第六章-光学捷联惯导系统初始对准(20121122)要点
- 格式:ppt
- 大小:1.07 MB
- 文档页数:36
第六章捷联惯导6-1捷联惯导的原理¾捷联惯导系统概述•捷联惯性技术的发展过程•捷联惯导系统与平台惯导系统的对比¾捷联惯导系统的基本力学编排方程•捷联惯导系统的算法概述•捷联惯导系统原理框图的说明•姿态方程的解算(1)姿态和航向角的计算(2)姿态矩阵的微分方程(3)四元数的运动学微分方程(4)等效旋转矢量法及其微分方程(5)位移角速率方程(6)速度方程•导航位置方程(1)游动方位系与地球系之间的方向余弦矩阵(2)载体位置计算(3)方向余弦矩阵计算•垂直通道阻尼¾捷联惯性器件的余度技术•单自由度陀螺仪的配置方案(1)四陀螺仪配置方案(2)六陀螺仪系统•二自由度陀螺仪的配置方案¾捷联惯导的数值计算方法•数值积分法(1)欧拉法(2)四阶龙格-库塔法•角速率信息的提取“捷联(Strapdown)”这一术语的英文原义就是“捆绑”的意思。
因此,所谓捷联惯性系统也就是将惯性敏感元件(陀螺与加速度计)直接“捆绑”在载体上,从而完成制导和导航任务的系统。
V-2导弹“阿波罗-13”宇宙飞船“海盗”火星降落器从捷联技术的发展过程中我们已经看到捷联系统的优越性已越来越突出的显示出来,并在许多方面已日渐代替平台系统。
为什么会出现这种情况呢?为了回答这一问题,这里从生产与使用的角度将捷联系统与平台系统做一对比。
(1)硬件和软件的复杂程度由于捷联系统没有平台框架及相连的伺服装置,因而简化了硬件;代价是增加了计算机的负担,需要一个比较复杂的实时程序。
(2)可靠性捷联系统的可靠性要比平台系统高,其原因是它的机械构件少,加之容易采用多敏感元件配置,实现余度技术。
(3)成本与可维护性由于平台系统在机械结构上要复杂得多,而对于捷联系统只是算法复杂些,因而从制造成本上看捷联系统的成本要比平台系统低。
从市场供应的情况来看,数字计算机的价格一直在下降,而平台系统的价格一直在上升。
此外,捷联系统比平台系统具有较长的平均故障间隔时间,加之模块设计简化了维修,从而捷联系统的可维护性比平台系统大为提高了。
捷联惯导系统的 静基座初始对准1.初始对准惯性导航系统是根据测得的运载体的加速度,经过积分运算求得速度与位置的,因此,必须知道初始速度和初始位置。
此外,在以地理坐标系为导航坐标系的惯导系统中(包括平台式和捷联式),物理平台和数学平台都是测量加速度的基准,而且平台必须准确地跟踪地理坐标系,以避免由平台误差引起加速度测量误差。
在惯性系统加电启动后,平台的三轴指向是任意的,平台一般不在水平面内,又没有确定的方位,因此在系统进入导航工作状态前,必须将平台的指向对准,此过程便称为惯性系统的初始对准。
初始对准的精度直接关系到惯导系统的工作精度,初始对准的时间是惯导系统的重要战术技术指标。
因此,初始对准是惯导系统最重要的关键技术之一。
2.初始对准的分类(1)按对准的阶段来分惯导系统的初始对准一般分为两个阶段:第一阶段为粗对准:对平台进行水平与方位粗调,要求尽快地将平台对准在一定的精度范围内,为后续的对准提供基础,所以要求速度快,精度可以低一些。
第二阶段为精对准:它是在粗对准的基础上进行的,要求在保证对准精度的前提下尽量快。
(2)按对准的轴系来分在以地理坐标系为导航坐标系的情况下,初始对准可分为水平对准和方位对准。
在平台式惯导系统中,物理平台通常先进行水平对准,然后同时进行平台的水平与方位对准。
在捷联式惯导系统中,对数学平台进行对准时,一般情况下水平对准与方位对准是同时进行的。
(3)按基座的运动状态来分按照安装惯导系统所在基座的运动状态可分为静基座对准和动基座对准。
动基座对准通常是在运载体处于运动状态下进行的。
(4)按对准时对外信息的需求来分惯导系统只依靠重力矢量和地球速率矢量通过解析方法实现的初始对准称为自主式对准,此时不需要其它外部信息,自主性强,但精度不高。
非自主对准可通过机电、光学或其它方法将外部参考坐标系引入系统,使平台对准至导航坐标系。
3.初始对准的要求惯导系统不论用于运载体导航还是武器弹药中的制导,都要求初始对准保证必需的准确性与快速性。
第二章 捷联惯导系统的初试对准2.1引言惯导系统是一种自主式导航系统。
它不需要任何人为的外部信息,只要给定导航的初始条件(例如初始速度、位置等),便可根据系统中的惯性敏感元件测量的比力和角速率通过计算机实时地计算出各种导航参数。
由于“平台”是测量比力的基准,因此“平台”的初始对准就非常重要。
对于平台惯导系统,初试对准的任务就是要将平台调整在给定的导航坐标系的方向上。
若采用游动方位系统,则需要将平台调水平---称为水平对准,并将平台的方位角调至某个方位角处---称为方位对准。
对于捷联惯导系统,由于捷联矩阵T 起到了平台的作用,因此导航工作一开始就需要获得捷联矩阵T 的初始值,以便完成导航的任务。
显然捷联惯导系统的初始对准就是确定捷联矩阵的初始值。
在静基座条件下,捷联惯导系统的加速度计的输入量为---b g ,陀螺的输入量为地球自转角速率b ie ω。
因此b g 与b ie ω就成为初始对准的基准。
将陀螺与加速度计的输入引出计算机,通过计算机就可以计算出捷联矩阵T 的初始值。
由以上的分析可以看出,陀螺与加速度计的误差会导致对准误差;对准飞行器的干扰运动也是产生对准误差的重要因素。
因此滤波技术对捷联系统尤其重要。
由于初始对准的误差将会对捷联惯导系统的工作造成难以消除的影响,因此研究初始对准的误差传播方程也是非常必要的。
2.2 捷联惯导系统的基本工作原理捷联式惯性导航系统,陀螺仪和加速度计直接与载体固联,加速度计测量是载体坐标系轴向比力,只要把这个比力转换到导航坐标系上,则其它计算就与平台式惯性导航系统一样,而比力转换的关键就是要实时地进行姿态基准计算来提供数学平台,即实时更新姿态矩阵n b C ,姿态矩阵也称为捷联矩阵。
一般选择地理坐标系为导航坐标系,那么捷联矩阵n b C 也可表示为t b C , 其导航原理图如图2.1所示。
由惯导系统的工作原理可以看出,捷联式惯性导航系统有以下几个主要优点: 1.惯性敏感器便于安装、维修和更换。
捷联惯导系统初始对准技术的研究摘要:初始对准是捷联惯导系统关键技术之一。
初始对准精度直接影响捷联惯导系统的工作精度,初始对准时间也是反映武器系统快速反应能力的重要战术指标。
捷联惯性导航系统是将惯性器件陀螺仪、加速度计构成的惯性测量单元直接与载体固联,测量得到的载体角速度与线运动参数是沿载体固联的坐标轴上的分量。
导航计算机通过计算“姿态矩阵”可以将加速度信息转换到惯性坐标系或当地地理坐标系,从而实现“数学平台”,然后再进行速度及位置计算。
图1即为捷联式惯性导航系统原理框图。
捷联惯导系统的关键技术包括初始对准问题、有害加速度的消除及引力修正、惯性元件误差模型的建立和实时补偿、捷联矩阵的更新等。
捷联惯性导航系统初始对准的目的是建立捷联矩阵的初始值。
1、捷联惯导系统初始对准基本概念按对准阶段来分,初始对准一般分为两个阶段:第一阶段为粗对准,第二阶段为精对准。
捷联系统粗对准的任务是得到粗略的捷联矩阵,为后续的精对准提供基础,此阶段精度可以低一些,但要求速度快。
精对准是在粗对准的基础上进行的,通过处理惯性敏感元件的输出信息,精确校正真实导航坐标系与计算的导航坐标系之间的失准角,使之趋于零,从而得到精确的捷联矩阵。
按照捷联惯性导航系统初始对准时载体的运行状态来分,可分为静基座对准和动基座对准。
按照初始对准时是否取得外部信息,可分为自对准和非自对准.惯性导航系统的自对准是利用重力矢量和地球自转角速率矢量通过解析的方法实现的初始对准,这种对准方法的优点是自主性强,缺点是所需的对准时间长。
非自主式对准可以通过机电或光学方法将外部参考坐标系引入系统,实现惯性系统的初始对准.在捷联惯性导航系统的粗对准阶段,可以通过引入主惯导系统的航向姿态信息,通过传递对准,迅速将数学平台对准导航坐标系,减小初始失准角.在精对准阶段,可以通过组合导航的方法,利用其它导航设备(如GPS,计程仪)等提供的信息(如速度和位置)作为观测信息,通过卡尔曼滤波实现精确对准。
捷联式惯导系统初始对准方法研究一、本文概述随着导航技术的不断发展,捷联式惯导系统(StrapdownInertial Navigation System, SINS)已成为现代导航领域的重要分支。
由于其具有自主性强、隐蔽性好、不受外界电磁干扰等优点,被广泛应用于军事、航空、航天、航海等领域。
然而,捷联式惯导系统的初始对准问题是其实际应用中的一大难题。
初始对准精度的高低直接影响到系统的导航精度和稳定性。
因此,研究捷联式惯导系统的初始对准方法具有重要意义。
本文旨在深入研究和探讨捷联式惯导系统的初始对准方法。
对捷联式惯导系统的基本原理和组成进行简要介绍,为后续研究奠定基础。
对初始对准的定义、目的和重要性进行阐述,明确研究的重要性和方向。
接着,重点分析现有初始对准方法的优缺点,包括传统的静基座对准、动基座对准以及近年来兴起的智能对准方法等。
在此基础上,提出一种新型的初始对准方法,并对其进行详细的理论分析和仿真验证。
通过实验验证所提方法的有效性和优越性,为捷联式惯导系统的实际应用提供有力支持。
本文的研究内容对于提高捷联式惯导系统的初始对准精度、增强其导航性能和稳定性具有重要意义。
所提出的新型初始对准方法有望为相关领域的研究提供新的思路和方向。
二、捷联式惯导系统初始对准理论基础捷联式惯导系统(Strapdown Inertial Navigation System,SINS)的初始对准是其正常工作的前提,对于提高导航精度和长期稳定性具有重要意义。
初始对准的主要目的是确定惯导系统载体在导航坐标系中的初始姿态,以便为后续的导航计算提供准确的基准。
捷联式惯导系统的初始对准过程涉及多个理论基础知识,包括载体运动学、动力学模型、误差分析以及滤波算法等。
载体运动学模型描述了载体在三维空间中的姿态、速度和位置变化,是初始对准过程中姿态解算的基础。
动力学模型则用于描述载体在受到外力作用下的动态行为,为误差分析提供了依据。
在初始对准过程中,误差分析是至关重要的。