行程问题之钟表问题
- 格式:doc
- 大小:19.00 KB
- 文档页数:5
钟面上的行程问题钟面行程问题是研究钟面上的时针和分针关系的问题,常见的有两种:⑴研究时针、分针成一定角度的问题,包括重合、成一条直线、成直角或成一定角度;⑵研究有关时间误差的问题.在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解.时钟问题—钟面追及基本思路:封闭曲线上的追及问题。
关键问题:①确定分针与时针的初始位置;②确定分针与时针的路程差;基本方法:①分格方法:时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。
分针每小时走60分格,即一周;而时针只走5分格,故分针每分钟走1分格,时针每分钟走1/12分格。
②度数方法:从角度观点看,钟面圆周一周是360°,分针每分钟转360/60度,即6°,时针每分钟转360/12*60度,即0.5度。
基础练习题:1. 现在是下午3点,从现在起时针和分针什么时候第一次重合?2. 分针和时针每隔多少时间重合一次?一个钟面上分针和时针一昼夜重合几次?3. 钟面上5点零8分时,时针与分针的夹角是多少度?4. 在4点与5点之间,时针与分针什么时候成直角?5. 9点过多少分时,时针和分针离“9”的距离相等,并且在“9”的两边?参考答案详解:1. 现在是下午3点,从现在起时针和分针什么时候第一次重合?解析:分针:1格/分时针:(1/12) 格/分3点整,时针在分针前面15格,所以第一次重合时,分针应该比时针多走15格,用追及问题的处理方法解:15格/(1-1/12)格/分=16+4/11分钟所以下午3点16又4/11分时,时针和分针第一次重合PS:这类题目也可以用度数方法解2. 分针和时针每隔多少时间重合一次?一个钟面上分针和时针一昼夜重合几次?解析:分针:6度/分时针0.5度/分当两针第一次重合到第二次重合,分针比时针多转360度。
所以两针再次重合需要的时间为:360/(6-0.5)=720/11分,一昼夜有:24*60=1440分所以两针在一昼夜重合的次数:1440分/(720/11)分/次=22次3. 钟面上5点零8分时,时针与分针的夹角是多少度?解析:分针:6度/分时针0.5度/分5点零8分,时针成角:5*30+8*0.5=154度分针成角:8*6=48度所以夹角是154-48=106度4. 在4点与5点之间,时针与分针什么时候成直角?解析:整4点时,分针指向12,时针指向4。
钟表问题1.如果小薇的闹钟比标准时间每小时快2分钟,那下面哪句话是正确的?A.当标准时钟的分针绕着钟面转一整圈时,小薇闹钟的分针恰好走了62格.B.当小薇闹钟的分针走了1整圈时,标准时钟的分针只走了58格.C.如果小薇在6:00时把闹钟和标准时间校准,那当闹钟显示7:00时,实际时间是6:58.D.小薇如果在6:00时把闹钟和标准时间校准,那当闹钟显示7:00时,实际时间是7:02.2.如果小薇的闹钟比标准时间每小时慢2分钟,那下面哪句话是正确的?A.当标准时钟的分针绕着钟面转一整圈时,小薇闹钟的分针恰好走了62格.B.当小薇闹钟的分针走了一整圈时,标准时钟的分针只走了58格.C.如果小薇在6:00时把闹钟和标准时间校准,那当闹钟显示6:58时,实际时间是7:00.D.小薇如果在6:00时把闹钟和标准时间校准,那当闹钟显示7:00时,实际时间是7:02.3.3点到4点之间,时针和分针重合是在3点____分.(如果答案是假分数,请化成带分数)4.4点到5点之间,时针和分针重合是在4点____分.(如果答案是假分数,请化成带分数)5.4点到5点之间,时针与分针第二次垂直是在4点____分.(如果答案是假分数,请化成带分数)6.5点到6点之间,时针与分针第二次垂直是在5点____分.(如果答案是假分数,请化成带分数)7.下列四幅关于时针和分针位置关系的图中,描述错误的是______。
A.分针和时针张开成一直线B.分针和时针垂直C.分针和时针张开成一直线D.分针和时针关于刻度3对称8.现在是10点12分,经过______分钟后,时针与分针第一次重合?(如果答案是假分数,请化成带分数)9.现在是9点12分,经过______分钟后,时针与分针第一次重合?(如果答案是假分数,请化成带分数)10.下列四幅关于时针和分针位置关系的图中,描述错误的是______。
A.分针和时针重合B.分针和时针关于刻度10对称C.分针和时针张开成一直线D.分针和时针关于刻度3对称11.现在是11点12分,经过______分钟后,时针与分针第一次重合?(如果答案是假分数,请化成带分数)12.下列四幅关于时针和分针位置关系的图中,描述错误的是______。
钟面上的行程问题钟面行程问题是研究钟面上的时针和分针关系的问题,常见的有两种:⑴研究时针、分针成一定角度的问题,包括重合、成一条直线、成直角或成一定角度;⑵研究有关时间误差的问题.在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解.时钟问题—钟面追及基本思路:封闭曲线上的追及问题。
关键问题:①确定分针与时针的初始位置;②确定分针与时针的路程差;基本方法:①分格方法:时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。
分针每小时走60分格,即一周;而时针只走5分格,故分针每分钟走1分格,时针每分钟走1/12分格。
②度数方法:从角度观点看,钟面圆周一周是360°,分针每分钟转360/60度,即6°,时针每分钟转360/12*60度,即0.5度。
基础练习题:1. 现在是下午3点,从现在起时针和分针什么时候第一次重合?2. 分针和时针每隔多少时间重合一次?一个钟面上分针和时针一昼夜重合几次?3. 钟面上5点零8分时,时针与分针的夹角是多少度?4. 在4点与5点之间,时针与分针什么时候成直角?5. 9点过多少分时,时针和分针离“9”的距离相等,并且在“9”的两边?参考答案详解:1. 现在是下午3点,从现在起时针和分针什么时候第一次重合?解析:分针:1格/分时针:(1/12) 格/分3点整,时针在分针前面15格,所以第一次重合时,分针应该比时针多走15格,用追及问题的处理方法解:15格/(1-1/12)格/分=16+4/11分钟所以下午3点16又4/11分时,时针和分针第一次重合PS:这类题目也可以用度数方法解2. 分针和时针每隔多少时间重合一次?一个钟面上分针和时针一昼夜重合几次?解析:分针:6度/分时针0.5度/分当两针第一次重合到第二次重合,分针比时针多转360度。
所以两针再次重合需要的时间为:360/(6-0.5)=720/11分,一昼夜有:24*60=1440分所以两针在一昼夜重合的次数:1440分/(720/11)分/次=22次3. 钟面上5点零8分时,时针与分针的夹角是多少度?解析:分针:6度/分时针0.5度/分5点零8分,时针成角:5*30+8*0.5=154度分针成角:8*6=48度所以夹角是154-48=106度4. 在4点与5点之间,时针与分针什么时候成直角?解析:整4点时,分针指向12,时针指向4。
时钟问题1.行程问题中时钟的标准制定;2.时钟的时针与分针的追及与相遇问题的判断及计算; 3.时钟的周期问题.时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度 时针速度:每分钟走112小格,每分钟走0.5度 注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
模块一、时针与分针的追及与相遇问题【例 1】 当时钟表示1点45分时,时针和分针所成的钝角是多少度?【考点】行程问题之时钟问题 【难度】1星 【题型】解答 【解析】 142.5度 【答案】142.5度【巩固】 在16点16分这个时刻,钟表盘面上时针和分针的夹角是____度.【考点】行程问题之时钟问题 【难度】1星 【题型】填空 【关键词】希望杯,六年级,一试【解析】 16点的时候夹角为120度,每分钟,分针转6度,时针转0.5度,16:16的时候夹角为120-6×16+0.5×16=32度.【答案】32度例题精讲知识点拨教学目标【例 2】 有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【考点】行程问题之时钟问题 【难度】2星 【题型】解答 【解析】 在10点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“112”,于是需要时间:1650(1)541211÷-=.所以,再过65411分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过65(1210)6054651111-⨯-=分钟,时针与分针第二次重合.标准的时钟,每隔56511分钟,时针与分针重合一次. 我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的112.如果设分针的速度为单位“l”,那么时针的速度为“112”. 【答案】65411分钟【巩固】 钟表的时针与分针在4点多少分第一次重合?【考点】行程问题之时钟问题 【难度】2星 【题型】解答 【解析】 此题属于追及问题,追及路程是20格,速度差是11111212-=,所以追及时间是:11920211211÷=(分)。
五年级数学思维能力拓展专题突破系列(一)行程中的钟表问题——钟表问题认识(1)认识行程问题的钟表问题,学会转化的思想解决问题1、认识钟表问题2、会用行程技巧解决钟表问题(即是该课程的课后测试)1. 简答题:什么是钟表问题?2. 简答题:钟表上解题可以有哪两种表示方法?3. 简答题:行程问题相遇时,速度,时间,路程三个量的关系是什么?4. 简答题:行程问题追及时,速度,时间,路程三个量的关系是什么?5. 简答题:时钟问题,分针的速度是时针速度的多少倍?1. 答案:研究钟面上时针和分针关系的问题。
2. 答案:可以按度数表示,也可以用格数表示。
3. 答案:相遇:路程=速度和×相遇时间4. 答案:追及:路程=速度差×相遇时间5. 答案:12倍五年级数学思维能力拓展专题突破系列(一)行程中的钟表问题——钟表问题认识(2)认识行程问题的钟表问题,学会转化的思想解决问题1、认识钟表问题2、会用行程技巧解决钟表问题1. 现在是3点,什么时候时针与分针第一次重合?2. 钟敏家有一个闹钟,每时比标准时间快2分。
星期天上午9点整,钟敏对准了闹钟,然后定上铃,想让闹钟在11点半闹铃响,提醒她帮助妈妈做饭。
钟敏应当将闹钟的铃定在几点几分?3. 一部动画片放映的时间不足1时,小明发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。
这部动画片放映了多长时间?(即是该课程的课后测试)1. 钟面上3时多少分时,分针与时针恰好重合?2. 在钟面上5时多少分时,分针与时针在一条直线上,而指向相反?3. 钟面上12时30分时,时针在分针后面多少度?4. 钟面上6时到7时之间两针相隔90°时,是几时几分?5. 钟面上7时到8时之间两针相隔180°时,是几时几分?1. 360÷12×3= 90(度) 90÷(6-0.5)=90÷5.5≈16.36(分)答:两针重合时约为3时16.36分2. 360÷12×5=150(度)(150+180)÷(6—0.5)=60(分)5时60分即6时整。
行程问题之钟面行程练习四
1、现在是下午5时整,6时以前时针与分针正好重合的时刻是几时几分?
2、2点整以后,时针与分针第二次重合是几时几分?
3、5点到6点之间,分针与时针在什么时刻成直角?
4、小明有一块手表,每分钟比标准时间快2秒钟,小明早晨8点整将手表对准,问当小明这快手表第一次指示12点时,标准时间此时应是几点几分?
5、现在是上午9点整,再过多少分钟,分针、时针在一条直线上,而且指向相反?
6、钟面上6时与7时之间,时针和分针重合是几点几分?
7、钟面上6时45分,时针在分针后面多少度?
8、钟表在6月29日零点比标准时间慢5分钟,他一直走到7月6日上午6时,比标准时间快5分钟,那么这只表所指的正确时间是在哪月哪日哪时?(零点和6时都是标准时间
9、有一只表分不清长针和短针了,多数情况下可根据两针所指的位置判断正确的时间。
但有时也会出现两种情况,使你判断不出正确时间。
请问从中午12点到夜里12点这段时间会遇到几次判断不出的情况。
(不包括中午12点与夜里12点)
请问一天内时针与分钟有多少次重合?
在一天的24小时之中,时钟的时针、分针和秒针
完全重合在一起的时候有几次?都分别是什么时间?你
怎样算出来的?
时钟在8点至9点之间,时针、分针两针在什么时候成一条直线?
10、手表比闹钟每时快60秒,闹钟比标准时间每时慢60秒.8点整将手表对准,12点整手表显示的时间是几时几分几秒?。
钟表上的行程问题(四)
例:学校召开全体教师会议,会议是在五点到六点之间召开的。
会议刚开始时,时针与分针的夹角是120度,当会议结束时时针与分针的夹角还是120度。
会议是几点几分几秒开始的?几点几分几秒结束的?
分析:这道题是分针在动,时针也在动,条件不多,看起来无从下手,但是,根据“动中找静,变中找不变”的原则:1:时针与分针的速度是固定不变的,2:将距离转化为度数。
第一步:因为一个周角是360度,钟表上是60小格,那么每小格就是6度。
第二步:分针每分钟走一小格,它的速度就是每分钟6度;
时针一小时(60分)走一大格(5小格)
即30度,那么它的速度就是每分钟0.5度。
在五点整时,时针与分针的夹角是150度,时针与分针是同时在走,那么150度加上时针走的
度数再减去分针走的度数就应等于120
度。
这就是会议开始的时间;
设:从五点整经过x分钟时针与分针的夹角是120度。
6x-0.5x-150=120
解得x≈5.45
5.45分=5分27秒所以会议是五点五分二十七秒开始的。
从五点五分二十七秒开始(即两针夹角120度)开始,用分针走过的路程减去原来的120度,再减去时针走过的路程就应等于120度。
设:从五点五分二十七秒开始经过x分钟,时针与分针的夹角还是120度。
6x-120-0.5x=120
解得x≈43.636
43.636分=43分38秒
所以会议开了43分38秒。
结束时间5.45+43.636=49.086分
=5点49分5秒
即会议是5点49分5秒结束的。
切记,解决复杂问题要养成“动中找静,变中找不变”的良好习惯。
奥数行程问题中的钟表问题
关于奥数行程问题中的钟表问题
行程问题的题型变化多样,形成10多种题型(比如相遇、追及问题,火车过桥,流水行船,钟表问题,发车问题,扶梯问题等等),都有各自相对独特的解题公式和方法。
接下来徐丽老师将会对钟表问题进行解析,希望对大家有所帮助!
一、问题简介
时钟问题是研究钟面上的时针和分针关系的问题,可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解。
二、常见解题方法
基本解题思路:追及问题里面的路程差思路,即格或角(分针)=格或角(时针)+格或角(差)
三、经典例题
例1、在3点与4点之间,时针和分针在什么时刻位于一条直线上?
四、巩固练习
1、小明做作业的.时间不足1小时,他发现结束时手表上的时针、分针的位置正好与开始时时针分针的位置交换了一下,问小明做作业用了多长时间?。
钟面上的行程问题钟面行程问题是研究钟面上的时针和分针关系的问题,常见的有两种:⑴研究时针、分针成一定角度的问题,包括重合、成一条直线、成直角或成一定角度;⑵研究有关时间误差的问题.在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解.时钟问题—钟面追及基本思路:封闭曲线上的追及问题。
关键问题:①确定分针与时针的初始位置;②确定分针与时针的路程差;基本方法:①分格方法:时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。
分针每小时走60分格,即一周;而时针只走5分格,故分针每分钟走1分格,时针每分钟走1/12分格。
②度数方法:从角度观点看,钟面圆周一周是360°,分针每分钟转360/60度,即6°,时针每分钟转360/12*60度,即0.5度。
基础练习题:1. 现在是下午3点,从现在起时针和分针什么时候第一次重合?2. 分针和时针每隔多少时间重合一次?一个钟面上分针和时针一昼夜重合几次?3. 钟面上5点零8分时,时针与分针的夹角是多少度?4. 在4点与5点之间,时针与分针什么时候成直角?5. 9点过多少分时,时针和分针离“9”的距离相等,并且在“9”的两边?参考答案详解:1. 现在是下午3点,从现在起时针和分针什么时候第一次重合?解析:分针:1格/分时针:(1/12) 格/分3点整,时针在分针前面15格,所以第一次重合时,分针应该比时针多走15格,用追及问题的处理方法解:15格/(1-1/12)格/分=16+4/11分钟所以下午3点16又4/11分时,时针和分针第一次重合PS:这类题目也可以用度数方法解2. 分针和时针每隔多少时间重合一次?一个钟面上分针和时针一昼夜重合几次?解析:分针:6度/分时针0.5度/分当两针第一次重合到第二次重合,分针比时针多转360度。
所以两针再次重合需要的时间为:360/(6-0.5)=720/11分,一昼夜有:24*60=1440分所以两针在一昼夜重合的次数:1440分/(720/11)分/次=22次3. 钟面上5点零8分时,时针与分针的夹角是多少度?解析:分针:6度/分时针0.5度/分5点零8分,时针成角:5*30+8*0.5=154度分针成角:8*6=48度所以夹角是154-48=106度4. 在4点与5点之间,时针与分针什么时候成直角?解析:整4点时,分针指向12,时针指向4。
资料范本
本资料为word版本,可以直接编辑和打印,感谢您的下载
行程问题之钟表问题
地点:__________________
时间:__________________
说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容
行程问题之钟表问题
钟面行程问题是研究钟面上的时针和分针关系的问题,常见的有两种:
(1)研究时针、分针成一定角度的问题,包括重合、成一条直线、成直角或成一定角度;
(2)研究有关时间误差的问题.
在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解.
1、在10点与11点之间,钟面上时针和分针在什么时刻垂直?
2、现在是2点15分,再过几分钟,时针和分针第一次重合?
3、在7点与8点之间(包含7点与8点)的什么时刻,两针之间的夹角为120°?
4、小明在7点与8点之间解了一道题,开始时分针与时针正好成一条直线,解完题时两针正好重合,小明解题的起始时间?小明解题共用了多少时间?
5、一只旧钟的分钟和时针每65分钟(标准时间的65分钟)重合一次.问这只旧钟一天(标准时间24小时)慢或快几分钟?
6、在6点和7点之间,两针什么时刻重合?
7、现在是2点15分,再过几分钟,时针和分针第一次重合?
8、在10点与11点之间,两针在什么时刻成一条直线?
9、同学们进行了50米赛跑比赛,平平用了12秒,比小华多用了1秒,小花比平平多用1秒,谁跑得最快?
10、小鹏的手表比家里的挂钟每小时慢30秒钟,而这个挂钟比标准时间每小时快30秒钟,这块手表一昼夜与标准时间相差多少秒钟?
11、从时针指向4开始,再经过多少分钟,时针正好和分针重合?
12、4时与5时之间,什么时刻时钟的分针和时针成一直线?
13、有一个挂钟,每小时敲一次钟,几点钟就敲几下,钟敲6下,5秒钟敲完,钟敲12下,几秒钟可敲完?
14、当钟面上4时10分时,时针与分针的夹角是多少度?
15、求7时与8时之间,时针与分针的夹角是多少度?
16、一昼夜快3分的时钟,今天下午4时调拨到几点几分,才能于明天上午8时指向正确的时刻?
17、8时到9时之间,在什么时刻时针与分针的夹角是60度?
18、张奶奶家的闹钟每小时快2分(准确的钟分针每小时走一圈,而这个钟的分针每小时走一圈多2格)。
昨晚21:00,她把闹钟与北京时间对准了,同时把钟拨到今天早晨6:00闹铃,张姐姐听到闹铃声响比北京时间今天早晨6:00提前了多少小时?
19、在7时和8时之间,什么时刻与分针成直角?
20、某人有一只手表,比家里闹钟时间每小时快30秒,而闹钟却比标准时间每小时慢30秒。
此人手表一昼夜与标准时间相差多少秒?
21、5时以后的什么时刻,时针和分针在“4”字两边并且与“4”字等距离?
22、一只钟的时针和分针每65分钟重合一次,这只针一天慢或快几分?
23、有甲乙两只钟表,甲表8时15分时,乙表8时31分。
甲表比标准时间每9小时快3分,乙表比标准时间每7小时慢5分。
至少要经过几小时,两种表的指针指在同一时刻?
24、某种表在7月29日零点比标准时间慢4分半,它一直走到8月5号上午7时,比标准时间快3分。
那么,这只钟所指的正确的时刻是几月几日几时?
25、3时以后的某一时刻,时针与分针的位置,恰好与6时以后(不超过7时)的某一时针的位置相互交换。
这6时后的某一时刻是多少?
26、现在是3时整,再过多少时间,分针第一次在时针和“12”字之间并与它们等距离?
27、小芳和小明一起在外做游戏。
下午5时多,小芳的妈妈喊小芳回家,小芳发现手表上两针的夹角刚好是900(两人回家时间都没有超过6时)。
算一算,小明比小芳晚回家多长时间?
28、下午放学回家,小明做作业,开始时看见钟面上分针略超过时针,完成作业时发现分针和时针恰好互换了位置,小明做作业用了多少分钟?
29、某科学家设计了一只时钟,这只时钟昼夜走10小时,每小时100分钟(如图)。
当这只钟显示5时时,实际上是中午12时;当这只钟显示6时75分时,实际上是下午几时几分?
30、甲乙丙丁约定中午12时在公园门口集合。
见面后,甲说:“我提前6分钟到,乙是正点到的。
”乙说:“我提前4分钟到,丙比我晚到2分钟。
”丙说:“我提前3分钟到,丁是提前2分钟到的。
”丁说:我以为我迟到1分钟,其实我到后1分钟才听到收音机报北京时间12时整。
”
根据他们的谈话,请你推算,他们4个人的手表各快(或慢)几分钟?实际上他们各是几时到公园门口的?公园门口有个大挂钟走得很准确,他们4人,谁到达公园时,大挂钟的时针与分针与时针所构成的角度最大,是甲、乙、丙,还是丁?
31、某人有一块手表和一个闹钟,手表比闹钟每时慢30秒,而闹钟比标准时间每时快30秒。
问:这块手表一昼夜比标准时间差多少秒?
32、一节课40分,从8点30分上课应当到几点几分下课?
33、王老师上午7:30到校上班,11:30下班,上午在校的时间是多少?
34、贝贝做家庭作业用了50分,正好在晚上8:00做完,贝贝是晚上几时几分开始做作业的?
35、做一个零件从上午7:40分开始做,上午9:20分完成,做这个零件用了多长时间?
36、小玲家的钟停了,电台广播2点时,奶奶跟电台对时,由于年老眼花,把时针与分针颠倒了,小玲放学回家时见钟才2点整,大吃一惊,,请你帮助想一想,现在应该是几点钟?
37、小王骑自行车去A地,上午8时出发,在途中因有事停留了15分钟,到中午12时才到达A地,小王骑自行车行了多少时间?
38、钟面上有12个数,你能画两条线将钟面分成三部分,使每部分的数相加的和相等吗?
39、小奇从家到学校跑步去和回要8分钟,如果去时步行,回来时跑步一共需要10分,那么小奇来回都是步行要几分钟?
40、冬冬做作业,写语文作业用去规定时间的一半,写数学作业用去剩下时间的一半,最后5分钟读书,冬冬完成全部作业作去了多长时间?
41、一只蜗牛从20厘米深的沟底往上爬,每爬4厘米要2分钟,然后停1分,问蜗牛从沟底爬到沟沿上要用多长时间?
42、明明家的台钟,一点钟响铃一下,两点钟响铃两下,三点钟响铃三下,八点钟响铃八下,有一次明明听见台钟响铃一下,没多久又响响了一下,后来又响了一下,你知道最后一响是几点钟吗?。