扫描电镜与电子探针
- 格式:ppt
- 大小:2.15 MB
- 文档页数:8
扫描电镜的结构及原理一、简介1特点:扫描电子显微镜主要特点是电子束在样品上进行逐点扫描,获得三维立体图像,图像观察视野大、景深长、富有立体感。
在观察样品表面形貌的同时,进行晶体学分析及成分分析。
常规的扫描电镜分辨本领通常为7~10nm,加速电压在1~50 kV范围。
生物样品一般用10~20kV,成像放大率几十倍至几十万倍。
2用途:扫描电镜可对样品进行综合分析,已成为重要分析工具,纤维、纸张、钢铁质量等,观察矿石结构、检测催化剂微观结构、观看癌细胞与正常细胞差异等。
3日本日立公司产品S-5200型为超高分辨率(ultra-highresolutio n)扫描电镜,加速电压为1k V时,分辨率可达1.8nm,加速电压为30kV时,分辨率高达0.5nm。
此外,还具有独特的电子信号探测系统,不但能观察样品三维形态结构甚至能看到样品的原子或分子结构,在使用性能方面已超越任何一种常规扫描电镜。
二、扫描电镜的结构扫描电镜的组成:(1)、电子光学系统:组成:①电子枪与透镜系统;②电子探针扫描偏转系统作用:产生直径为几十埃的扫描电子束,即电子探针,使样品表面作光栅状扫描。
①电子枪组成:阴极、阳极、栅极。
直径约为0.1mm钨丝制成,加热后发射的电子在栅极和阳极作用下,在阳极孔附近形成交叉点光斑,其直径约几十微米。
扫描电镜没有成像电镜,成像原理与透射电镜截然不同。
所有透镜皆为缩小透镜,起缩小光斑的作用。
缩小透几十镜将电子枪发射的直径约为30μm电子束缩小成几十埃,由两个聚光镜和一个末透镜完成三个透镜的总缩小率为2000~3000倍。
两个聚光镜分别是第一聚光镜和第二聚光镜,可将在阳极孔附近形成的交叉点缩小。
聚光镜可动光阑位于第二聚光镜和物镜之间,用于控制选区衍射时电子书的发散角。
_扫描电镜与电子探针分析扫描电镜(Scanning Electron Microscope,SEM)和电子探针分析(Energy Dispersive X-ray Spectroscopy,EDS)是现代材料科学和纳米技术领域中广泛应用的两种重要分析技术。
本文将分别介绍扫描电镜和电子探针分析的原理、仪器结构和应用。
一、扫描电镜(SEM)扫描电镜是一种基于电子束的显微镜,通过聚焦的电子束对样品表面进行扫描,获得高分辨率的图像。
相比传统光学显微镜,SEM具有更高的分辨率和更大的深度聚焦能力。
SEM的工作原理如下:1.电子源:SEM使用热阴极电子枪产生的高速电子束。
电子束由一根细丝产生,经过加热后电子从细丝上发射出来。
2.透镜系统:电子束经过电子透镜系统进行聚焦和调节。
透镜系统包括几个电磁透镜,用于控制电子束的聚焦和扫描。
3.样品台:样品台用于固定样品并扫描表面。
样品通常需要涂覆导电性材料,以便电子束可以通过样品表面。
4.探测器:SEM使用二次电子和背散射电子探测器来检测从样品表面散射的电子。
这些探测器可以转化为图像。
SEM可以提供高分辨率的表面形貌图像,并通过电子束的反射和散射来分析样品的成分、孔隙结构和晶体结构等。
其应用广泛,包括材料科学、纳米技术、电子器件等领域。
二、电子探针分析(EDS)电子探针分析是一种基于X射线的成分分析技术,常与扫描电镜一同使用。
EDS可以对样品的元素成分进行快速准确的定性和定量分析。
其工作原理如下:1.探测器:EDS使用一个固态半导体探测器来测量从样品发射的X射线。
当样品受到电子束轰击时,样品中的元素原子被激发并发射出特定能量的X射线。
2.能谱仪:EDS使用能谱仪来分析探测到的X射线,该仪器能够将X 射线能量转换成电压信号,并进行信号处理和分析。
3.能量分辨率:EDS的精度取决于能谱仪的能量分辨率,分辨器的能量分辨率越高,分析结果越准确。
4.谱库:EDS使用事先建立的元素谱库进行定性和定量分析。
电子探针和扫描电镜常用的标准方法电子探针和扫描电镜涉及的标准方法及技术规范共有25个,有电子探针仪检定规程(JJG901-95)、扫描电子显微镜试行检定规程(JJG 550-88)、不同类型样品的定量分析方法、样品及标样的制备方法、微米长度的扫描电镜测量方法及X射线能谱成分定量分析方法等。
各单位计量认证分析检测的项目,必须有相应的标准检测方法。
要根据标准方法进行成分分析,要采用有效的国家标准。
没有国家标准的检测项目,可以采用行业标准或地方标准。
行业标准在相应的国家标准出台后自动作废,地方标准在相应的国家标准或行业标准出台后也自动作废。
企业标准及检测机构按用户要求制定的检测条件和试验方法,只能作参考数据。
当国家标准方法不能满足某些检测要求时,例如“方法通则”,可根据方法通则制定检测实施细则,经检验机构技术负责人批准后,可以实施。
检测报告中必须有检测依据,即检测的标准方法。
所以标准方法在认证过程中和检测过程中都是必须的。
现在电子探针和扫描电镜的标准方法,还不能满足所有样品测试的要求,特别是能谱分析方法,但基本都有通则,可根据通则制定实施细则,以满足一般检测工作的需要。
(1)GB/T 4930-93 电子探针分析标准样品通用技术条件(代替GB4930-85)(2)GB/T 15074-94 电子探针定量分析方法通则(3)GB/T 15075-94 电子探针分析仪的检测方法(4)GB/T 15244-94 玻璃的电子探针分析方法(5)GB/T 15245-94 稀土氧化物的电子探针定量分析方法(6)GB/T 15246-94 硫化物矿物的电子探针定量分析方法(7)GB/T 15247-94 碳钢和低合金钢中碳的电子探针定量分析方法(8)GB/T 14593-93 山羊绒、绵羊毛及其混合纤维定量分析方法(9)GB/T 15617-95 硅酸盐矿物的电子探针定量分析方法(10)GB/T 15616-95 金属及合金电子探针定量分析方法1(11)GB/T 16594-94 微米级长度的扫描电镜测量方法(12)GB/T 17359-98 电子探针和扫描电镜X射线能谱定量分析通则 (13)GB/T 17360-98 钢中低含量Si、Mn的电子探针定量分析方法(14)GB/T 17361-98 沉积岩中自生粘土矿物扫描电子显微镜及X射线能谱鉴定方法(15)GB/T17632-98 黄金饰品的扫描电镜X射线能谱分析方法(16)GB/T17363-98 黄金制品的电子探针定量测定方法(17)GB/T17364-98 黄金制品中金含量的无损定量分析方法(18)GB/T17365-98 金属与合金电子探针定量分析样品的制备方法(19)GB/T17366-98 矿物岩石的电子探针分析试样的制备方法(20)GB/T17506-98 船舶黑色金属腐蚀层的电子探针分析方法(21)GB/T17507-98 电子显微镜-X射线能谱分析生物薄标样通用技术条件 (22)GB/T17722-99 金覆盖层厚度的扫描电镜测量方法(23)GB/T17723-99 黄金制品镀层成分的X射线能谱测量方法 此外,还有以下一些其他标准可作参考,如:(24) 分析型扫描电子显微镜检定规程(JJG 011-1996)(25) 纳米级长度的扫描电镜测量方法(国家标准讨论稿)(26) 微束分析-扫描电镜-图像放大倍率校准导则(陈振宇编译)2。
电子显微镜的种类和应用电子显微镜是一种先进的显微镜,它利用电子束取代了光束,其具有比光学显微镜更高的分辨率和更大的放大倍数。
它可以帮助人们更深入地了解物质的微观结构和性质,对于科研和生产等领域有着广泛的应用。
本文将介绍电子显微镜的种类和应用。
**一、传输电子显微镜**传输电子显微镜是一种利用电子束穿透样品进行观察的显微镜。
它可以使电子从样品的一个侧面进入样品,穿过样品并投射到另一个侧面的荧屏或CCD上进行观察。
它具有高分辨率和大放大倍数的特点,可以用于研究物质的晶体结构和组成。
此外,传输电子显微镜还可以通过分析电子透射图来获得样品的化学成分分布情况。
在材料科学领域,传输电子显微镜被广泛应用于纳米材料和杂化材料的研究。
例如,可以观察纳米颗粒的形成和生长过程,揭示其氧化还原性质和结构演变机制。
此外,通过传输电子显微镜还可以研究杂质缺陷和断裂等缺陷的形成和影响。
**二、扫描电子显微镜**扫描电子显微镜是一种利用电子束扫描样品表面进行观察的显微镜。
它可以获得高分辨率的图像和三维表面形貌信息,同时还可以进行成分分析和形貌分析。
扫描电子显微镜通常用于材料科学、生物医学、纳米技术和制造业等领域。
在材料科学领域,扫描电子显微镜被广泛应用于研究材料表面结构和性质。
例如,可以在扫描电子显微镜下观察纳米结构的表面形态和成分,进一步揭示材料的微观结构和晶体生长机制。
在生物医学领域,扫描电子显微镜被用于研究细胞结构和胚胎发育等问题。
**三、透射电镜**透射电镜是一种可实现高分辨率成像的电子显微镜。
它利用电子束穿透物质,通过激发电子的散射和衍射等现象产生高分辨率的影像。
透射电镜的优点是能够实现比扫描电镜更高的分辨率和更复杂的样品操作。
在材料科学领域,透射电镜被广泛应用于纳米材料、金属材料和生物分子等领域。
例如,通过透射电镜可以观察纳米结构材料的原子排列方式和表面吸附,揭示纳米颗粒的光学、磁学、电学等性质。
此外,透射电镜还被用于研究金属材料的强度和塑性机制,以及生物分子的结构和功能问题。
MV_RR_CNG_0396电子探针和扫描电镜X射线能谱定量分析通则1.电子探针和扫描电镜X射线能谱定量分析通则说明2.电子探针和扫描电镜X射线能谱定量分析通则摘要1范围本标准规定了与电子探针和扫描电镜联用的X射线能谱仪的定量分析方法的技术要求和规范。
本标准适用于电子探针和扫描电镜X射线能谱仪对块状试样的定量分析。
2引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。
本标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探计使用下列标准最新版本的可能性。
4.1 X射线能谱仪的基本组成方框图如下:I X 射^ I前置—I线性多道分析器4.2 X射线能谱仪的主要组成部分GB/T 4930 —93电子探针分析标准样品通用技术条件GB/T 15074 —94 电子探针定量分析方法通则3分析方法原理在电子探针和扫描电镜等分析仪器中,应用一定能量并被聚焦的电子束轰击样品时,被轰击区发射出样品中所含元素的特征X射线,利用半导体探测器的能量色散特性,对接收的信号进行转换、放大。
再经过线性放大器、脉冲处理器、多道分析器的进一步放大、处理和分析,可获得各元素的特征X射线的能谱及其强度值,再通过与相应元素的标准样品的X射线能谱的对比测定,以及修正计算处理,最终可以获得被测样品的化学组成的定量分析结果。
4射线能谱仪4.2.1 X射线探测器:通常是Si(Li)半导体探测器,用于探测试样发射的X射线,使能量不同的X射线转换为电压不同的电脉冲信号。
4.2.2前置放大器:将来自探测器的信号作初级放大。
4.2.3线性放大器和脉冲处理器:将经过前置放大器初级放大的信号作进一步放大、并进行模拟或数字化处理。
4.2.4多道分析器:将来自脉冲处理器的信号作进一步处理,完成对X射线谱的能量和强度的初步分析。
4.2.5电子计算机系统:配备有能满足能谱分析所必须的功能完整的硬件和相应的各种分析程序软件,用于对从试样收集到的X射线能谱进行定性和定量分析,并输出分析结果。
电子探针、扫描电镜的应用领域(周剑雄供稿zjx@)电子探针和扫描电镜已经广泛应用于各工业和科研领域,如进行各种材料的成分和结构解析,包括金属材料、金属失效分析、硅酸盐玻璃、电子材料、表面材料加工、超硬材料、硅酸盐材料、化工材料、光学材料、生物材料等的分析研究。
特别在催化剂、焊料、红外窗口、金刚石膜、电子开关材料、光导纤维等的解析,特种金属及其制品的分析鉴定与纯度分析,如锇粉、铑粉、金属钪、镱、以及各种超纯金属(>99.9999%)的分析与研究;超细材料、纳米材料SiO、MnO、2NiO、磁粉的粒度测定;镀层材料的成分与厚度的测定,以及材料的糙面测定,包括>10μm镀层的直接测定和<10μm镀层的 间接测定等;在地质、生物、医学、农业考古、公安中也可用于无机材料和有机材料中的无机盐的分析研究。
简言之,电子探针实验室似乎是一个包罗万象的综合分析的大型实验室。
以下将列举某些领域的可能应用:<一>金属学中的应用1.断口观察。
2.定向含金偏析研究:微量元素在合金不同位置的分布明显影响合金性能,定向混固技术,代替变形部件;晶界上偏析。
(任见蓉,第二届电子显微学会议文集。
P32,1982)3.热处理工艺对钢性质研究4.相平衡图和制定5.彩金研究,6. K金配方工艺⑴偏析原因,白色长于18K ,Os96,Ru2.5Os熔点3045℃Au熔点1063℃。
原料重熔时Os偏析。
⑵K金变脆原因(龟裂)Bi3.02-5.76%,Fe2.25-3.77 %.<二>材料学中的应用1.材料分析2.材料深蚀刻表面现象3.Dia粘结材料的粘结性能4.陶瓷及高温耐火材料研究5.钻头材料,镶嵌<三>机械学中的应用1.摩擦磨损产生的细粒及表面剥蚀研究2.蒸汽锅炉管道中腐蚀机理分析3.大型球罐焊缝缺陷分析<四>微电子学中的应用<五>法学鉴别中的应用1.头发等中的微量元素分析2.枪弹残余物颗粒成份分析3.死因不明尸骨中铅的亮粒(枪击)4.被盗珍贵文物,金属接触过的物体上残留成分分析5.文件真伪鉴别:纸,纸上颜料,油墨,墨水的成分分析,元素分布图可划出其中不同的区域,与伪造文件对照。