当前位置:文档之家› 电子探针扫描电镜显微分析

电子探针扫描电镜显微分析

电子探针扫描电镜显微分析
电子探针扫描电镜显微分析

第八章 电子探针、扫描电镜显微分析

中国科学院上海硅酸盐所李香庭

1 概论

1.1 概述

电子探针是电子探针X射线显微分析仪的简称,英文缩写为EPMA(Electron probe X-ray microanalyser),扫描电子显微境英文缩写为SEM(Scanning Electron Microscope)。这两种仪器是分别发展起来的,但现在的EPMA都具有SEM的图像观察、分析功能,SEM也具有EPMA的成分分析功能,这两种仪器的基本构造、分析原理及功能日趋相同。特别是现代能谱仪,英文缩写为EDS(Energy Dispersive Spectrometer)与SEM组合,不但可以进行较准确的成分分析,而且一般都具有很强的图像分析和图像处理功能。由于EDS分析速度快等特点,现在EPMA通常也与EDS组合。虽然EDS的定量分析准确度和检测极限都不如EPMA的波谱仪(Wavelength Dispersive Spectrometer ,缩写为WDS)高,但完全可以满足一般样品的成分分析要求。由于EPMA与SEM设计的初衷不同,所以二者还有一定差别,例如SEM以观察样品形貌特征为主,电子光学系统的设计注重图像质量,图像的分辨率高、景深大。现在钨灯丝SEM的二次电子像分辨率可达3nm,场发射SEM二次电子像分辨率可达1nm。由于SEM一般不安装WDS,所以真空腔体小,腔体可以保持较高真空度;另外,图像观察所使用的电子束电流小,电子光路及光阑等不易污染,使图像质量较长时间保持良好的状态。

EPMA一般以成分分析为主,必须有WDS进行元素成分分析,真空腔体大,成分分析时电子束电流大,所以电子光路、光阑等易污染,图像质量下降速度快,需经常清洗光路和光阑,通常EPMA二次电子像分辨率为6nm。EPMA附有光学显微镜,用于直接观察和寻找样品分析点,使样品分析点处于聚焦园(罗兰园)上,以保证成分定量分析的准确度。

EPMA和SEM都是用聚焦得很细的电子束照射被检测的样品表面,用X射线能谱仪或波谱仪,测量电子与样品相互作用所产生的特征X射线的波长与强度,从而对微小区域所含元素进行定性或定量分析,并可以用二次电子或背散射电子等进行形貌观察。它们是现代固体材料显微分析(微区成份、形貌和结构分析)的最有用仪器之一,应用十分广泛。电子探针和扫描电镜都是用计算机控制分析过程和进行数据处理,并可进行彩色图像处理和图像分析工作,所以是一种现代化的大型综合分析仪。现在国内各种型号的电子探针和扫描电镜有近千台,分布在各个领域。

1.2电子与固体样品的交互作用

一束细聚焦的电子束轰击样品表面时,入射电子与样品的原子核和核外电子将产生弹性或非弹性散射作用,并激发出反映样品形貌、结构和组成的各种信息,如二次电子、背散射电子、吸收电子、阴极发光和特征X射线等(图8-1)。

Auger

阴极发光

图8-1 电子与样品相互作用产生的各种信息

电子探针主要用二次电子和背射电子观察样品的形貌,用特征X射线进行成份分析。二次电子信息也是扫描电镜进行形貌观察的主要信息。各种信号在样品中所产生的深度各不相同,图8-2为各种信息在样品中的穿透深度(Z x)。

图8-2 各种信息的作用深度

从图中可以看出,俄歇电子的穿透深度最小,一般穿透深度小于1nm,二次电子小于10nm。下面将电子探针与扫描电镜分析中常用信息分述如下:

1.2.1 二次电子

入射电子与样品相互作用后,使样品原子较外层电子(价带或导带电子)电离产生的电子,称二次电子。二次电子能量比较低,习惯上把能量小于50eV电子统称为二次电子。二次电子能量低,仅在样品表面5nm-10nm的深度内才能逸出表面,这是二次电子分辨率高的重

要原因之一。凸凹不平的样品表面所产生的二次电子,用二次电子探测器很容易全部被收集,所以二次电子图像无阴影效应,二次电子易受样品电场和磁场影响。二次电子的产额δ≒K/cosθ,K 为常数,θ为入射电子与样品表面法线之间的夹角,θ角越大,二次电子产额越高,这表明二次电子对样品表面状态非常敏感。二次电子的产额除了和电子入射角、样品表面状态有关外,还与电子束加速电压、样品组成等有关。

1.2.2 背散射电子

背散射电子是指入射电子与样品相互作用(弹性和非弹性散射)之后,再次逸出样品表面的高能电子,其能量接近于入射电子能量( E 。)。背射电子的产额随样品的原子序数增大而增加,所以背散射电子信号的强度与样品的化学组成有关,即与组成样品的各元素平均原

图8-3 背散射电子与二次电子的信号强度与Z 的关系

子序数i i i z c Z

∑=有关。背散射电子的信号强度I 与原子序数Z 的关系为 : 4

3~32Z I ∞

式中Z 为原子序数,C 为百分含量(Wt%)。

图8—3为背散射电子(BE )与二次电子(SE )的信号强度与原子序数Z 的关系。二次电子信号在原序数Z >20后,其信号强度随Z 变化很小。 用背散射电子像可以观察未腐蚀样品的抛光面元素分布或相分布,并可确定元素定性、定量分析点。现在日本岛津公司和日本电子公司的电子探针均在样品上方安装了二个对称分布的半导体探测器,如图8—4所示,A 和B 为二个相同的背散射电子探测器。将A 和B 所探测的信号进行电路上的相加或相减处理,能分别得到样品表面成份信息(a) 和形貌信息(b)。 这对样品定性、定量分析点的确定及杂质和相组成的观察十分有用。 有时不用腐蚀样品就可以分析和观察样品组成。 成分像现在可以区分出平均原子序数相差0.1以下的二种相。图8—5中a 、b 和c 分别为ZrO 2(添加Al 2O 3和MgO)氧离子导体的背散射电子像、Al K α X 射线像和Mg K αX 射线像,图中背散射电子像清楚地显示了不同的相组成。

图8-4 背散射电子成份像和形貌像的分离

图8-5 a 背散射电子成分像

图8-5b Mg X射线像

图8-5C Al X射线像

图8-5 掺杂Al、Mg的ZrO2背散射电子成份像和Al、Mg的X射线像

图a中的黑色相比基体ZrO2相的平均原子序数低,从b和c图可以看出,黑色相富铝和富镁,实际上是镁铝尖晶石相。

背射电子的强度还与样品中的晶面取向及入射电子的入射方向有关。利用这种特性可以观察单晶和大晶体颗粒的生长台阶和生长条纹。生长台阶和生长条纹的高差一般都很小,但背射电子像已有明显衬度。图8—6为单晶β—Al2O3生长台阶的背散射电子像。如果用二次电子像观察这类易产生污染的材料,不但台阶衬度小,而且图像出现许多污染斑(图8—7)。

图8-6 β-Al2O3生长台阶的背射电子像图8-7β-Al2O3生长台阶的二次电子像及污斑

1.2.3 阴极发光

阴极发光是指晶体物质在高能电子的照射下,发射出可见光、红外或紫外光的现像。例如半导体和一些氧化物、矿物等,在电子束照射下均能发出不同颜色的光,用电子探针的同轴光学显微镜可以直接进行观察可见光,还可以用分光光度计进行分光和检测其强度来进行元素分析。

阴极发光现象和发光能力、波长等均与材料内"激活剂"种类和含量有关。这些"激活剂" 可以是由于物质中元素的非化学计量而产生的某种元素的过剩或晶格空位等晶体缺陷。下面简单说明一下杂质原子导致阴极发光现象的基本原理。当晶体中掺入杂质原子时,一般会在满带与导带的能量间隔中产生局部化的能级G和A[图8—8(a)],这可能是属于这些激活原

子本身的能级,也可能是在激活原子的微扰下主体原子的能级。在基态时,G能级被电子所占据,A能级是空的。在激发态则相反[图8—8(b)]。样品在入射电子的激发下产生大量自由载流子,满带中的空穴很快就被G能级上的电子所捕获,而导带中的电子为A能级所陷住。这就使AG中心处于激发态,当电子从A能级跳回到基态的G能级时,释放出的能量可能转变为辐射,即阴极发光[图(c)]。阴极发光的波长取决于A、G之间的能量差,能量差不但与杂质原子有关,也与主体物质有关,所以,阴极发光可以分析样品中的杂质元素。

导带

满带

(a)基态 (b)激发过程 (c)激发态

图8—8产生阴极发光的示意图

阴极发光效应对样品中少量元素分布非常敏感,可以作为电子探针微区分析的一个补充,根据发光颜色或分光后检测波长即可进行元素分析。例如耐火材料中的氧化铝通常为粉红色,ZrO2为兰色。锗酸铋(BGO)晶体中的Al2O3为兰色,BGO晶体也为兰色。钨(W)中掺入少量小颗粒氧化钍时,用电子探针检测不出钍的特征X射线,但从发出的兰荧光(用电子探针的同轴光学显微镜观察)可以确定氧化钍的存在。从阴极发光的强度差异还可以判断一些矿物及半导体中杂质原子分布的不均匀性。我们曾用阴极发光方法发现白金坩埚中有残存的BGO和Al2O3小颗粒,这是BGO 晶体生长过程中引起坩埚泄漏的主要原因之一。

1.2.4特征X射线

高能电子入射到样品时,样品中元素的原子内壳层(如K、L壳层)电子将被激发到较高能量的外壳层,如L或M层,或直接将内壳层电子激发到原子外,使该原子系统的能量升高——激发态。这种高能量态是不稳定的,原子较外层电子将迅速跃迁到有空位的内壳层,以填补空位降低原子系统的总能量,并以特征X射线或Auger电子的方式释放出多余的能量。由于入射电子的能量及分析的元素不同,会产生不同线系的特征X射线,如K线系、L线系、M线系。如果原子的K层电子被激发,L3层电子向K层跃迁,所产生的特征X射线称Kα1,M层电子向K层跃迁产生的X射线称Kβ。电子探针和扫描电镜用WDS或EDS 的定性和定量分析时,就是利用电子束轰击样品所产生的特征X射线。每一个元素都有一个特征X射线波长与之对应,不同元素分析时用不同线系,轻元素用Kα线系,中等原子序数元素用Kα或Lα线系,一些重元素常用Mα线系。入射到样品表面的电子束能量,必须超过相应元素的相应壳层的临界激发能E k,电子束加速电压V=(2—3)×E k,V通常用10 kV-30kV。

常用的特征X射线名称与壳层电子跃迁的关系,如图8-9所示。

图8-9 特征X射线能级图

1.2.5吸收电子

入射电子与样品相互作用后,能量耗尽的电子称吸收电子。吸收电子的信号强度与背散射电子的信号强度相反,即背散射电子的信号强度弱,则吸收电子的强度就强,反之亦然,所以吸收电子像的衬度与背散射电子像的衬度相反。通常吸收电子像分辨率不如背散射电子像,一般很少用。

2电子探针显微分析

2.1电子探针显微分析的特点

电子探针的应用范围越来越广,特别是材料显微结构-工艺-性能关系的研究,电子探针起了重要作用。电子探针显微分析有以下几个特点:

2.1.1显微结构分析

电子探针是利用0.5μm-1μm的高能电子束激发待分析的样品,通过电子与样品的相互作用产生的特征X射线、二次电子、吸收电子、背散射电子及阴极荧光等信息来分析样品的微区内(μm范围内)成份、形貌和化学结合状态等特征。电子探针是几个μm范围内的微区分析,微区分析是它的一个重要特点之一, 它能将微区化学成份与显微结构对应起来,是一种显微结构的分析。而一般化学分析、X光荧光分析及光谱分析等,是分析样品较大范围内的平均化学组成,也无法与显微结构相对应, 不能对材料显微结构与材料性能关系进行研究。

2.1.2元素分析范围广

电子探针所分析的元素范围从硼(B)——铀(U),因为电子探针成份分析是利用元素的特征X射线,而氢和氦原子只有K层电子,不能产生特征X射线,所以无法进行电子探针成分分析。锂(Li)和铍(Be)虽然能产生X射线,但产生的特征X射线波长太长,通常无法进行检测,少数电子探针用大面间距的皂化膜作为衍射晶体已经可以检测Be元素。能谱仪的元素分析范围现在也和波谱相同,分析元素范围从硼(B e)——铀(U)。

2.1.3定量分析准确度高

电子探针是目前微区元素定量分析最准确的仪器。电子探针的检测极限(能检测到的元素最低浓度)一般为(0.01-0.05)wt%,不同测量条件和不同元素有不同的检测极限,但由于所分析的体积小,所以检测的绝对感量极限值约为10-14g,定量分析的相对误差为(1—3)%,对原子序数大于11,含量在10wt% 以上的元素,其相对误差通常小于2%。

2.1.4 不损坏试样、分析速度快

现在电子探针均与计算机联机,可以连续自动进行多种方法分析,并自动进行数据处理和数据分析,对含10个元素以下的样品定性、定量分析,新型电子探针在30min左右可以完成,如果用EDS进行定性、定量分析,几min即可完成。对表面不平的大样品进行元素面分析时,现在可以自动聚焦分析。

电子探针一般不损坏样品,样品分析后,可以完好保存或继续进行其它方面的分析测试,这对于文物、古陶瓷、古硬币及犯罪证据等的稀有样品分析尤为重要。

由于以上特点,电子探针已广泛应用于材料科学、矿物学、冶金学、犯罪学、生物化学、物理学、电子学和考古学等领域。对任何一种在真空中稳定的固体,均可以用电子探针进行成份分析和形貌观察,例如金属、硅酸盐材料、毛发、牙齿、骨骼、纤维、氧化膜、涂层、废气颗粒、古瓷、古画、油漆、植物根叶和分泌物等,。现在材料科学、电子学、地学、矿物学及冶金学等应用最广泛。

近年来,我们还用电子探针的入射电子束注入样品来诱发离子迁移,研究了固体中微区离子迁移动力学、离子迁移机理、离子迁移的非均匀性及固体电解质离子迁移损坏过程等,已经取得了许多新的结果。

2.2 电子探针的发展历史及发展趋势

电子探针分析的基本原理早在1913年就被Moseley发现,但直到1949年,法国的Castaing在guinier教授的指导下,才用透射电镜(TEM)改装成一台电子探针样机。 1951年6月,Castaing在他的博士论文中,不仅介绍了他所设计的电子探针细节,而且还提出了定量分析的基本原理。现在电子探针的定量修正方法尽管作了许多修正,但是,他的一些基本原理仍然适用。1955年Castaing在法国物理学会的一次会议上,展出了电子探针的原形机, 1956年由法国CAMECA公司制成商品,1958年才把第一台电子探针装进了国际镍公司的研究室中,当时的电子探针是静止型的,电子束没有扫描功能。 1956年英国的Duncumb 发明了电子束扫描方法,并在1959年安装到电子探针仪上,使电子探针的电子束不仅能固定在一点进行定性和定量分析,而且可以在一个小区域内扫描,能给出该区域的元素分布和形貌特征,从而扩大了电子探针的应用范围。扫描型电子探针商品是1960年问世。70年代

开始,电子探针和扫描电镜的功能组合为一体,同时应用电子计算机控制分析过程和进行数据处理,例如当时日本电子公司(JEOL)的JCXA —733电子探针,法国CAMECA 公司的CAMEBAX —MICRO 电子探针,以及日本岛津公司的EPM —810Q 型电子探针仪,均属于这种组合仪。计算机控制的电子探针-扫描电镜组合仪的出现,使电子探针显微分析进入了一个新的阶段。

八十年代后期,电子探针又具有彩色图像处理和图像分析功能,计算机容量扩大,使分析速度和数据处理时间缩短,提高了仪器利用率,增加了新的功能。日本电子公司的JXA-8600系列和岛津公司的EPMA-8705系列就是这种新一代仪器的代表。九十年代初,电子探针一般与能谱仪组合,电子探针、扫描电镜可以与任何一家厂商的能谱仪组合,有的公司已有标准接口。 日本电子公司的 JXA-8621 电子探针为波谱(WDS)和能谱(EDS)组合仪,用一台计算机同时控制WDS 和EDS ,使用方便。九十年代中期,电子探针的结构,特别是波谱和样品台的移动有新的改进,编码定位,通过鼠标可以准确定波谱和样品台位置,例如日本电子公司的JXA -8800系列,日本岛津公司的EPMA -1600等,均属于这类仪器。新型号的EPMA 和SEM 的控制面板,已经没有眼花缭乱的各种调节旋钮,完全由屏幕显示,用鼠标进行调节和控制。

我国从六十年代初开始陆续引进了一定数量的电子探针和扫描电镜,与此同时也开始了电子探针和扫描电镜的研制工作,并生产了几台电子探针仪器,但由于种种原因,仪器的稳定性和可靠性及许多其它技术指标,与国外同类仪器相比还有一定的差距,很快就停止生产,电子探针到现在为止还靠进口。现在世界上生产电子探针的厂家主要有三家,即日本电子公司、日本岛津公司和法国的CAMECA 公司。

今后电子探针将向更自动化、操作更方便、更容易、更微区、更微量、功能更多的方向发展。彩色图像处理和图像分析功能会进一步完善,定量分析结果的准确度也会得到提高,特别是对超轻元素(Z<10) 的定量分析方法将会逐步完善。近年来已经有人对X 射线产生的深度分布函数Φ(ρZ) 进行了深入研究,并作了一些修正,在Φ(ρZ)表达式中引进了新的参数,使Φ(ρZ)函数更接近于实际的深度分布,这种称为PRZ 的定量修正方法已经取得了较好的结果。对超轻元素,已经有人提出了新的修正函数及新的质量吸收系数,可以预料,随着人们对电子与物质相互作用的深入了解,定量修正模型将逐渐完善。

电子探针分析虽然还存在一些问题,但它仍然是目前微区定量分析最可靠的仪器,不管是分析过程及修正的物理模型都比较完善,所得结果也是可靠的,这就是电子探针之所以能得到广泛应用的主要原因。

2.2 电子探针分析的基本原理

2.3.1 定性分析的基本原理

电子探针除了用电子与样品相互作用产生的二次电子、背散射电子进行形貌观察外,主要是利用波谱或能谱,测量入射电子与样品相互作用产生的特征X 射线波长与强度,从而对样品中元素进行定性、定量分析。

定性分析的基础是Moseley 关系式:

ν= K(Z -σ) (8·1) (νλc

=)

式中ν为元素的特征X 射线频率,Z 为原子序数,K 与σ均为常数,C 为光速。当σ≈1时,λ与Z 的关系式可写成:

λ=23

)

1(1021.1?×Z (?)

由(8·1)式可知,组成样品的元素(原子序数Z)与它产生的特征X 射线波长(λ)有单值关系,即每一种元素都有一个特定波长的特征X 射线与之相对应, 它不随入射电子的能量而变化。如果用X 射线分光谱仪(WDS)测量电子激发样品所产生的特征X 射线波长的种类,即可确定样品中所存在元素的种类,这就是定性分析的基本原理。

能谱定性分析主要是根据不同元素之间的特征X 射线能量不同,即E =h ν,h 为普朗克常数,ν为特征X 射频率, 通过EDS 检测样品中不同能量的特征X 射线即可进行元素的定性分析,EDS 定性速度快,但由于它分辨率低,不同元素的特征X 射线谱峰往往相互重叠,必须正确判断才能获得正确的结果,分析过程中如果谱峰相互重叠严重,可以用WDS 和EDS 联合分析,这样往往可以得到满意的结果。

2.3.2 定量分析的基本原理

样品中A 元素的相对含量C A 与该元素产生的特征X 射线的强度I A (X 射线计数)成正比: C A ∝I A ,如果在相同的电子探针分析条件下,同时测量样品和已知成份的标样中A 元素的同名X 射线(如K α线)强度,经过修正计算,就可以得出样品中A 元素的相对百分含量C A :

C A =K )

(A A I I 式中C A 为某A 元素的百分含量,K 为常数,根据不同的修正方法K 可用不同的表达式表示,I A 和 I (A) 分别为样品中和标样中A 元素的特征X 射线强度,同样方法可求出样品中其它元素的百分含量。

定量分析必须在定性分析的基础上进行,根据定性分析结果确定样品中所含元素的种类,然后对各元素进行定量分析。定量分析已有各种分析程序,每种分析程序都要进行复杂的修正过程,EDS 定量分析与WDS 定量分析原理基本相同,目前也能获得比较好的分析结果。

2.4 仪器构造

现代电子探针仪的主要组成及结构基本相同,日本电子公司(JEOL)早期生产的 JCXA-733 电子探针仪外观如图8—10所示。新型的电子探针操作面板旋钮和开关基本消失,分析过程和操作过程全部用计算机鼠标操作,图8-11为日本岛津公司1999年在中国推出的EPMA -1600电子探针外观,已经取消了布满旋钮的操作面板。

电子探针的主要组成部份为:1. 电子光学系统、2. X 射线谱仪系统、3.样品室、4.电子计算机、5.扫描显示系统、6.真空系统等。图8-12为电子探针基本构造的方框图。

扫描电子显微分析

第11-12讲 教学目的:使学生了解扫描电子显微镜结构、工作成像原理及应用 教学要求:了解扫描电子显微镜的发展、原理与应用;了解扫描电镜相关术语;掌握扫描电镜制样技术 教学重点:1. 扫描电镜的工作原理; 2. 扫描电镜的二次电子像和背散射电子像 教学难点:两种种像差的形成原理; 教学拓展:扫描电镜的未来发展趋势 第3节扫描电子显微分析 扫描电子显微镜又称扫描电镜或SEM(scaning electron microscope),它是利用细聚 焦电子束在样品表面做光栅状逐点扫描,与样品相互作用后产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。扫描电镜所需的加速电压比透射电镜要低得多,一般约在 1~30kV,实验时可根据被分析样品的性质适当地选择。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 3.1扫描电子显微镜概述、基本结构、工作原理 一、扫描电子显微镜概述 第一阶段理论奠基阶段 1、1834年法拉第提出“电的原子”概念; 2、1858年普鲁克发现阴极射线; 3、1878年阿贝-瑞利给出显微镜分辨本领极限公式; 4、1897年汤姆逊提出电子概念; 5、1924年德布罗依提出波粒二象性; 第二阶段试验阶段 1、1935年克诺尔提出用电子束从样品表面得到图像的原理并设计简单实验装置; 2、1938年冯.阿登制备出了第一台透射扫描电子显微镜;

扫描电子显微镜文献综述

扫描电子显微镜的应用及其发展 1前言 扫描电子显微镜SEM(Scanning Electron Microscopy)是应用最为广泛的微观 形貌观察工具。其观察结果真实可靠、变形性小、样品处理时的方便易行。其发展进步对材料的准确分析有着决定性作用。配备上X射线能量分辨装置EDS (Energy Dispersive Spectroscopy)后,就能在观察微观形貌的同时检测不同形貌特征处的元素成分差异,而背散射扫描电镜EBSD(Electron Backscattered Diffraction)也被广泛应用于物相鉴定等。 2扫描电镜的特点 形貌分析的各种技术中,扫描电镜的主要优势在于高的分辨率。现代先进的扫描电镜的分辨率已经达到1纳米左右;有较高的放大倍数,20-20万倍之间连续可调;有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构试样制备简单;配有X射线能谱仪装置,这样可以同时进行 显微组织性貌的观察和微区成分分析[1]。低加速电压、低真空、环境扫描电镜和电子背散射花样分析仪的使用,大大提高了扫描电子显微镜的综合、在线分析能力;试样制备简单。直接粘附在铜座上即可,必要时需蒸Au或是C。 扫描电镜也有其局限性,首先就是它的分辨率还不够高,也不能观察发光或高温样品。样品必须干净、干燥,有导电性。也不能用来显示样品的内部细节,最后它不能显示样品的颜色。 需要对扫描电镜进行技术改进,在提高分辨率方面主要采取降低透镜球像差系数, 以获得小束斑;增强照明源即提高电子枪亮度( 如采用LaB6 或场发射电子枪) ;提高真空度和检测系统的接收效率;尽可能减小外界振动干扰。 在扫描电镜成像过程中,影响图像质量的因素比较多,故需选择最佳条件。例如样品室内气氛控制、图像参数的选择、检测器的选择以及控制温度的选择,尽可能将样品原来的面貌保存下来得到高质量电镜照片[2]。

扫描探针显微镜(scanning

扫描探针显微镜(scanning probe microscope,SPM) 一、 设备简介: 该仪器集成原子力显微镜(AFM)、摩擦力显微镜(LFM)、扫描隧道显微镜(STM)、磁力显微镜(MFM)和静电力显微镜(EFM) 于一体,具有接触、轻敲、相移成像、抬起等多种工作模式,能够提供全部的原子力显微镜 (AFM) 和扫描隧道 (STM) 显微镜成像技术,可以测量样品的表面特性,如形貌、粘弹性、摩擦力、吸附力和磁/电场分布等等。 ●分辨率 原子力显微镜(AFM):横向 0.26nm, 垂直 1nm(以云母晶体标定) 扫描隧道显微镜(STM):横向 0.13nm, 垂直 0.1nm(以石墨晶体标定)●机械性能 样品尺寸:最大可达直径12mm,厚度8mm 扫描范围:125X125μm,垂向1μm ●型号: Veeco NanoScope MultiMode扫描探针显微镜 本次培训着重介绍该设备常用模式:Contact Mode AFM 二、AFM独特的优点归纳如下: (l)具有原子级的超高分辨率。理论横向分辨率可达0.1nm,而纵向分辨率更高达0.01nm。,从而可获得物质表面的原子晶格图像。 (2)可实时获得样品表面的实空间三维图像。既适用于具有周期性结

构的表面,又适用于非周期性表面结构的检测。 (3)可以观察到单个原子层的局部表面性质。直接检测表面缺陷、表面重构、表面吸附形态和位置。 (4)可在真空、大气、常温、常压等条件下工作,甚至可将样品浸在液体中,不需要特殊的样品制备技术。 三、AFM的基本原理: AFM基于微探针与样品之间的原子力作用机制。以带有金字塔形微探针的“V”字形微悬臂(Cantilever)代替STM的针尖,当微探针在z向逼近样品表面时,探针针尖的原子与样品原子之间将产生一定的作用力,即原子力,原子力的大小约在10-8~10-12N之间。与隧道电流类似,原子力的大小与探针一样品间距成一定的对应关系,这种关系可以由原子力曲线来表征一般而言,当探针充分逼近样品进入原子力状态时,如两者间距相对较远,总体表现为吸引力;当两者相当接近时,则总体表现为排斥力。原子力变化的梯度约为10-13N/nm。原子力虽然很微弱,但是足以推动极为灵敏的微悬臂并使之偏转一定的角度。因此,微悬臂的偏转量与探针一样品间距成对应关系,在对样品进行XY扫描时,检测这一偏转量,即可获得样品表面的微观形貌。

11-2 JY T 010-1996分析型扫描电子显微镜方法通则

MV_RR_CNJ_0010分析型扫描电子显微镜方法通则 1.分析型扫描电子显微镜方法通则的说明 编号JY/T 010—1996 名称(中文)分析型扫描电子显微镜方法通则 (英文)General rules for analytical scanning electron microscopy 归口单位国家教育委员会 起草单位国家教育委员会 主要起草人林承毅 万德锐 批准日期 1997年1月22日 实施日期 1997年4月1日 替代规程号无 适用范围本通则适用于各种类型的扫描电子显微镜和X射线能谱仪。 定义 主要技术要求 1. 2. 方法原理 3. 仪器 4. 样品 5. 分析步骤 6. 分析结果表述 是否分级无 检定周期(年) 附录数目无 出版单位科学技术文献出版社 检定用标准物质 相关技术文件 备注 2.分析型扫描电子显微镜方法通则的摘要 本通则适用于各种类型的扫描电子显微镜和X射线能谱仪。 2 定义 2.1二次电子 secondary electron 在入射电子的作用下,从固体样品中出射的,能量小于50eV的电子,通常以SE表示。 2.2背散射电子 backscattered electron 被固体样品中的原子反射回来的入射电子,包括弹性背散射电子和非弹性背散射电子,通常以BSE表示。它又称为反射电子(Reflected Electron),以RE表示。其中弹性背散射电子完全改变了入射电子的运动方向,但基本上没有改变入射电子的能量;而非弹性背散射电子不仅改变了入射电子的运动方向,在不同程度上还损失了部分能量。 2.3 放大倍数 magnification 扫描电镜的放大倍数是指其图像的线性放大倍数,以M表示。如果样品上长度为L s直线

实验六 电子探针结构原理及分析方法

实验六电子探针结构原理及分析方法 一、实验内容及实验目的 1.结合电子探针仪实物,介绍其结构特点和工作原理,加深对电子探针的了解。 2.选用合适的样品,通过实际操作演示,以了解电子探针分析方法及其应用。 二、电子探针的结构特点及原理 电子探针X射线显微分析仪(简称电子探针)利用约1μm的细聚焦电子束,在样品表层微区内激发元素的特征X射线,根据特征X射线的波长和强度,进行微区化学成分定性或定量分析。电子探针的光学系统、真空系统等部分与扫描电镜基本相同,通常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方面的功能。电子探针的构成除了与扫描电镜结构相似的主机系统以外,还主要包括分光系统、检测系统等部分。本实验这部分内容将参照教材,并结合实验室现有的电子探针,简要介绍与X射线信号检测有关部分的结构和原理。 三、电子探针的分析方法 电子探针有三种基本工作方式:点分析用于选定点的全谱定性分析或定量分析、以及对其中所含元素进行定量分析;线分析用于显示元素沿选定直线方向上的浓度变化;面分析用于观察元素在选定微区内的浓度分布。 1.实验条件 (1) 样品:样品表面要求平整,必须进行抛光;样品应具有良好的导电性,对于不导电的样品,表面需喷镀一层不含分析元素的薄膜。实验时要准确调整样品的高度,使样品分析表面位于分光谱仪聚焦圆的圆周上。 (2) 加速电压:电子探针电子枪的加速电压一般为3~50kV,分析过程中加速电压的选择,应考虑待分析元素及其谱线的类别。原则上加速电压一定要大于被分析元素的临界激发电压,一般选择加速电压为分析元素临界激发电压的2~3倍。若加速电压选择过高,导致电子束在样品深度方向和侧向的扩展增加,使X射线激发体积增大,空间分辨率下降。同时过高的加速电压将使背底强度增大,影响微量元素的分析精度。 (3) 电子束流:特征X射线的强度与入射电子束流成线性关系。为提高X射线信号强度,电子探针必须使用较大的入射电子束流,特别是在分析微量元素或轻元素时,更需选择大的束流,以提高分析灵敏度。在分析过程中要保持束流稳定,在定量分析同一组样品时应控制束流条件完全相同,以获取准确的分析结果。 (4) 分光晶体:实验时应根据样品中待分析元素及X射线线系等具体情况,选用合适的分光晶体。常用的分光晶体及其检测波长的范围见有关表。这些分光晶体配合使用,检测X

电子探针、扫描电镜显微分析2

图8-12 电子探针结构的方框图 2.4.1 电子光学系统 电子光学系统包括电子枪、电磁透镜、消像散器和扫描线圈等。其功能是产生一定能量的电子束、足够大的电子束流、尽可能小的电子束直径,产生一个稳定的X 射线激发源。 2.4.1.1 电子枪 电子枪是由阴极(灯丝)、栅极和阳极组成。它的主要作用是产生具有一定能量的细聚焦电子束(探针)。从加热的钨灯丝发射电子,由栅极聚焦和阳极加速后,形成一个10μm ~100μm 交叉点(Crossover),再经过二级会聚透镜和物镜的聚焦作用,在试样表面形成一个小于1μm 的电子探针。电子束直径和束流随电子枪的加速电压而改变, 加速电压可变范围一般为1kV ~30kV 。 2.4.1.2 电磁透镜 电磁透镜分会聚透镜和物镜,靠近电子枪的透镜称会聚透镜,会聚透镜一般分两级,是把电子枪形成的10μm -100μm 的交叉点缩小1-100倍后,进入样品上方的物镜,物镜可将电子束再缩小并聚焦到样品上。为了挡掉大散射角的杂散电子,使入射到样品的电子束直径尽可能小,会聚透镜和物镜下方都有光阑。 为了在物镜和样品之间安置更多的信号探测器,如二次电子探测器、能谱仪等,必须有一定的工作距离( 物镜底面和样品之间的距离)。工作距离加长必然会使球差系数增大,从而使电子束直径变大,如果电子束几何直径为dg, 由于球差系数的影响,最终形成的电子束 直径d 应为:d 2=dg 2+ds 2 ,ds 为最小弥散圆直径,它和球差系数Cs 的关系为: ds = 2 1Cs 2 α (8·2) α为探针在试样表面的半张角。因此,增加工作距离受到球差的限制。为了解决这一矛盾,设计了一种小物镜,是这类仪器的一项重要改进。小物镜可以在不增加工作距离的情况下,在物镜和样品之间安放更多的信号探测器,如JCXA -733电子探针,工作距离为11mm ,可同时安装四道波谱仪(WDS),一个能谱仪,一个二次电子探测器和一个背散射电子探测器,并使X 射线出射角增加到40°。高出射角减小了试样对X 射线的吸收和样品表面粗糙所造成的影响,但小物镜要获得足够的磁场必须在其线圈内通以大电流,为了解决散热问题要进行强制冷却,一般用油冷却。

扫描电镜显微分析

扫描电镜显微分析实验报告 一、实验目的 1、了解扫描电镜的基本结构和原理。 2、掌握扫描电镜试样的制备方法。 3、了解扫描电镜的基本操作。 4、了解二次电子像、背散射电子像和吸收电子像,观察记录操作的全过程及其在组织形貌观察中的应用。

二、实验内容 1、根据扫描电镜的基本原理,对照仪器设备,了解各部分的功能用途。 2、根据操作步骤,对照设备仪器,了解每步操作的目的和控制的部位。 3、在老师的指导下进行电镜的基本操作。 4、对电镜照片进行基本分析。 三、实验设备仪器与材料 Quanta 250 FEG 扫描电子显微镜 四、实验原理 (一)、扫描电子显微镜的基本结构和成像原理 扫描电子显微镜(Scanning Electron Microscope,简称SEM)是继透射电镜之后发展起来的一种电子显微镜简称扫描电镜。它是将电子束聚焦后以扫描的方式作用样品,产生一系列物理信息,收集其中的二次电子、背散射电子等信息,经处理后获得样品表面形貌的放大图像。

扫描电镜主要由电子光学系统;信号检测处理、图像显示和记录系统及真空系统三大系统组成。其中电子光学系统是扫描电镜的主要组成部分,主要组成:电子枪、电磁透镜、光栏、扫描线圈、样品室等,其外形和结构原理如图1所示。 由电子枪发射出的电子经过聚光 镜系统和末级透镜的会聚作用形成一 直径很小的电子束,投射到试样的表 面,同时,镜筒内的偏置线圈使这束 电子在试样表面作光栅式扫描。在扫 描过程中,入射电子依次在试样的每 个作用点激发出各种信息,如二次电 子、背散射电子、特征X射线等。安 装在试样附近的探测器分别检测相关 反应表面形貌特征的形貌信息,如二 次电子、背散射电子等,经过处理后 送到阴极射线管(简称CRT)的栅极调制其量度,从而在与入射电子束作同步扫描的CRT上显示出试样表面的形貌图像。根据成像信号的不同,可以在SEM 的CRT上分别产生二次电子像、背散射电子像、吸收电子像、X射线元素分布图等。本实验主要介绍的二次电子像和背散射电子像。 (二)、扫描电子显微镜的特点 1、分辨本领强。其分辨率可达1nm以下,介于光学显微镜的极限分辨率(200nm)和透射电镜的分辨率(0.1nm)之间。 2、有效放大倍率高。光学显微镜的最大有效放大倍率为1000倍左右,透射电镜为几百到80万,而扫描电镜可从数十到20万,聚焦后,无需重新聚焦。 3、景深大。其景深比透射电镜高一个量级,可直接观察断口形貌、松散粉体,图像立体感强;改变电子束的入射角度,对同一视野可立体观察和分析。 4、制样简单。对于金属试样,可直接观察,也可抛光、腐蚀后再观察;对陶瓷、高分子等不导电试样,需在真空镀膜机中镀一层金膜后再进行观察。 5、电子损伤小。电子束直径一般为3~几十纳米,强度约为10-9~10-11mA,远小于透射电镜的电子束能量,加速电压可以小到0.5kV,且电子束在试样上是动态扫描,并不固定,因此电子损伤小,污染轻,尤为适合高分子试样。 6、实现综合分析。扫描电镜中可以同时组装其他观察仪器,如波谱仪、能谱仪等,实现对试样的表面形貌、微区成分等方面的同步分析。

扫描探针显微镜(SPM)原理简介及操作(修正版)

扫描探针显微镜(SPM)原理简介 庞文辉 2012.2.22 一、SPM定义 扫描探针显微镜(Scanning Probe Microscope,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜AFM,激光力显微镜LFM,磁力显微镜MFM等等)的统称,包括多种成像模式,他们的共同特点是探针在样品表面扫描,同时针尖与样品间的相互作用力被记录。 SPM的两种基本形式: 1、扫描隧道显微镜(Scanning Probe Microscope,STM) 2、原子力显微镜(Atomic Force Microscope,AFM) AFM有两种主要模式: ●接触模式(contact mode) ●轻敲模式(tapping mode) SPM的其他形式: ●侧向摩擦力显微术(Lateral Force Microscopy) ●磁场力显微镜(Magnetic Force Microscope) ●静电力显微镜(Electric Force Microscope) ●表面电势显微镜(Surface Potential Microscope) ●导电原子力显微镜(Conductive Atomic Force Microscope) ●自动成像模式(ScanAsyst) ●相位成像模式(Phase Imaging) ●扭转共振模式(Torisonal Resonance Mode) ●压电响应模式(Piezo Respnance Mode) ●…… 二、STM原理及应用

基于量子力学中的隧穿效应,用一个半径很小的针尖探测被测样品表面,以金属针尖为一电极,被测固体表面为另一电极,当他们之间的距离小到1nm左右时,形成隧道结,电子可从一个电极通过量子隧穿效应穿过势垒到底另一个电极,形成隧穿电流。在极间加很小偏压,即有净隧穿电流出现。隧穿电流与两极的距离成指数关系,反馈原理是采用横流模式,当两极间距不同(电流不同),系统会调整Z轴的位置从而成高度像。 应用范围:导电样品 ●形貌像 ●扫描隧道谱(STS) 三、AFM原理及应用 AFM的反馈原理:探针在样品表面扫描,针尖顶部原子的电子云压迫样品表面原子的电子云时,会产生微弱的排斥力,如:范德华力、静电力等,力随样品表面形貌的变化而变化。同时针尖与样品表面的相互作用力被记录,通过激光光束探测针尖的位移,从而得到样品的形貌。 ●接触模式(contact mode) 反馈原理:针尖与样品距离比较近,靠悬臂梁的偏折量反馈,扫描过程中要 保持恒定的偏折量,当样品表面的高低变化时,悬臂的偏折量也会随之变 化,要保证恒定的偏折量,就要改变Z轴的位置从而成高度像。 ●轻敲模式(tapping mode) 反馈原理:扫描过程中悬臂以一定的频率和振幅在振动,轻敲模式靠振幅反 馈,扫描过程要保持恒定的振幅,当样品表面高低变化时,悬臂的振幅也会 随之变化,要保证恒定的振幅,就要改变Z轴的位置从而成高度像。 两者的优势和劣势: ●接触模式扫描速率快,适合做一些相对比较粗糙的样品,且对样品表面和针 尖的损伤都较大,成像质量不如轻敲模式。 ●轻敲模式的扫描速率相对较慢,适合测试比较平整的样品,对样品盒针尖的 损伤较小,图像质量好。

扫描探针与近场光学显微技术

扫描探针与近场显微技术
Karl Wang
上海迈培光电技术有限公司

技术背景
? 自从1982年Binning与Robher等人共同发明扫描 穿隧显微镜(scanning tunneling microscope, STM)之后,人类在探讨原子尺度上向前跨出了一 大步,对于材料表面现象的研究也能更加的深入 了解。在此之前,能直接看到原子尺寸的仪器只 有场离子显微镜(Field ion microscopy, FIM)与电 子显微镜(Electron microscope, EM)。 ? STM其原理主要是利用电子穿隧的效应来得到原 子影像,材料须具备导电性,应用上有所限制。

技术背景
? 1986年Binning等人利用探针的观念又发展出原子力 显微镜(Atomic force microscope, AFM) ,AFM不但 具有原子尺寸解析的能力,亦解决了STM在导体上的 限制,应用上更为方便。 ? 自扫描式穿隧显微镜问世以来,许多类型的探针显微 镜不断被开发出来。如:扫描式穿隧显微镜(STM), 近场光学显微镜(NSOM),磁力显微镜(MFM),化学 力显微镜(CFM),扫描式热电探针显微镜(SThM), 相位式探针显微镜(PDM),静电力显微镜(EFM),侧 向摩擦力显微镜(LFM),原子力显微镜(AFM)等。

SPM家族
**其中,AFM、SNOM/NSOM是最为常用的扫描探针显微镜。

原子力显微镜(AFM)
? AFM是以针尖与样品之间的属于原子级力场作用 力作为探测手段获取表面形貌的显微工具。 ? AFM可适用于各种的物品,如金属材料、高分子 聚合物、生物细胞等,并可以操作在大气、真空、 电性及液相等环境,进行不同物性分析,所以它 可以用于获得包括绝缘体在内的各种材料表面上 原子级的分辨率,其应用范围无疑比其它显微分 析技术更加广阔。

影响扫描电镜图像质量的因素分析

影响扫描电镜图像质量的因素分析 摘要:本文介绍影响扫描电镜图像质量的因素及其对图像质量的影响,分别从加速电压、扫描速度和信噪比、束斑直径、探针电流、消像散校正、工作距离以及反差对比等分析图像质量的变化原因,提出提高图像质量的方法。 关键词: 扫描电子显微镜 SEM 图像质量 扫描电子显微镜是(Scanning Electron Microscope,SEM)是20 世纪30 年代中期发展起来的一种多功能的电子显微分析仪器。SEM 以其样品制备简单、图像视野大、景深长、图像立体感强,且能接收和分析电子与样品相互作用后产生的大部分信息,因而在科研和工业等各个领域得到广泛应用。 但是扫描电镜是非常精密的仪器,结构复杂,要想得到能充分反映物质形貌、层次清晰、立体感强和分辨率高的高质量图像仍然是一件非常艰难的事情,本文针对工作中出现的问题,分析影响图像质量的因素,讨论如何根据样品选择最佳观察条件。 1 加速电压 扫描电镜的电子束是由灯丝通电发热温度升高,当钨丝达到白热化,电子的动能增加到大于阳离子对它的吸引力( 逸出功) 时,电子就逃逸出去。在紧靠灯丝处装上有孔的栅极( 也叫韦氏盖),灯丝尖处于栅孔中心。栅极上100~1000V 的负电场,使灯丝的电子发射达到一定程度时,不再能继续随温度增加而增加,即达到空间电荷的饱和(这种提法是错误的)。离开栅极一定距离有一个中心有孔的阳极,在阳极和阴极间加有一个很高的正电压称为加速电压[1],它使电子束加速而获得能量。加速电压的范围在1~30kV,其值越大电子束能量越大,反之亦然。 加速电压的选用视样品的性质( 含导电性) 和倍率等来选定。当样品导电性好且不易受电子束损伤时可选用高加速电压,这时电子束能量大对样品穿透深(尤其是低原子序数的材料)使材料衬度减小图像分辨率高。但加速电压过高会产生不利因素,电子束对样品的穿透能力增大,在样品中的扩散区也加大,会发射二次电子和散射电子甚至二次电子也被散射,过多的散射电子存在信号里会出现叠加的虚影从而降低分辨率,目前我所用的扫描电子显微镜(TESCAN TS 5136MM) 的加速电压可在1~30kV 内任意调节,采用加速电压1~30 kV(见图1)。

扫描探针显微技术

扫描探针显微镜(Scanning Probe Microscope,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜AFM,激光力显微镜LFM,磁力显微镜MFM等等)的统称,是国际上近年发展起来的表面分析仪器,是综合运用光电子技术、激光技术、微弱信号检测技术、精密机械设计和加工、自动控制技术、数字信号处理技术、应用光学技术、计算机高速采集和控制及高分辨图形处理技术等现代科技成果的光、机、电一体化的高科技产品。 扫描探针显微镜是指一类通过微小探针在样品表面扫描,将探针与样品表面间的相互作用转换为表面形貌和特性图像的显微镜。它提供了表面的三维高空间分辨的图像。 扫描探针显微镜(SPM)主要包括扫描隧道显微镜(STM)和原子力显微镜(AFM)两种功能。完整的扫描探针显微镜由控制系统和显微镜系统组成。 扫描隧道显微镜的工作原理是利用电子隧道现象,将样品本身作为一具电极,另一个电极是一根非常尖锐的探针。把探针移近样品,并在两者之间加上电压,当探针和样品表面相距只有数十埃时,由于隧道效应在探针与样品表面之间就会产生隧穿电流,并保持不变。若表面有微小起伏,那怕只有原子大小的起伏,也将使穿电流发生成千上万倍的变化。这些信息输入电子计算机,经过处理即可在荧光屏上显示出一幅物体的三维图像。扫描隧道显微镜一般用于导体和半导体表面的测定。 原子力显微镜主要包括接触模式、非接触模式和轻敲模式。一个对力非常敏感的微悬臂,其尖端有一个微小的探针,当探针轻微地接触、接近或轻敲样品表面时,由于探针尖端的原子与样品表面的原子之间产生极其微弱的相互作用力而使微悬臂弯曲,将微悬臂弯曲的形变信号转换成光电信号并进行放大,就可以得到原子之间力的微弱变化的信号。这些信息输入电子计算机,经过处理即可在荧光屏上显示出一幅物体的三维图像。 SPM作为新型的显微工具与以往的各种显微镜和分析仪器相比有着其明显的优势:首先,SPM具有极高的分辨率。它可以轻易的“看到”原子,这是一般显微镜甚至电子显微镜所难以达到的。 其次,SPM得到的是实时的、真实的样品表面的高分辨率图像。而不同于某些分析仪器是通过间接的或计算的方法来推算样品的表面结构。也就是说,SPM是真正看到了原子。 再次,SPM的使用环境宽松。电子显微镜等仪器对工作环境要求比较苛刻,样品必须安放在高真空条件下才能进行测试。而SPM既可以在真空中工作,又可以在大气中、低温、常温、高温,甚至在溶液中使用。因此SPM适用于各种工作环境下的科学实验。 SPM的应用领域是宽广的。无论是物理、化学、生物、医学等基础学科,还是材料、微电子等应用学科都有它的用武之地。 SPM的价格相对于电子显微镜等大型仪器来讲是较低的。 同其它表面分析技术相比,SPM 有着诸多优势,不仅可以得到高分辨率的表面成像,与其他类型的显微镜相比(光学显微镜,电子显微镜)相比,SPM扫描成像的一个巨大的优点是可以成三维的样品表面图像,还可对材料的各种不同性质进行研究。同时,SPM 正在向着更高的目标发展,即它不仅作为一种测量分析工具,而且还要成为一种加工工具,也将使人们有能力在极小的尺度上对物质进行改性、重组、再造.SPM 对人们认识世界和改造世界的能力将起着极大的促进作用。同时受制其定量化分析的不足,因此SPM 的计量化也是人们正在致力于研究的另一重要方向,这对于半导体工业和超精密加工技术来说有着非同一般的意义

电子探针

第八章 电子探针、扫描电镜显微分析 中国科学院上海硅酸盐所李香庭 1 概论 1.1 概述 电子探针是电子探针X射线显微分析仪的简称,英文缩写为EPMA(Electron probe X-ray microanalyser),扫描电子显微境英文缩写为SEM(Scanning Electron Microscope)。这两种仪器是分别发展起来的,但现在的EPMA都具有SEM的图像观察、分析功能,SEM也具有EPMA的成分分析功能,这两种仪器的基本构造、分析原理及功能日趋相同。特别是现代能谱仪,英文缩写为EDS(Energy Dispersive Spectrometer)与SEM组合,不但可以进行较准确的成分分析,而且一般都具有很强的图像分析和图像处理功能。由于EDS分析速度快等特点,现在EPMA通常也与EDS组合。虽然EDS的定量分析准确度和检测极限都不如EPMA的波谱仪(Wavelength Dispersive Spectrometer ,缩写为WDS)高,但完全可以满足一般样品的成分分析要求。由于EPMA与SEM设计的初衷不同,所以二者还有一定差别,例如SEM以观察样品形貌特征为主,电子光学系统的设计注重图像质量,图像的分辨率高、景深大。现在钨灯丝SEM的二次电子像分辨率可达3nm,场发射SEM二次电子像分辨率可达1nm。由于SEM一般不安装WDS,所以真空腔体小,腔体可以保持较高真空度;另外,图像观察所使用的电子束电流小,电子光路及光阑等不易污染,使图像质量较长时间保持良好的状态。 EPMA一般以成分分析为主,必须有WDS进行元素成分分析,真空腔体大,成分分析时电子束电流大,所以电子光路、光阑等易污染,图像质量下降速度快,需经常清洗光路和光阑,通常EPMA二次电子像分辨率为6nm。EPMA附有光学显微镜,用于直接观察和寻找样品分析点,使样品分析点处于聚焦园(罗兰园)上,以保证成分定量分析的准确度。 EPMA和SEM都是用聚焦得很细的电子束照射被检测的样品表面,用X射线能谱仪或波谱仪,测量电子与样品相互作用所产生的特征X射线的波长与强度,从而对微小区域所含元素进行定性或定量分析,并可以用二次电子或背散射电子等进行形貌观察。它们是现代固体材料显微分析(微区成份、形貌和结构分析)的最有用仪器之一,应用十分广泛。电子探针和扫描电镜都是用计算机控制分析过程和进行数据处理,并可进行彩色图像处理和图像分析工作,所以是一种现代化的大型综合分析仪。现在国内各种型号的电子探针和扫描电镜有近千台,分布在各个领域。 1.2电子与固体样品的交互作用 一束细聚焦的电子束轰击样品表面时,入射电子与样品的原子核和核外电子将产生弹性或非弹性散射作用,并激发出反映样品形貌、结构和组成的各种信息,如二次电子、背散射电子、吸收电子、阴极发光和特征X射线等(图8-1)。

扫描探针显微镜的应用

扫描探针显微镜的应用 根据扫描探针显微镜的种类及特性,可以了解到它的应用范围十分广泛。可以研究材料表而的硬度、摩擦力、粘滞力、弹性等力学性能;研究原子与分子形貌,材料表面的形貌、粗糙度以及各种缺陷;可以测量材料的电、磁特性以及热传导性特性;可应用在生命科学方面,还可以进行纳米测量、纳米刻蚀与加工。1:在有机薄膜材料方面的应用 扫描随道显微镜与原子力显微镜都可以对样品的形貌进行表征,可以观察到有机薄膜分子的排列情况,但是扫描隧道显微镜需要样品制备在导电越底匕而有机薄膜自身并不导电,当薄膜比较厚时,会阻碍系统对隧道电流的探测。对于原子力显微镜则不存在这一限制,有机薄膜可以制备在比较平的云母或硅片上,而且同样可以获得较高分辨率的图像,图1中所示的是在银基底上制备的苝四甲酸二酐单分子膜的原子力形貌图,扫描时工作在非接触区域,采用的是调频模式,图像分辨率达到了分子级别。从分子尺寸的AFM形貌图上我们可以很清楚的观测到分子间距,依此判断出有机薄膜的致密性。在大范围(微米量级)从整体上观察薄膜均匀性时,原子力显微镜也比较方便。 图1 苝四甲酸二酐单分子膜的原子力形貌图,扫描范围30nmX30nm 由于有机薄膜的质地比较软,因此在用接触模式扫描时,会因侧向力过大对薄膜造成划伤,因此常常采用轻敲模式进行扫描。但是我们常常需要通过接触模式

下的力曲线测试,对有机薄膜自身的一些力学特性先有一定的了解,比如弹性、粘滞力等,因为这些有机薄膜自身固有的特性也会影响到扫描成像,之后在通过扫描过程中合理化相应的参数,获得高质量的图像。 2:DPN 纳米加工技术 Mirkin小组发明了一种成为“dip-pen”的纳米加工技术(图2),AFM针尖被当作“笔”,硫醇分子被当作“墨水”,而基底被当作“纸”,吸附在针尖上的硫醇分子借助于针尖和基底之间的水层被转移到基底上的特定区域。然而,这种DPN存在一个明显的缺点就是只能把有机分子“写”在基底上,而且保持所生成结构的长期稳定性是一个重要问题。 图 2 DPN 操作示意图(A)和 DPN 所形成的 ODT 阵列的侧向力图(B)

用于微观几何形状测量的扫描探针显微技术

8传感器技术(J。urnal【,fTran副uc叮陆hnc山础)2003年第22卷第9期 用于微观几何形状测量的扫描探针显微技术 王晓东1,常城2,宋洪侠3 (1大连理工大学微系统研究中心,辽宁大连116024; 2哈尔滨工程大学自动化学院,黑龙江哈尔滨150∞l;3大连理工大学机械工程学院,辽宁大连116024) 摘要:随着微技术的发展,对微观结构的精确测量变得越来越重要。对能够用于微观几何形状测量的 扫描探针显微技术——扫描隧道显微术(盯M)、扣描光学近场显微术(sNoM)和原子力显微术(AFM)进 行了比较详细的分析和介绍。 关键词:扫描探针显微术;微观几何形状;传感器 中图分类号:TP212;TH盯4文献标识码:A文章编号:1000—9787(2003)09—0008一04 Scanningprobemicroscopyformicro-geometrymeasurement wANGxl静don91,c卜IANGchen92,SONG}{0ng.xia3 (1.R嚣Centerfol‘Micmsyst锄ndm,Dali粕UniⅧ两tyoflKh∞lo酊,I)ali蛐1160“,chim; 2.schofAut咖U蚰Erlgin.HarmnE唧T枷IIgUni岫硝ty,H盯bin150∞l,ClIina; 3.scllofMecllEngin.Dali锄UⅡive倦ilyof瞰Illlolo酣,叫i粕116024,chi呐) Abs岫ct:Withthed州dopmemd眦删techlok)gy,t}把measurememofth8ge。m唧dmIcH埘Tuctur器w;th hLghaccLlracybec。m麟rr衄e蛐drnoreimp。rtantS0me。ftk【eclllllquesof洲i“gpmbem;ⅢH∞pywhich areu剃formicro-ge。metrymeasur盯n朗taresL|rImla^zedand蛳aI”ed.1nclL血。19scall血ngtunneling叫一 croso叩y,5canningnear—ndd0pticalmicr。s∞pyandatomlcforce叫衄Hcopy. Keywords:scarlnlngprobe蚵c1娜y(SPM);micngeornetry;se蝴 0引言 利用精密测量仪器和微操作机构,人类已经走进了微观世界,并不懈地进行微技术的研究和开发。微技术的发展使得产品微小型化并集成各种功能成为可能,与此同时,不断的微小型化,使得对微观结构的精确测量变得越来越重要。近lO年来,表面物理学的基础研究使得扫描探针显微技术(SPM)得到发展,这种新型技术能够对微观几何形状及其它表面特性进行测量分析。扫描探针显微镜同光学和电子显微镜有着明显的区别,扫描探针显微镜使用很小的探针去“接触”被测量物体的表面,与物体表面极其接近,距离极小,具有原子量级的分辨力…。利用扫描探针显微技术可以在150~150“m2的范围内,可获得原子量级的测量准确度。 扫描探针显微术是一类显微术的总称,具体包括。P几种或更多的具体技术,这些技术在概念和具体技术上以扫描隧道显微术(scaIlningtunneling 收稿日期:2003一03—29micmscopy,STM)为基础【“。本文将具体对扫描隧道显微术、扫描光学近场显微镜(ScannIngnear-fieldopticalmicmscopy,sNoM)和原子力显微术(atomic如rcemicms∞py,AFM)等三种扫描探针显微技术进行具体介绍和分析。 l扫描隧道显微术(s1M) 图1所示为扫描探针显微技术的基本原理【3J。 圈1扫描探针豆徽拉术的原理 nglsc}娜_¨cm雄册or SPM  万方数据

扫描探针显微镜

扫描探针显微镜 【摘要】 纳米测量是纳米科学的重要分支和基础学科。以扫描探针显微镜(STM)为代表的非光学纳米测量方法能够实现纳米甚至亚纳米的测量分辨率,是非常重要且实用的纳米级精密测量仪器,本篇文章对其进行详细介绍。 【关键字】扫描探针显微镜精密测量纳米尺度 【引言】 纳米科学是在纳米(10-9m)和原子(10-10m)的尺度上(1nm~100nm)研究物质的特性、物质相互作用及如何利用这些特性的多学科交叉的前沿科学与技术。随着科学的发展,它涉及到越来越广泛的内容,其中纳米测量技术是纳米科学的一个重要分支。例如:半导体工业中的高精度模版的制造和定位,高精度传感器的标定;在科学研究中的量子物理学、化学、分子生物学等都需要很高的测量精度。因此无论是对国民经济各部门还是军事应用领域等,纳米测量都有着巨大意义。 目前,能够进行纳米测量的方法主要有:非光系方法和光学方法两大类。前者包括:SPM 法,电容、电感测微法;后者则包括:X光干涉仪法、各种形式的激光干涉仪法和光学光栅等方法。以扫描探针显微镜(STM)为代表的非光学纳米测量方法能够实现纳米甚至亚纳米的测量分辨率,是非常重要且实用的纳米级精密测量仪器,本篇文章将对其进行详细介绍。【正文】 1.扫描探针显微镜简介 扫描探针显微镜是继光学显微镜和电子显微镜发展起来后的第三代显微镜。80年代初期,IBM公司苏黎世实验室的G.Binning 和H.Rohrer发明了扫描隧道显微镜,它的分辨率达到0.01纳米。STM的诞生,使人类第一次在实空间观测到了原子,并能够在超高真空超低温的状态下操纵原子。在STM的基础上,又发明了原子力显微镜、磁力显微镜、近场光学显微镜等等,这些显微镜都统称扫描探针显微镜。因为它们都是靠一根原子线度的极细针尖在被研究物质的表面上方扫描,检测采集针尖和样品间的不同物理量,以此得到样品表面的形貌图像和一些有关的电化学特性。如:扫描隧道显微镜检测的是隧道电流,原子力显微镜镜测试的是原子间相互作用力等等。

电子探针X射线显微分析

第13-14讲 教学目的:使学生了解电子探针X射线显微分析方法 教学要求:掌握电子探针原理,了解电子探针基本信号,掌握电子探针工作方式;理解能谱仪和波谱仪之间差异 教学重点:电子探针基本原理;工作方式;波谱和能谱区别教学难点:衍射衬度像成像原理 教学难点:波谱仪及能谱仪的工作原理及比较,探针的三种分析方式及其应用教学拓展:查阅文献,了解探针在那些领域有较好应用 作业: 1.波谱仪和能谱仪的比较; 2.电子探针各自采集的最主要的物理信号及仪器的最主要功能。 第4节电子探针X射线显微分析 1电子探针基本原理 电子探针(Electron Probe Microanalysis-EPMA)的主要功能是进行微区成分分析。它是在电子光学和X射线光谱学原理的基础上发展起来的一种高效率分析仪器。 其原理是:用细聚焦电子束入射样品表面,激发出样品元素的特征X射线,分析特征X射线的波长(或能量)可知元素种类;分析特征X射线的强度可知元素的含量。 其镜筒部分构造和SEM相同,检测部分使用X射线谱仪,用来检测X射线的特征波长(波谱仪)和特征能量(能谱仪),以此对微区进行化学成分分析。

武汉理工大学材料研究与测试中心电子探针设备 2电子探针两个物理学基础 a莫塞莱定律:=C(Z-σ)2,特征X射线频率与发射X射线的原子的原子序数平方之间存在线性关系。 b布拉格定律:2dsinθ=nλ,λ为X射线波长,单位为?,n是正整数。测出X射线的掠射角θ,即可计算出X射线的波长,进而确定出产生波长特征X射线的元素。 3波谱仪(WDS)工作原理 已知电子束入射样品表面产生的X射线是在样品表面下一个um量级乃至纳米量级的作用体积发出的,若该体积内含有各种元素,则可激发出各个相应元素的特征X线,沿各向发出,成为点光源。在样品上方放置分光晶体,当入射X 波长、入射角、分光晶体面间距d之间满足2dsinθ=nλ时,该波长将发生衍射,若在其衍射方向安装探测器,便可记录下来。由此,可将样品作用体积内不同波长的X射线分散并展示出来。 一般平面分光晶体使谱仪的检测效率非常低,表现在:固定波长下,特定方向入射才可衍射;处处衍射条件不同;要解决的问题是:分光晶体表面处处满足同样的衍射条件;实现衍射束聚焦把分光晶体作适当的弹性弯曲,并使X射线源、弯曲晶体表面和检测器窗口位于同一个圆周上,就可以达到把衍射束聚焦的目的。该圆称为聚焦圆,半径为R。此时,如果晶体的位置固定,整个分光晶体只收集一种波长的X射线,从而使这种单色X射线的衍射强度大大提高。 3.1 波谱仪类型

扫描电镜分析

1.1扫描电子显微镜电子光学原理 1.1.1瑞利公式 利用光学显微系统将细节放大,满足人眼分辨率可以接受的程度,最大分辨率可达到200nm(放大倍数1000倍)。根据瑞利公式:Δr0=0.61λ/ (Nsinα) 其中:Δr0为辨率;λ为光源的波长;N为介质的折射率;α为孔径半角,即透镜对物点的张角的一半;N sinα称为数值孔径,常用N.A表示。 根据瑞利公式,提高分辩率的途径有: (1)增大数值孔径(N sinα) ,即增大介质折射率N和数值孔径α; (2)减小照明光源波长λ。 在以空气为介质的情况下,光学透镜系统的N.A<1,采用油侵透镜, N.A max=1.35。因此得:Δrmin=λ/2。所以提高显微镜分辨率的根本途径是寻求一种波长更短的光源[2]! 既然是光源限制了显微镜的放大倍数和分辨率的发展,人们自然会想到:要想提高显微镜的放大倍数和分辨率,就应该更换波长更短的光源。随着人们对电磁波的认识,人们了解到:在一定的电压下电子束的波长可以达到零点几个纳米,使用电子束做为光源,显微镜的分辨率就可能提高几个数量级。 1.1.2扫描电镜成像 图为扫描电镜原理示意图,由电子枪发射的电子束,经会聚镜、物镜缩小、聚焦,在样品表面形成一定能量和斑点直径的电子束。在扫描线圈磁场作用下,作用在样品表面上的电

子束将按一定时间、空间顺序作光栅或扫描。电子束从样品中激发的二次电子,由二次电子收集器收集、由加速极加速至闪烁体转变成光信号,此信号经光导管到达光电倍增管再转变成电信号。该电信号由视频放大器放大,输送到显像管栅极,调制显像管亮度,使之在屏幕上呈现亮暗程度不同的反映表面起伏(形貌)的二次电子像。由于电子束在样品表面上扫描和显像管中电子束在荧光屏上扫描由同一扫描电路控制,保证了它们之间完全同步,即保证了“物点”和“像点”在时间和空间上的一一对应。一般称一个像点为一个“图像单元”、一幅扫描图像近100万个图像单元。正因为如此,才使得SEM不仅显示一般形貌,而且还能将样品局部化学元素、光、电和磁等性质差异以二维图像形式显示出来。 1.2扫描电镜结构及原理 1.2.1 SEM装置的结构的构造 图为扫描电镜结构示意图,由图可知SEM由形成电子探针的电子光学系统、装载样品用的样品台、检测二次电子的二次电子检测器、观察图像的显示系统及进行各种操作的操作系统等构成,电子光学系统由用于形成电子探针的电子枪、聚光镜、物镜和控制电子探针进行扫描的扫描线圈等构成,电子光学系统(镜筒内部)以及样品周围的空间为真空状态[8]。镜筒包括电子枪、聚光镜、物镜及扫描系统。其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面扫描,同时激发出各种信号。 1.2.2 电子枪

相关主题
文本预览
相关文档 最新文档