各种数学解题技巧,以便能够有效地解决各种数学题目。
本篇文章将为大家介绍一些在初中数学中常用的解题技巧。
1. 反证法反证法是一种常用的解题思路,适用于多个数学领域,如代数、几何等。
它通过假设要证明的结论不成立,然后推导出矛盾的结论,从而证明了原命题的正确性。
在解题时,可以先假设结论不成立,然后按照相反的思路进行证明。
2. 分析归纳法分析归纳法是一种递推推理方法,适用于证明一些具有规律性的数学命题。
它的基本思路是通过对一些特殊情况进行分析,然后总结出一般性的规律,再用归纳的方式推广到更一般的情况。
在解题时,可以先从特例入手,找出规律,然后用归纳法证明。
3. 逆向思维逆向思维是一种倒推的解题方法,适用于解决一些难题。
它的思路是从所求结果出发,逆向推导出已知条件或者中间步骤,从而获得解答。
在解题时,可以先设想出最终结果,然后逆向思考,推导出初值或者递推关系。
4. 分数拆分法分数拆分法是一种常用的解题技巧,在解决一些复杂分式相关的题目时非常实用。
它的思路是将一个复杂的分数拆分成多个简单的分数之和或差。
在解题时,可以找到分子和分母的公因式,然后根据分数的性质进行拆分操作,最后再进行合并化简。
5. 数列思想数列思想是一种广泛运用于初中数学中的解题方法,适用于解决关于数列的各种问题。
它的思路是将一个问题转化为数列相关的问题,通过研究数列的性质和规律来解答。
在解题时,可以先求出数列的通项公式或递推公式,然后根据问题要求进行变形计算。
6. 图形转化法图形转化法是一种常见的几何问题解题技巧,适用于解决一些与图形相关的题目。
它的思路是将几何问题转化为代数问题或者利用几何性质进行等价变形。
在解题时,可以通过引入辅助线、相似三角形、平行四边形等手段,将原问题转化为更易处理的几何问题或者代数问题。
7. 逻辑推理法逻辑推理法是一种根据已知条件进行推理的方法,适用于解决一些条件推理或者概率相关的题目。
初中解题技巧数学题目解题的思路与方法数学是初中阶段的一门重要科目,对学生的思维能力、逻辑思维和问题解决能力有着重要的培养作用。
在解题过程中,正确的思路和方法是至关重要的。
本文将介绍一些初中数学题目解题的思路与方法。
I. 分析题目要求在解题之前,首先需要仔细阅读题目,理解题目中所给出的要求。
有时候一道复杂的数学题目可能只需要一个简单的公式或一个基本的解题思路就能解决。
因此,理解题目要求非常关键。
II. 创造解题思路掌握基本的数学概念和方法是解题的基础,但是遇到更复杂的问题时,学生需要学会创造解题思路。
例如,在代数问题中,可以通过列方程,引入未知数来解决问题;在几何问题中,可以利用相似三角形或平行线等基本几何定理来推导解决问题。
III. 切勿死扣公式在初中数学中,有很多重要的公式和定理,学生往往会试图将问题强行套用某个特定的公式,这样容易陷入思维的僵局,很难得到正确的答案。
因此,解题过程中要善于思考,考虑使用不同的方法和公式来解决问题。
IV. 整理信息在解题的过程中,整理清晰的信息是非常重要的。
有时候,数学问题的解决需要将题目中给出的条件整理归纳,找到其中的规律或者推导出未知的信息。
通过整理信息,可以更好地把握解题思路并提高解题效率。
V. 灵活运用方法数学题目的解决没有固定的模式,因此需要学生学会灵活运用各种方法和技巧。
例如,当遇到代数问题时,可以利用因式分解、配方法、消元等技巧;当遇到几何问题时,可以利用相似三角形、勾股定理等几何定理。
熟练掌握不同的方法,为解题提供更多的可能性。
VI. 反复练习数学的解题能力需要通过不断的练习和实践来提高。
只有通过大量的题目练习,才能熟悉各种题型的解题思路和方法,培养自己的数学思维能力。
解题过程中遇到困难和错误,不要气馁,要及时总结和反思,提升解题的技巧和方法。
总结:初中数学题目解题的思路与方法,包括分析题目要求、创造解题思路、避免死扣公式、整理信息、灵活运用方法和反复练习等。
初中数学解题方法和技巧(附常见的6种
方法)
初中数学的解题方法和技巧是初中数学研究中至关重要的一环。
以下是常见的6种解题方法和技巧:
1. 理清思路,逐步分析:在解题时,首先需要理清思路,逐步
分析问题,找到解决问题的方法和步骤。
2. 画图辅助解答:在解答数学题时,画图是非常有用的方法。
通过画图,可以更清晰地理解问题,并且可以发现一些隐藏的规律
和关系。
3. 正确理解题目中的各种术语和符号:理解和正确运用数学中
的术语和符号是解题的关键。
在解题时,需要认真阅读题目,并准
确地理解其中的各种术语和符号。
4. 打破常规,尝试新方法:在解题时,有时候需要打破常规,
尝试一些新的方法。
这样可以激发自己的思维,发现一些不同的解
题思路。
5. 掌握基本公式和定理:掌握数学中的基本公式和定理是解题的前提。
只有掌握了基本公式和定理,才能更好地解题。
6. 练、练、再练:练是掌握解题方法和技巧的重要途径。
只有通过大量的练,才能更加熟练地掌握各种解题方法和技巧,提高自己的数学解题能力。
以上是初中数学解题方法和技巧的常见6种方法,希望对初中数学学习者有所帮助。
一、选择题的解法1、直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
初中数学解题技巧总结数学是一门需要逻辑思维和解题技巧的学科。
在初中阶段,学生们需要掌握一些常用的解题方法和技巧,以提高解题效率并取得好成绩。
本文将总结一些初中数学解题技巧,帮助学生们更好地应对数学题目。
一、问题分析与转化解题的第一步是仔细阅读题目,并理解题目所要求解决的问题。
在分析问题时,可以先将问题中的关键信息提取出来,然后进行适当的转化。
例如,将文字问题转化为代数表达式,或将几何图形问题转化为数学公式。
这样做有助于简化问题,使解题过程更加清晰明了。
二、代数方程的运用代数方程是解决数学问题的常用工具。
通过设定未知数,建立方程,可以将复杂的问题转化为简单的方程式。
在解方程的过程中,可以运用各种运算法则,如消元法、加减消去法、配方法等。
对于一元一次方程、一元二次方程等常见方程式,学生们需要掌握相应的解法和技巧。
三、图形的几何性质初中数学中,几何图形是一个重要的研究对象。
学生们需要了解各种几何图形的性质和特点,并能够灵活运用这些性质解决问题。
例如,对于三角形,学生们需要掌握三角形的内角和为180度的性质,以及各种三角形的边长关系等。
对于矩形、正方形等常见几何图形,也需要熟悉其面积、周长等相关性质。
四、数据的分析与统计在数学中,数据的分析与统计是一个重要的内容。
学生们需要能够读懂图表、统计图等数据形式,并能够根据这些数据进行分析和判断。
在解决实际问题时,学生们可以通过绘制图表、计算平均值、找出最大值和最小值等方法,对数据进行整理和分析,从而得出结论。
五、逻辑推理与证明逻辑推理是数学解题中的重要环节。
学生们需要通过观察和推理,找出问题的规律和特点,并进行适当的证明。
在解决逻辑推理问题时,可以运用归纳法、逆否命题等方法,进行合理推理和论证。
通过训练和实践,学生们可以提高逻辑思维能力,更好地解决数学问题。
六、实际问题的建模数学是一门应用广泛的学科,可以用来解决各种实际问题。
学生们需要将数学知识与实际问题相结合,进行问题建模和求解。
初三数学解题技巧总结一、解题步骤1.理解题目:仔细阅读题目,明确题目所求,找出已知条件和未知条件。
2.分析问题:分析问题的类型,确定解题思路和方法。
3.设计方案:根据分析结果,设计解题方案,选择适当的数学知识和方法。
4.执行计算:按照解题方案,进行具体的计算和推导。
5.检验结果:检查计算结果是否合理,是否符合题意。
6.解答书写:整理解答过程,书写解答。
二、解题方法1.画图法:通过画图来直观地展示问题,帮助理解和解决问题。
2.公式法:运用数学公式直接计算结果。
3.代数法:通过建立方程或不等式来解决问题。
4.因式分解法:将多项式分解为因式的乘积形式。
5.换元法:设未知数为某个表达式,简化问题。
6.逆推法:从结果出发,逐步推导出已知条件。
7.分类讨论法:将问题分为几种情况,分别讨论和解决问题。
三、解题策略1.审题:仔细审题,找出关键信息,理解题目要求。
2.计划:根据题目要求,制定解题计划,选择合适的方法。
3.简化:将复杂问题简化,逐步解决。
4.转化:将问题转化为已知的数学问题,便于解决。
5.优化:在解题过程中,寻找更简洁的方法,提高解题效率。
四、常见题型和解题方法1.实数运算:熟练掌握实数的运算法则,如加减乘除、乘方、开方等。
2.代数式求值:根据题目要求,求出代数式的值。
3.方程求解:解一元一次方程、一元二次方程、二元一次方程组等。
4.不等式求解:解一元一次不等式、一元二次不等式、不等式组等。
5.函数问题:了解一次函数、二次函数的性质和图像,解决函数问题。
6.几何问题:运用几何知识和方法,解决三角形、四边形、圆等问题。
7.概率问题:运用概率知识,解决随机事件的问题。
五、解题注意事项1.审题要仔细,理解题目要求。
2.解题步骤要清晰,逻辑要严密。
3.计算要准确,避免出现错误。
4.解题方法要适当,灵活运用各种方法。
5.答案要简洁明了,解答书写要规范。
以上是初三数学解题技巧的总结,希望对你有所帮助。
习题及方法:一、实数运算1.习题:计算 (-3) + 4 × (-2) - 5 ÷ 2解题方法:按照先乘除后加减的顺序进行计算。
初中数学解题技巧大全数学是一门需要理解和应用的学科,对于初中生来说,掌握一些基本的解题技巧是非常重要的。
本文将介绍一些在初中数学中常见的解题技巧,帮助学生更好地理解和解决数学问题。
1. 理清问题:在解决任何数学问题之前,首先要仔细阅读并理解题目的要求。
确定问题所需要求解的内容,将问题分解为更容易解决的部分,列出已知和未知的条件等。
2. 勾股定理:在解决与直角三角形有关的问题时,我们可以使用勾股定理。
该定理指出:在直角三角形中,直角边的平方等于斜边两边平方的和。
使用这个定理,我们可以求解直角三角形的边长或判断一个三角形是否是直角三角形。
3. 分数的运算:当进行分数的加减乘除运算时,常常会遇到需要化简分数的情况。
可以使用约分的方法将分子和分母的公因数约去,以得到最简分数。
同时,也要注意将分数转化为小数形式,以方便计算和比较大小。
4. 百分数与比例:当涉及到百分数和比例的计算时,可以通过将百分数转化为小数,或者通过分数的形式来进行计算。
此外,还可以使用比例的性质来解决与比例有关的问题,如已知两个比例相等,可以通过交叉乘积等方法求解未知数。
5. 代数方程:代数方程是初中数学中的重要概念,通过代数方程,我们可以利用字母来表示未知数,并通过方程的性质来求解未知数的值。
当解决代数方程时,可以使用如距离速度时间公式、面积和周长公式等数学模型辅助解题。
6. 图表和图形:对于涉及到图表和图形的问题,我们需要仔细观察并理解图形的含义和数据的变化。
可以绘制辅助图表,如柱形图、线形图等,以帮助分析数据的规律和趋势。
7. 几何图形的性质:在解决几何图形的问题时,需要掌握各种几何图形的性质。
如长方形两对边相等、平行四边形对角线互相平分、三角形内角和等于180度等。
了解这些性质可以帮助我们快速解决与几何图形有关的问题。
8. 应用题解题思路:应用题通常需要将数学知识应用于实际生活中的问题。
在解决应用题时,可以进行逻辑分析,找到问题的关键信息并用数学的方式表达出来。
初中数学解题技巧知识点大全数学作为一门重要的学科,对于初中学生来说,是必修的科目之一。
在学习数学过程中,解题是其中的核心内容。
掌握解题技巧,能够更快地解决问题,提高数学水平。
本文将介绍初中数学解题的一些常见技巧和知识点,帮助初中生们更好地应对数学考试。
一、代数运算技巧1. 同类项的加减运算:在做代数式的加减运算时,需要先化简,将同类项的系数相加或相减。
2. 分配律的运用:在解决含有括号的代数式时,可以利用分配率将乘法运算进行展开。
3. 平方差公式:当遇到二次方差的时候,可以运用平方差公式将其化简。
二、几何解题技巧1. 图形的等式性质:在解决几何题时,可以利用图形的等边、等角性质来得到一些等式关系。
2. 图形的尺度性质:在解决几何题时,可以利用图形的尺度性质来求解未知的边长或角度。
3. 图形的相似性质:在解决几何题时,可以利用图形的相似性质来判断各个线段、角度之间的关系。
三、函数解题技巧1. 利用函数图像的性质:在解决函数题时,可以利用函数图像的对称性、周期性等性质来进行分析和求解。
2. 函数间的运算法则:在解决函数运算题时,需要掌握函数间的加减乘除的法则,能够正确地计算函数的运算结果。
四、方程解题技巧1. 利用等式的性质:在解决方程题时,可以灵活运用等式的性质,进行方程的变形和化简。
2. 二次方程的求解:当遇到二次方程的时候,可以利用因式分解、配方法等技巧进行求解。
3. 绝对值方程的求解:当遇到绝对值方程的时候,需要将绝对值拆解成正负两种情况进行讨论。
五、概率与统计技巧1. 求概率的方法:在解决概率题时,可以利用等可能性原理、频率概率等方法来计算概率。
2. 统计图的分析:在解决统计题时,可以通过分析统计图表来得到一些统计数据。
3. 平均数的计算:在解决统计题时,需要掌握计算算术平均数、加权平均数等平均数的方法。
六、解决思路和策略1. 弄清题意:在解决任何数学题目之前,首先要仔细阅读题目,弄清题意。
初中数学解题技巧方法归纳初中数学解题中的基本方法1. 观察与实验( 1 )观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。
( 2 )实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。
它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。
2. 比较与分类( 1 )比较法是确定事物共同点和不同点的思维方法。
在数学上两类数学对象必须有一定的关系才好比较。
我们常比较两类数学对象的相同点、相异点或者是同异综合比较。
( 2 )分类的方法分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。
如上图中一次函数的 k 在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。
3 .特殊与一般( 1 )特殊化的方法特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。
( 2 )一般化的方法4. 联想与猜想( 1 )类比联想类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。
通过类比联想可以发现新的知识;通过类比联想可以寻求到数学解题的方法和途径:( 2 )归纳猜想牛顿说过:没有大胆的猜想就没有伟大的发明。
猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。
初中数学主要是对命题的条件观察得出对结论的猜想,或对条件和结论的观察提出解决问题的方案与方法的猜想。
归纳是对同类事物中的所蕴含的同类性或相似性而得出的一般性结论的思维过程。
归纳有完全归纳和不完全归纳。
完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。
关键是猜之有理、猜之有据。
5. 换元与配方( 1 )换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
初中数学最经典的9大解题方法1、配方法通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。
配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
例:用因式分解法解一元二次方程3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式&韦达定理一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
判别式:△=b2-4ac韦达定理5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
例: 把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是()A.a=2,b=3 B.a=﹣2,b=﹣3B.a=﹣2,b=3 D.a=2,b=﹣3试题分析:根据多项式乘以多项式的法则可得(x+1)(x﹣3)=x•x﹣x•3+1•x﹣1×3=x2﹣3x+x﹣3=x2﹣2x﹣3,对比系数可以得到a=﹣2,b=﹣3.故答案选B。
初中数学解题技巧学习能力终究成为了我们这个时代的核心竞争力,也成为了最值得我们提升自己和发展事业的核心能力,那么究竟有多少人已经掌握了属于自己的学习方法呢?下面和一起来看初中数学解题技巧,希望有所帮助!1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的一些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有其中一种确定的形式,其中含有一些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的其中一种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的重要方法之一6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个***形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。
推理必须严谨。
导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、等(面或体)积法平面(立体)几何中讲的面积(体积)公式以及由面积(体积)公式推出的与面积(体积)计算有关的性质定理,不仅可用于计算面积(体积),而且用它来证明(计算)几何题有时会收到事半功倍的'效果。
运用面积(体积)关系来证明或计算几何题的方法,称为等(面或体)积法,它是几何中的一种常用方法。
9、几何变换法在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。
所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。
中学数学中所涉及的变换主要是初等变换。
有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。
另一方面,也可将变换的观点渗透到中学数学教学中。
将***形从相等静止条件下的研究和运动中的研究结合起来,有利于对***形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10、客观性题的解题方法选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。
选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。
初中数学题型解题技巧数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从其中一种角度看属于形式科学的一种。
数学家和哲学家对数学的确切范围和定义有一系列的看法。
(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。
作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。
思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有***形,而且对数和***形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。
这个特色在高中数学中已经得到充分的显露。
因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何***形的问题。
因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。
常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。
初中数学考试必备解题技巧选择题1、注意选择题要看完所有选项,做选择题可运用各种解题的方法,常见的方法如直接法,特殊值法,排除法,验证法,***解法,假设法(即反证法),动手操作法(比如折一折,量一量等方法)。
2、采用淘汰法和代入检验法可节省时间。
有些判断几个命题正确个数的题目,一定要慎重,你认为错误的最好能找出反例,要注意分类思想的运用;对于选择题中有“或”和“且”的选项一定要警惕,看看要不要取舍。
填空题1、注意一题多解的情况;2、注意题目的隐含条件,比如二次项系数不为0,实际问题中的整数等;3、要注意是否带单位,表达格式一定是最终化简结果;4、求角、线段的长,实在不会时,可以尝试猜测或度量法。
解答题①注意规范答题,过程和结论都要书写规范。
②计算题一定要细心,最后答案要最简,要保证绝对正确。
③先化简后求值问题,要先化到最简,代入求值时要注意:分母不为零;适当考虑技巧,如整体代入。
④解分式方程一定要检验,应用题中也是如此。
⑤解直角三角形问题,注意交代辅助线的作法,解题步骤。
关注直角、特殊角。
取近似值时一定要按照题目要求。
⑥实际应用问题,题目长,多读题,根据题意,找准关系,列方程、不等式(组)或函数关系式。
求出方程的解后,要注意验根,是否符合实际问题,要记着取舍。
⑦概率题:要通过画树状***、列表或列举,列出所有等可能的结果,然后再计算概率。
⑧方案设计题:要看清楚题目的设计要求,设计时考虑满足要求的最简方案,不要考虑复杂、追求美观的方案。
注意事项数学比较注重基础,平时的努力几乎可以把技巧的效果压榨成零,但在考试中也要注意以下三个小点:(1)先易后难,不要死磕一题,抢分节奏。
要有选择的放弃,遇到暂时不会做的,先放一下,做完其他题目之后回过头来再做。
(2)静下心检查。
做完题目之后,留出1分钟左右的时间查看这一道题是否正确,在求做题速度的同时,提高正确率。
(3)实在不会做,想想定义。
前面也说数学是基础性学科,出的题目也多是从基础延伸出来的,遇到不会做的题目,回归基础,将相关定理、公式等列出来,进行必要的运算,尽量不要空着。