滑动轴承油膜厚度计算
- 格式:doc
- 大小:74.50 KB
- 文档页数:7
习题与参考答案一、选择题(从给出的、、、中选一个答案)验算滑动轴承最小油膜厚度的目的是 。
. 确定轴承是否能获得液体润滑. 控制轴承的发热量 . 计算轴承内部的摩擦阻力 . 控制轴承的压强在题—图所示的下列几种情况下,可能形成流体动力润滑的有 。
巴氏合金是用来制造 。
. 单层金属轴瓦 . 双层或多层金属轴瓦 . 含油轴承轴瓦 . 非金属轴瓦 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。
. 铸铁 . 巴氏合金 . 铸造锡磷青铜 . 铸造黄铜 液体润滑动压径向轴承的偏心距随 而减小。
. 轴颈转速的增加或载荷的增大 . 轴颈转速的增加或载荷的减少 . 轴颈转速的减少或载荷的减少 . 轴颈转速的减少或载荷的增大不完全液体润滑滑动轴承,验算][pv pv 是为了防止轴承 。
. 过度磨损 . 过热产生胶合 . 产生塑性变形 . 发生疲劳点蚀设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度不够大,在下列改进设计的措施中,最有效的是 。
. 减少轴承的宽径比d l / . 增加供油量 . 减少相对间隙ψ . 增大偏心率χ 在 情况下,滑动轴承润滑油的粘度不应选得较高。
. 重载 . 高速. 工作温度高 . 承受变载荷或振动冲击载荷 温度升高时,润滑油的粘度 。
. 随之升高 . 保持不变. 随之降低 . 可能升高也可能降低 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。
. 轴颈和轴承间构成楔形间隙 . 充分供应润滑油. 轴颈和轴承表面之间有相对滑动 . 润滑油温度不超过℃运动粘度是动力粘度与同温度下润滑油 的比值。
. 质量 . 密度 . 比重 . 流速 润滑油的 ,又称绝对粘度。
. 运动粘度 . 动力粘度 . 恩格尔粘度 . 基本粘度 下列各种机械设备中, 只宜采用滑动轴承。
. 中、小型减速器齿轮轴 . 电动机转子 . 铁道机车车辆轴 . 大型水轮机主轴两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为 。
习题与参考答案一、选择题(从给出的A 、B 、C 、D 中选一个答案)1 验算滑动轴承最小油膜厚度h min 的目的是 A 。
A. 确定轴承是否能获得液体润滑B. 控制轴承的发热量C. 计算轴承内部的摩擦阻力D. 控制轴承的压强P2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有 B 、E 。
3 巴氏合金是用来制造 B 。
A. 单层金属轴瓦B. 双层或多层金属轴瓦C. 含油轴承轴瓦D. 非金属轴瓦 4 在滑动轴承材料中, B 通常只用作双金属轴瓦的表层材料。
A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 B 而减小。
A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大6 不完全液体润滑滑动轴承,验算][pv pv 是为了防止轴承 B 。
A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措施中,最有效的是 A 。
A. 减少轴承的宽径比d l /B. 增加供油量C. 减少相对间隙ψD. 增大偏心率χ 8 在 B 情况下,滑动轴承润滑油的粘度不应选得较高。
A. 重载 B. 高速C. 工作温度高D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 C 。
A. 随之升高B. 保持不变C. 随之降低D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 D 。
A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油C. 轴颈和轴承表面之间有相对滑动D. 润滑油温度不超过50℃11 运动粘度是动力粘度与同温度下润滑油 B 的比值。
A. 质量B. 密度C. 比重D. 流速 12 润滑油的 B ,又称绝对粘度。
习题与参考答案、选择题(从给出的A、B、C D中选一个答案)1验算滑动轴承最小油膜厚度h min的目的是AA.确定轴承是否能获得液体润滑B. 控制轴承的发热量C•计算轴承内部的摩擦阻力D.控制轴承的压强P2在题2图所示的下列几种情况下,可能形成流体动力润滑的有B、E3巴氏合金是用来制造BA. 单层金属轴瓦C. 含油轴承轴瓦B 通常只用作双金属轴瓦的表层材料。
B. 巴氏合金D. 铸造黄铜5液体润滑动压径向轴承的偏心距e随B 而减小。
A. 轴颈转速n的增加或载荷F的增大B. 轴颈转速n的增加或载荷F的减少C. 轴颈转速n的减少或载荷F的减少D. 轴颈转速n的减少或载荷F的增大6不完全液体润滑滑动轴承,验算41 是为了防止轴承________ B_A. 过度磨损B.过热产生胶合C. 产生塑性变形D.发生疲劳点蚀B.双层或多层金属轴瓦D.非金属轴瓦4在滑动轴承材料中,A.铸铁C.铸造锡磷青铜7设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min不够大,在下列改进设计的措施中,最有效的是 A 。
A.减少轴承的宽径比回B.增加供油量C.减少相对间隙日D.增大偏心率.|在 B 情况下,滑动轴承润滑油的粘度不应选得较高。
A.重载B.高速2JC.工作温度高D.承受变载荷或振动冲击载荷C.随之降低D.可能升高也可能降低动压润滑滑动轴承能建立油压的条件中,不必要的条件是DA. 轴颈和轴承间构成楔形间隙B. 充分供应润滑油C. 轴颈和轴承表面之间有相对滑动D. 润滑油温度不超过 50 C 运动粘度是动力粘度与同温度下润滑油B的比值。
A.质量B.密度C.比重 D.流速润滑油的B,又称绝对粘度。
A.运动粘度B. 动力粘度C.恩格尔粘度D. 基本粘度F 列各种机械设备中, D 只宜采用滑动轴承。
A.中、小型减速器齿轮轴B.电动机转子C.铁道机车车辆轴D.大型水轮机主轴两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为D 。
第十二章例1':设某蜗杆减速器的蜗轮轴两端采用混合摩擦润滑径向滑动轴承支撑。
已知:蜗杆转速n=60r/min,轴材料为45钢,轴径直径d=80mm,轴承宽度B=80mm,轴承载荷F=80000N,轴瓦材料为锡青铜ZCuSnP1 ([p]=15MPa,[v]=10m/s,[p.v]=15Mpa·m/s),试校核此向心滑动轴承。
作业:1补1'有一采用混合摩擦润滑径向滑动轴承。
已知:轴径直径d=60mm,轴承宽度B=60mm,轴瓦材料为铝青铜ZCuAl10Fe3 ([p]=15MPa,[v]=4m/s,[p.v]=12Mpa·m/s),试求:(1)当载荷F=36000N,转速n=150r/min时,此轴承是否满足液体润滑轴承使用条件?(2)轴允许的最大转速n?(3)当轴的转速n=900r/min时,允许的载荷F max为多少?(4)当载荷F=36000N,轴的允许转速nmax为多少?1. 验算滑动轴承最小油膜厚度h min的目的是。
A. 确定轴承是否能获得液体润滑B. 控制轴承的发热量C. 计算轴承内部的摩擦阻力D. 控制轴承的压强P2. 在图所示的下列几种情况下,可能形成流体动力润滑的有。
1 A2 BE3.巴氏合金是用来制造。
A. 单层金属轴瓦B. 双层或多层金属轴瓦C. 含油轴承轴瓦D. 非金属轴瓦4.在滑动轴承材料中,通常只用作双金属轴瓦的表层材料。
A. 铸铁B. 巴氏合金C. 铸造锡磷青铜D. 铸造黄铜5.液体润滑动压径向轴承的偏心距e随而减小。
A. 轴颈转速n的增加或载荷F的增大B. 轴颈转速n的增加或载荷F的减少C. 轴颈转速n的减少或载荷F的减少D. 轴颈转速n的减少或载荷F的增大6.不完全液体润滑滑动轴承,验算是为了防止轴承。
A. 过度磨损B. 过热产生胶合C. 产生塑性变形D. 发生疲劳点蚀3 B4 B5 B6 B7. 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度hmin 不够大,在下列改进设计的措施中,最有效的是。
不完全液体润滑滑动轴承计算条件不完全液体润滑滑动轴承计算条件背景介绍•液体润滑滑动轴承是一种常见的机械零部件,广泛应用于各种工业领域。
•在液体润滑滑动轴承的设计和运行过程中,需要考虑一系列的计算条件,以确保其正常运行和承载能力。
液体润滑润滑条件•为了确保液体润滑滑动轴承的正常运行,需满足以下条件:1.润滑油的粘度:粘度是润滑油的重要性能指标,需根据实际使用情况选择合适的粘度等级。
2.油膜厚度:油膜厚度是液体润滑滑动轴承承载能力的重要因素,需要根据负荷、转速等参数计算得出。
3.温度和压力:液体润滑滑动轴承在使用过程中会产生热量,需要确保在合理的温度和压力范围内运行,避免油膜失效。
计算条件•在设计和选择液体润滑滑动轴承时,需要计算以下参数来满足设计需求:1.负荷和转速:根据实际应用情况,计算并确定所需的轴承负荷和转速范围。
2.油膜厚度计算:根据负荷、转速和润滑油粘度等参数,使用相应的公式计算油膜厚度。
3.润滑油的选择:根据实际工况,选择适当的润滑油品牌和粘度等级。
4.温度和压力控制:根据实际需求,设计和选择合适的冷却系统和压力控制系统,确保轴承在正常温度和压力下运行。
结论•在设计和选择液体润滑滑动轴承时,准确计算和满足润滑条件是非常重要的。
•合理的负荷和转速范围、正确的油膜厚度、适当的润滑油选择以及温度和压力的控制,都是确保液体润滑滑动轴承正常运行和承载能力的关键。
•在实际应用中,需根据具体情况和参数,进行计算和选择,以确保轴承的可靠性和使用寿命。
注意:这是一篇虚构的文章,旨在演示如何使用Markdown格式写一份相关文章。
摩擦:滚动摩擦滚动摩擦轴承滚动轴承滑动摩擦滑动摩擦轴承滑动轴承第十二章滑动轴承第一节概述1、滑动轴承应用场合:1)工作转速特高轴承,如汽轮发电机;2)要求对轴的支撑位置特别精确的轴承,如精密磨床;3)特重型的轴承,如水轮发电机;4)承受巨大的冲击和振动,如轧钢机;5)根据工作要求必须做成剖分式的轴承,如曲轴轴承;6)在特殊的工作条件下(如在水中或腐蚀性介质中)工作的轴承,如军舰推进器的轴承;7)在安装轴承处的径向空间尺寸受到限制时,也常采用滑动轴承,如多辊轧钢机。
2、分类①按载荷方向:径向(向心)轴承、止推轴承、向心止推②按接触表面之间润滑情况:液体滑动轴承、非液体滑动轴承液体滑动轴承:完全是液体非液体滑动轴承:不完全液体润滑轴承、无润滑轴承不完全液体润滑轴承(表面间处于边界润滑或混合润滑状态)无润滑轴承(工作前和工作时不加润滑剂)③液体润滑承载机理:液体动力润滑轴承(即动压轴承)液体静压润滑轴承(即液体静压轴承)3、如何设计滑动轴承(设计内容)1)轴承的型式和结构2)轴瓦的结构和材料选择3)轴承的结构参数4)润滑剂的选择和供应5)轴承的工作能力及热平衡计算4.特点:承载能力大,工作平稳可靠,噪声小,耐冲击,吸振,可剖分等特点。
第二节滑动轴承的典型结构一、整体式径向滑动轴承:特点:结构简单,易于制造,端部装入,装拆不便,轴承磨损后无法调整。
应用:低速、轻载或间歇性工作的机器中。
二、对开式径向滑动轴承:装拆方便,间隙可调,应用广泛。
特点:结构复杂、可以调整磨损而造成的间隙、安装方便。
应用场合:低速、轻载或间歇性工作的机器中。
三、止推式滑动轴承:多环式结构,可承受双向轴向载荷。
第三节滑动轴承的失效形式及常用材料一、失效形式1、磨粒磨损:硬颗粒对轴颈和轴承表面起研磨作用。
2、刮伤:硬颗粒划出伤痕。
3、胶合:轴承温度过高,载荷过大,油膜破裂或供油不足时,轴颈和轴承相对运动表面材料发生粘附和迁移,从而造成轴承损坏。
稳健设计理论在液体动压滑动轴承中的应用
滑动轴承是各种传动装置中广泛采用的支承件,特别是在高速运转机械中,为了减小摩擦,提高传动效率,要求轴承与轴颈间脱离接触并具有足够的油膜厚度,以形成液体间的摩擦状态。
在滑动轴承设计中,只有当轴承尺寸、轴承载荷、相对运动速度、润滑油的粘度、轴承间隙以及表面粗糙度之间满足一定关系时,才能实现液体摩擦。
任一参数取值不当,将出现非液体摩擦状态,导致液体摩擦的失效。
以上参数的优化设计对轴承的使用性能及寿命有十分重要的作用。
通常,在设计中,往往对轴承的各设计参数和使用条件提出更高要求。
轴承的设计参数或误差对轴承的性能的影响是非线性的,在不同的设计方案中,同样的误差程度,所产生的性能波动不尽相同。
稳健设计就是找到一种设计方案,使得液体动压轴承的性能对误差不十分敏感,同时达到较宽松的加工经济精度而降低成本的目的。
本文对某液体动压滑动轴承进行稳健设计,建立相应的数学模型,并求得优化的设计方案。
1滑动轴承的工程分析
下面是径向动压滑动轴承的一组计算公式。
1.最小油膜厚度h min
h min=C-e=C(1-ε)=rψ(1-ε)(1)
式中C=R-r——半径间隙,R轴承孔半径;r轴颈半径;
ε=e/C——偏心率;e为偏心距;
ψ=C/r——相对间隙,常取ψ=(0.6-1)×10-3(v)1/4,
v 为轴颈表面的线速(m/s )
设计时,最小油膜厚度h min 必须满足:
h min /(R z1+R z2)≥2-3[1](2)
式中R z1、R z2为轴颈和轴承的表面粗糙度。
2.轴承的特性系数(索氏系数)
S=μn /(p ψ2)(3)
式中μ——润滑油在轴承平均工作温度下的动力粘度(Pa ·s );
n ——轴颈的转速(r/s );p ——平均压强(N/m 2)
用来检验轴承能否实现液体润滑。
ε值可按下面简化式求解。
A ε2+E ε+C=0(4)
其中A=2.31(B/d)-2,E=-(2.052A +1),C=1+1.052A -6.4088S.
上式中d ——轴径的直径(m );B ——轴承的宽度(m )
通常ε选在0.5-0.95之间,超出0-1间的值,均非ε的解[1]。
3.轴承的温升
油的平均温度t m 必须加以控制,否则,润滑油的粘度会降低,从而破坏轴承
的液体润滑。
油的温升为进出油的温度差,计算式为:
)5()(v K vBd Q c f p
T S ψπψρψ
+=∆
式中f —摩擦系数;c —润滑油的比热,通常取1680-2100J/kg ℃;ρ—润滑油的密度,通常取850-900kg/m 3;Q —耗油量(m 3/s),通常为承载区内流出的端泄量;K S —为轴承体的散热系数[1,2]
上式中的(f/ψ)、(Q/ψνBd )值,如ε=0.5-0.95可按。