平抛运动和圆周运动
- 格式:doc
- 大小:340.50 KB
- 文档页数:23
2021届高考复习之核心考点系列之物理考点总动员【名师精品】考点03平抛运动与圆周运动【命题意图】考查平抛运动规律,摩擦力、向心力的来源、圆周运动的规律以及离心运动等知识点,意在考查考生对圆周运动知识的理解能力和综合分析能力。
【专题定位】本专题解决的是物体(或带电体)在力的作用下的曲线运动的问题.高考对本专题的考查以运动的组合为线索,进而从力和能的角度进行命题,题目情景新,过程复杂,具有一定的综合性.考查的主要内容有:①曲线运动的条件和运动的合成与分解;②平抛运动规律;③圆周运动规律;④平抛运动与圆周运动的多过程组合问题;⑤应用万有引力定律解决天体运动问题;⑥带电粒子在电场中的类平抛运动问题;⑦带电粒子在磁场内的匀速圆周运动问题;⑧带电粒子在简单组合场内的运动问题等.用到的主要物理思想和方法有:运动的合成与分解思想、应用临界条件处理临界问题的方法、建立类平抛运动模型方法、等效代替的思想方法等。
【考试方向】高考对平抛运动与圆周运动知识的考查,命题多集中在考查平抛运动与圆周运动规律的应用及与生活、生产相联系的命题,多涉及有关物理量的临界和极限状态求解或考查有关平抛运动与圆周运动自身固有的特征物理量。
竖直平面内的圆周运动结合能量知识命题,匀速圆周运动结合磁场相关知识命题是考试重点,历年均有相关选择题或计算题出现。
单独命题常以选择题的形式出现;与牛顿运动定律、功能关系、电磁学知识相综合常以计算题的形式出现。
平抛运动的规律及其研究方法、近年考试的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题。
圆周运动的角速度、线速度及加速度是近年高考的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题,这样的题目往往难度较大。
【应考策略】熟练掌握平抛、圆周运动的规律,对平抛运动和圆周运动的组合问题,要善于由转折点的速度进行突破;熟悉解决天体运动问题的两条思路;灵活应用运动的合成与分解的思想,解决带电粒子在电场中的类平抛运动问题;对带电粒子在磁场内的匀速圆周运动问题,掌握找圆心、求半径的方法。
2021年高考物理【热点·重点·难点】专练(新高考专用)重难点04 平抛运动与圆周运动【知识梳理】考点一 平抛运动基本规律的理解 1.飞行时间:由ght 2=知,时间取决于下落高度h ,与初速度v 0无关. 2.水平射程:x =v 0t =v 0 gh 2,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3.落地速度:gh v v v v x y x 2222+=+=,以θ表示落地速度与x 轴正方向的夹角,有2tan v ghv v xy ==θ,所以落地速度也只与初速度v 0和下落高度h 有关. 4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt ;相同,方向恒为竖直向下,如图所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ. 【重点归纳】1.在研究平抛运动问题时,根据运动效果的等效性,利用运动分解的方法,将其转化为我们所熟悉的两个方向上的直线运动,即水平方向的匀速直线运动和竖直方向的自由落体运动.再运用运动合成的方法求出平抛运动的规律.这种处理问题的方法可以变曲线运动为直线运动,变复杂运动为简单运动,是处理曲线运动问题的一种重要的思想方法. 2.常见平抛运动模型的运动时间的计算方法 (1)在水平地面上空h 处平抛: 由221gt h =知ght 2=,即t 由高度h 决定. (2)在半圆内的平抛运动(如图),由半径和几何关系制约时间t :221gt h =t v h R R 022=-+联立两方程可求t . (3)斜面上的平抛问题: ①顺着斜面平抛(如图)方法:分解位移 x =v 0t221gt y =x y=θtan可求得gv t θtan 20=②对着斜面平抛(如图)方法:分解速度 v x =v 0 v y =gttan v gt v v xy ==θ 可求得gv t θtan 0=(4)对着竖直墙壁平抛(如图)水平初速度v 0不同时,虽然落点不同,但水平位移相同.vd t =3.求解多体平抛问题的三点注意(1)若两物体同时从同一高度(或同一点)抛出,则两物体始终在同一高度,二者间距只取决于两物体的水平分运动.(2)若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同,二者间距由两物体的水平分运动和竖直高度差决定.(3)若两物体从同一点先后抛出,两物体竖直高度差随时间均匀增大,二者间距取决于两物体的水平分运动和竖直分运动.考点二 圆周运动中的运动学分析描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:1.传动装置(1)高中阶段所接触的传动主要有:①皮带传动(线速度大小相等);②同轴传动(角速度相等);③齿轮传动(线速度大小相等);④摩擦传动(线速度大小相等).(2)传动装置的特点:(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同;(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等.2.圆周运动各物理量间的关系(1)对公式v =ωr 的理解 当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比.(2)对a =rv 2=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比. 考点三 竖直平面内圆周运动的绳模型与杆模型问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”. 2.绳、杆模型涉及的临界问题均是没有支撑的小球均是有支撑的小球竖直面内圆周运动的求解思路(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同. (2)确定临界点:gr v =临,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N表现为支持力还是拉力的临界点.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向. (5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程. 【限时检测】(建议用时:30分钟) 一、单项选择题:本题共4小题。
曲线运动按照考纲的要求,本章内容可以分成三部分,即:运动的合成和分解、平抛运动;圆周运动;其中重点是平抛运动的分解方法及运动规律、匀速圆周运动的线速度、角速度、向心加速度的概念并记住相应的关系式。
难点是牛顿定律处理圆周运动问题。
运动的合成与分解 平抛物体的运动【学情分析】学生已经具备较好的物理实验能力、分析问题能力、归纳实验现象的能力。
学生刚学习过直线运动规律,对直线运动的分析方法记忆犹新;并在上一节中刚学过运动合成与分解的知识,对这一分析曲线运动的方法并不陌生,这为本节课在方法上铺平了道路。
对于小船过河的这一类运动的合成与分解类知识体系规律性的东西学生再次复习应该会掌握的差不多。
【教材(考纲)分析】平抛运动是本章的重点内容,是对运动的合成与分解知识具体问题的应用,对后面斜抛等曲线运动的学习及现实生活中实际问题的解决都有影响。
前面学生通过运动的合成与分解学习已有初步的理论基础,教材通过简单的实验演示,引导学生认识平抛运动的初步特征。
运用实验探究与理论相结合的方法,通过学生自主学习,掌握平抛运动的特点及规律。
所以在本节教学中,要注意突出学生活动,给学生充分的时间探究,讨论。
【三维目标】1.明确形成曲线运动的条件(落实到平抛运动和匀速圆周运动);2.理解和运动、分运动,能够运用平行四边形定则处理运动的合成与分解问题。
3.掌握平抛运动的分解方法及运动规律4.通过例题的分析,探究解决有关平抛运动实际问题的基本思路和方法,并注意到相关物理知识的综合运用,以提高学生的综合能力.【教学重点】:平抛运动的特点及其规律【教学难点】:运动的合成与分解【教学方法】:讲练结合,计算机辅助教学【教学过程】:一、曲线运动1.曲线运动的条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。
当物体受到的合力为恒力(大小恒定、方向不变)时,物体作匀变速曲线运动,如平抛运动。
当物体受到的合力大小恒定而方向总跟速度的方向垂直,则物体将做匀速率圆周运动.(这里的合力可以是万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、弹力——绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力——锥摆、静摩擦力——水平转盘上的物体等.)如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直.2.曲线运动的特点:曲线运动的速度方向一定改变,所以是变速运动。
第4讲微专题——平抛运动与圆周运动的综合问题核心考点·分类突破——析考点 讲透练足此类问题往往是物体先做水平面内的匀速圆周运动,后做平抛运动,有时还要结合能量关系分析求解,多以选择题或计算题形式考查。
2.解题关键(1)明确水平面内匀速圆周运动的向心力来源,根据牛顿第二定律和向心力公式列方程。
(2)平抛运动一般是沿水平方向和竖直方向分解速度或位移。
(3)速度是联系前后两个过程的关键物理量,前一个过程的末速度是后一个过程的初速度。
[典题1] (2016·厦门质检)如图所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动。
现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m 。
设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2。
求:(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ。
[解析] (1)设物块做平抛运动所用时间为t ,竖直方向有H =12gt 2①水平方向有s =v 0t ②联立①②两式得v 0=s g2H=1 m/s ③(2)物块离开转台时,最大静摩擦力提供向心力,有μmg =m v 20R④联立③④得μ=v 20gR=0.2⑤[答案] (1)1 m/s (2)0.21.小明撑一雨伞站在水平地面上,伞面边缘点所围圆形的半径为R ,现将雨伞绕竖直伞杆以角速度ω匀速旋转,伞边缘上的水滴落到地面,落点形成一半径为r 的圆形,当地重力加速度的大小为g ,根据以上数据可推知伞边缘距地面的高度应为( )A.g (r 2-R 2)2ω2R 2B.g (r 2-R 2)2ω2r 2C.g (r -R )22ω2R 2D.gr 22ω2R2解析:选A 设伞边缘距地面的高度为h ,伞边缘水滴的速度v=ωR ,水滴下落时间t =2h g ,水滴平抛的水平位移x =v t =ωR 2hg,如图所示。
四、平抛运动当物体初速度水平且仅受重力作用时的运动,被称为平抛运动。
其轨迹为抛物线,性质为匀变速运动。
平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体运动这两个分运动。
广义地说,当物体所受的合外力恒定且与初速度垂直时,做类平抛运动。
1、 (合成与分解的角度)平抛运动基本规律① 速度:0v v x =,gt v y = 合速度 22yx v v v += 方向 :tan θ=oxy v gt v v =②位移x =v o t y =221gt 合位移大小:s =22y x + 方向:tan α=t v g x y o ⋅=2 ③时间由y =221gt 得t =x y 2(由下落的高度y 决定) 竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。
④一个有用的推论平抛物体任意时刻瞬时时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。
证明:设时间t 内物体的水平位移为s ,竖直位移为h ,则末速度的水平分量v x =v 0=s/t ,而竖直分量v y =2h/t , s hv v 2tan x y ==α,所以有2tan s h s =='α 2、平抛运动是匀变速曲线运动3、平抛中能量守恒注意:两个分解(位移和速度)和两个物理量(角度和时间)4.应用举例【例5】 已知网高H ,半场长L ,扣球点高h ,扣球点离网水平距离s 、求:水平扣球速度v 的取值范围。
解析:假设运动员用速度v max 扣球时,球刚好不会出界,用速度v min 扣球时,球刚好不触网,从图中数量关系可得:()hgs L g h s L v 2)(2/max +=+=; )(2)(2/min H h gsg H h s v -=-= hH s LvOAθ v v 0v yA OB D C实际扣球速度应在这两个值之间。
例6、如图8在倾角为θ的斜面顶端A 处以速度V 0水平抛出一小球,落在斜面上的某一点B 处,设空气阻力不计,求(1)小球从A 运动到B 处所需的时间;(2)从抛出开始计时,经过多长时间小球离斜面的距离达到最大?分析与解:(1)小球做平抛运动,同时受到斜面体的限制,设从小球从A 运动到B 处所需的时间为t,则: 水平位移为x=V 0t 竖直位移为y=221gt 数学关系得到:gV t t V gt θθtan 2,tan )(21002== (2)从抛出开始计时,经过t 1时间小球离斜面的距离达到最大,当小球的速度与斜面平行时,小球离斜面的距离达到最大。
平抛运动、圆周运动考纲要求:运动的合成与分解Ⅱ抛体运动Ⅱ匀速圆周运动、角速度、线速度、向心加速度Ⅰ匀速圆周运动的向心力Ⅱ离心现象Ⅰ知识回扣:一、曲线运动1、 曲线运动速度方向:曲线运动中速度的方向是时刻改变的,质点在某一点的瞬时速度的方向在曲线的这一点的 上。
2、 曲线运动的特点:速度方向时刻在变,因此曲线运动一定是 运动;3、 曲线运动的条件和轨迹:合外力方向与速度方向 同一条直线上,且合力总是指向曲线的凹侧。
二、运动的合成与分解1.合运动与分运动具有 性、 性和 性;2.合运动与分运动的关系(1)两个匀速直线运动的合运动一定是匀速直线运动(2)一个匀速直线运动和一个匀变速直线运动的合运动一定是匀变速运动。
(当两者共线时为匀变速直线运动,不共线时为匀变速曲线运动)(3)两个匀变速直线运动的合运动一定是匀变速运动。
(当合初速度方向与合加速度方向共线上时为匀变速直线运动,不共线时为匀变速曲线运动)3.小船渡河问题:(1)船静水速度大于水流速度时,渡河最短距离垂直河岸且等于河宽(2)船静水速度小于水流速度时,渡河最短距离不垂直河岸且大于河宽(3)船头垂直河岸时,船渡河时间最短;水流的变化不会影响渡河最短时间。
4.绳端速度问题:将实际运动沿 方向和 绳子的方向分解三、抛体运动:(是匀变速运动)1.竖直上抛运动(是匀变速直线运动)(1)解答竖直上抛运动问题有分步和整体两种方法可以把竖直上抛分解为上升和下落两个阶段,也可以把上升和下落看做一个完整的匀变速直线运动。
(2)竖直上抛运动上升过程和下落过程具有对称性(3)竖直上抛运动上升的最大高度为v 02/2g ,所需时间为v 0/g2.平抛运动(是匀变速曲线运动)(1)平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动(2)平抛运动的落地时间与初速度大小无关,只与抛出点的高度有关(t=gh 2) (3) 平抛运动落地时的水平位移与抛出点的高度和初速度有关3.斜抛运动(是匀变速运动)(1)斜抛运动可以分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动4.实验(研究平抛运动)(1)抛出点已知:用平抛运动规律计算(x=v0t ,y=gt2/2)(2)抛出点未知:若水平方向等距,则竖直方向可用相邻等时间间隔公式计算Δs=gT2第二章圆周运动一、匀速圆周运动(是变速运动)1.线速度:匀速圆周运动线速度大小不变方向不断改变(v=s/t =2πr/T)2.角速度:匀速圆周运动角速度不变(ω=φ/t =2π/T)3.周期T,转速n(频率f):n=1/T4.关系式:v=rω =2πr/T =2πrn二、向心力1.向心力特点:向心力方向与线速度方向垂直(指向圆心),只改变线速度方向不改变大小2.向心力大小:F=mv2/r =mrω23.向心加速度:表示速度方向变化的快慢(a= v2/r =rω2)4.向心力应用:物体作匀速圆周运动则合外力必为向心力(F合=F向=mv2/r)(1)水平面内:物体在竖直方向受力平衡:N=mg水平方向的合外力提供向心力:F=mv2/r =mrω2三、离心现象做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动的向心力的情况下,就会做逐渐远离圆心的运动方法指南:本专题解决的是物体(或带电体)的受力和在力的作用下的曲线运动问题.高考对本专题的考查形式以运动组合为线索进而从力和能的角度进行命题,题目情景新,过程复杂,具有一定的综合性.考查的主要内容有:①曲线运动的条件和运动的合成与分解;②平抛运动规律;③圆周运动的规律;④平抛运动与圆周运动的多过程组合问题;⑤应用万有引力定律解决天体运动问题;⑥带电粒子在电场中的类平抛运动问题;⑦带电粒子在磁场内的匀速圆周运动问题;⑧带电粒子在简单组合场内的运动问题等.用到的主要物理思想和方法有:运动的合成与分解思想、应用临界条件处理临界问题的方法、建立类平抛运动模型方法、等效的思想方法等.。
平抛运动与圆周运动的组合问题1、如图所示,有一个可视为质点的质量为m =1 kg 的小物块,从光滑平台上的A 点以v 0=3 m/s 的初速度水平抛出,到达C 点时,恰好沿C 点的切线方向进入固定在水平地 面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D 点的质量为M =3 kg 的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R =0.5 m ,C 点和圆弧的圆心连线与竖直方向的夹角θ=53°,不计空气阻力,取重力加速度g =10 m/s 2.求:(1)A 、C 两点的高度差;(2)小物块刚要到达圆弧轨道末端D 点时对轨道的压力;(3)要使小物块不滑出长木板,木板的最小长度.(sin 53°=0.8,cos 53°=0.6) 解析 (1)小物块在C 点时的速度大小为v C =v 0cos 53°=5 m/s ,竖直分量为v Cy =4 m/s下落高度h = =0.8 m(2)小物块由C 到D 的过程中,由动能定理得mgR (1-cos 53°)=12m v 2D -12m v 2C解得v D =29 m/s小球在D 点时由牛顿第二定律得F N -mg =m v D 2R代入数据解得F N =68 N由牛顿第三定律得F N ′=F N =68 N ,方向竖直向下(3)设小物块刚好滑到木板右端时与木板达到共同速度,大小为v ,小物块在木板上滑行 的过程中,小物块与长木板的加速度大小分别为 a 1=μg =3 m/s 2,a 2=μmg M=1 m/s 2速度分别为v =v D -a 1t ,v =a 2t 对物块和木板系统,由能量守恒定律得μmgL =12m v 2D -12(m +M )v 2解得L =3.625 m ,即木板的长度至少是3.625 m 答案 (1)0.8 m (2)68 N (3)3.625 m方法点拨程序法在解题中的应用22cy g v所谓“程序法”是指根据题意按先后顺序分析发生的运动过程,并明确每一过程的受力情况、运动性质、满足的规律等等,还要注意前后过程的衔接点是具有相同的速度.2、在我国南方农村地区有一种简易水轮机,如图所示,从悬崖上流出的水可看做连续做平抛运动的物体,水流轨道与下边放置的轮子边缘相切,水冲击轮子边缘上安装的挡水板,可使轮子连续转动,输出动力.当该系统工作稳定时,可近似认为水的末速度与轮子边缘的线速度相同.设水的流出点比轮轴高h=5.6 m,轮子半径R=1 m.调整轮轴O的位置,使水流与轮边缘切点对应的半径与水平线成θ=37°角.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)问:(1)水流的初速度v0大小为多少?(2)若不计挡水板的大小,则轮子转动的角速度为多少?答案(1)7.5 m/s(2)12.5 rad/s解析(1)水流做平抛运动,有h-R sin 37°=1 2gt2解得t=2(h-R sin 37°)g=1 s所以v y=gt=10 m/s,由图可知:v0=v y tan 37°=7.5 m/s.(2)由图可知:v=v0sin 37°=12.5 m/s,根据ω=vR可得ω=12.5 rad/s. 3、解析 (1)在C 点:mg =m RvC 2(2分)所以v C =5 m/s (1分)(2)由C 点到D 点过程:mg (2R -2r )=12m v 2D -12m v 2C (2分)在D 点:mg +F N =m v D 2r (2分)所以F N =333.3 N (1分) 由牛顿第三定律知小滑车对轨道的压力为333.3 N. (1分) (3)小滑车要能安全通过圆形轨道,在平台上速度至少为v 1,则 12m v 2C +mg (2R )=12m v 21 (2分) 小滑车要能落到气垫上,在平台上速度至少为v 2,则 h =12gt 2 (1分) x =v 2t (1分)解得v 2>v 1,所以只要mgH =12m v 22,即可满足题意.解得H =7.2 m (3分) 答案 (1)5 m/s (2)333.3 N (3)7.2 m技巧点拨1.对于多过程问题首先要搞清各运动过程的特点,然后选用相应规律.2.要特别注意运用有关规律建立两运动之间的联系,把转折点的速度作为分析重点. 4、水上滑梯可简化成如图所示的模型,斜槽AB 和光滑圆弧槽BC 平滑连接.斜槽AB 的竖直高度差H =6.0 m ,倾角 θ=37°;圆弧槽BC 的半径R =3.0 m ,末端C 点的切线水平;C 点与水面的距离h =0.80 m .人与AB 间的动摩擦因数μ=0.2,取 重力加速度g =10 m/s 2,cos 37°=0.8,sin 37°=0.6.一个质量m=30 kg 的小朋友从滑梯顶端A 点无初速度地自由滑下,不计空 气阻力.求:(1)小朋友沿斜槽AB 下滑时加速度a 的大小;(2)小朋友滑到C 点时速度v 的大小及滑到C 点时受到槽面的支持力F C 的大小; (3)在从C 点滑出至落到水面的过程中,小朋友在水平方向的位移x 的大小. 答案 (1)4.4 m/s 2 (2)10 m/s 1 300 N (3)4 m解析 (1)小朋友沿AB 下滑时,受力情况如图所示,根据牛 顿第二定律得:mg sin θ-F f =ma ① 又F f =μF N ② F N =mg cos θ ③ 联立①②③式解得:a =4.4 m/s 2 ④ (2)小朋友从A 滑到C 的过程中,根据动能定理得:mgH -F f ·H sin θ+mgR (1-cos θ)=12m v 2-0 ⑤联立②③⑤式解得:v =10 m/s ⑥根据牛顿第二定律有:F C -mg =m v 2R ⑦联立⑥⑦式解得:F C =1 300 N . ⑧(3)在从C 点滑出至落到水面的过程中,小朋友做平抛运动,设此过程经历的时间为t ,则:h =12gt 2 ⑨x =v t ⑩ 联立⑥⑨⑩式解得:x =4 m.5、(2012·福建理综·20)如图所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2.求:(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)0.2解析 (1)物块做平抛运动,在竖直方向上有H =12gt 2 ①在水平方向上有s =v 0t ②由①②式解得v 0=s g2H代入数据得v 0=1 m/s(2)物块离开转台时,由最大静摩擦力提供向心力,有f m =m v 0 2R ③f m =μN =μmg ④由③④式得μ=v 0 2gR代入数据得μ=0.26、 (2010·重庆理综·24)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面 内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水 平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力.(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?答案 (1)2gd 52gd (2)113mg (3)d 2 2 33d 解析 (1)设绳断后球飞行的时间为t ,由平抛运动规律有竖直方向:14d =12gt 2水平方向:d =v 1t 解得v 1=2gd由机械能守恒定律有12m v 32=12m v 21+mg (d -34d )解得v 2= 52gd(2)设绳能承受的最大拉力大小为F max ,这也是球受到绳的最大拉力的大小.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F max -mg =m v 1 2R得F max =113mg(3)设绳长为l ,绳断时球的速度大小为v 3.绳承受的最大拉力不变,有F max -mg =m v 3 2l,解得v 3= 83gl绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1.由平抛运动规律有d -l =12gt 21,x =v 3t 1得x =4 l (d -l )3,当l =d 2时,x 有最大值x max =233d .7、如图所示,一质量为2m 的小球套在一“”滑杆上,小球与滑杆的动摩擦因数为μ=0.5,BC 段为半径为R 的半圆,静止于A 处的小球在大小为F =2mg ,方向与水平面成37°角的拉力F 作用下沿杆运动,到达B 点时立刻撤去F ,小球沿圆弧向上冲并越过C 点后落在D 点(图中未画出),已知D 点到B 点的距离为R ,且AB 的距离为s =10R .试求:(1)小球在C 点对滑杆的压力; (2)小球在B 点的速度大小;(3)BC 过程小球克服摩擦力所做的功. 答案 (1)32mg ,方向竖直向下 (2)23gR (3)31mgR4解析 (1)小球越过C 点后做平抛运动,有竖直方向:2R =12gt 2 ①水平方向:R =v C t ② 解①②得v C =gR 2在C 点对小球由牛顿第二定律有:2mg -F N C =2m v C 2R解得F N C =3mg2由牛顿第三定律有,小球在C 点对滑杆的压力F N C ′=F N C =3mg2,方向竖直向下(2)在A 点对小球受力分析有:F N +F sin 37°=2mg ③ 小球从A 到B 由动能定理有:F cos 37°·s -μF N ·s =12·2m v 2B ④解③④得v B =23gR(3)BC 过程对小球由动能定理有:-2mg ·2R -W f =12×2m v 2C -12×2m v 2B解得W f =31mgR48、如图所示,质量为m =1 kg 的小物块由静止轻轻放在水平匀速运动的传送带上,从A 点随传送带运动到水平部分的最右端B 点,经半圆轨道C 点沿圆弧切线进入竖直光滑的半圆轨道,恰能做圆周运动.C 点在B 点的正上方,D 点为轨道的最低点.小物块离开D 点后,做平抛运动,恰好垂直于倾斜挡板打在挡板跟水平面相交的E 点.已知半圆轨道的半径R =0.9 m ,D 点距水平面的高度h =0.75 m ,取g =10 m/s 2,试求:(1)摩擦力对小物块做的功;(2)小物块经过D 点时对轨道压力的大小; (3)倾斜挡板与水平面间的夹角θ.答案 (1)4.5 J (2)60 N ,方向竖直向下 (3)60°解析 (1)设小物块经过C 点时的速度大小为v 1,因为经过C 点恰能做圆周运动,所以,由牛顿第二定律得:mg =m v 1 2R解得:v 1=3 m/s小物块由A 到B 的过程中,设摩擦力对小物块做的功为W ,由动能定理得:W =12m v 21解得:W =4.5 J(2)设小物块经过D 点时的速度大小为v 2,对从C 点运动到D 点的过程,由机械能守恒 定律得: 12m v 21+mg ·2R =12m v 22 小物块经过D 点时,设轨道对它的支持力大小为F N ,由牛顿第二定律得:F N -mg =m v 2 2R联立解得:F N =60 N由牛顿第三定律可知,小物块经过D 点时对轨道的压力大小为: F N ′=F N =60 N ,方向竖直向下(3)小物块离开D 点后做平抛运动,设经时间t 打在E 点,由h =12gt 2得:t =1510s 设小物块打在E 点时速度的水平、竖直分量分别为v x 、v y ,速度跟竖直方向的夹角为α, 则: v x =v 2 v y =gt tan α=v x v y解得:tan α=3 所以:α=60°由几何关系得:θ=α=60°.9、 水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,一小球以初速度v 0沿直轨道向右运动.如图3所示,小球进入圆 形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的 d 点,则 ( ) A .小球到达c 点的速度为gR B .小球到达b 点时对轨道的压力为5mg C .小球在直轨道上的落点d 与b 点距离为2RD .小球从c 点落到d 点所需时间为2 Rg答案 ACD解析 小球在c 点时由牛顿第二定律得:mg =m v c 2R ,v c =gR ,A 项正确;小球由b 到c 过程中,由机械能守恒定律得: 12m v 2B =2mgR +12m v 2c 小球在b 点,由牛顿第二定律得:F N -mg =m v b 2R ,联立解得F N =6mg ,B 项错误;小球由c 点平抛,在平抛运动过程中由运动学公式得:x =v c t,2R =12gt 2.解得t =2 Rg ,x =2R ,C 、D 项正确.10、 如图所示,P 是水平面上的圆弧凹槽.从高台边B 点以某速度v 0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左 端A 点沿圆弧切线方向进入轨道.O 是圆弧的圆心,θ1是OA 与 竖直方向的夹角,θ2是BA 与竖直方向的夹角.则 ( )A .tan θ2tan θ1=2 B .tan θ1·tan θ2=2C .1tan θ1·tan θ2=2D .tan θ1tan θ2=2答案 B解析 由题意可知:tan θ1=v y v x =gt v 0,tan θ2=x y =v 0t 12gt 2=2v 0gt,所以tan θ1·tan θ2=2,故B正确.11、如图所示,在水平匀速运动的传送带的左端(P 点),轻放一质量为m =1 kg 的物块,物块随传送带运动到A 点后水平抛出,物块恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆弧轨道下滑.B 、D 为圆弧的两端点,其连线水平.已知圆弧半径R =1.0 m ,圆弧对应的圆心角θ=106°,轨道最低点为C ,A 点距水平面的高度h =0.8 m(g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:(1)物块离开A 点时水平初速度的大小; (2)物块经过C 点时对轨道压力的大小;(3)设物块与传送带间的动摩擦因数为0.3,传送带的速度为5 m/s ,求P A 间的距离. 答案 (1)3 m/s (2)43 N (3)1.5 m解析 (1)物块由A 到B 在竖直方向有v 2y =2gh v y =4 m/s在B 点:tan θ2=v yv A ,v A =3 m/s(2)物块从B 到C 由功能关系得mgR (1-cos θ2)=12m v 2C -12m v 2Bv B =v A 2+v y 2=5 m/s 解得v 2C =33 m 2/s 2 在C 点:F N -mg =m v C 2R由牛顿第三定律知,物块经过C 点时对轨道压力的大小为F N ′=F N =43 N(3)因物块到达A 点时的速度为3 m/s ,小于传送带速度,故物块在传送带上一直做匀加速直线运动 μmg =ma , a =3 m/s 2P A 间的距离x P A =v A 22a=1.5 m.12、如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角θ= 37°,另一端点C 为轨道的最低点.C 点右侧的水平路面 上紧挨C 点放置一木板,木板质量M =1 kg ,上表面与C 点 等高.质量m =1 kg 的物块(可视为质点)从空中A 点以v 0=1.2 m/s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道. 已知物块与木板间的动摩擦因数μ1=0.2,木板与路面间的动摩擦因数μ2=0.05,sin 37° =0.6,cos 37°=0.8,取g =10 m/s 2.试求: (1)物块经过轨道上的C 点时对轨道的压力;(2)设木板受到的最大静摩擦力跟滑动摩擦力相等,则木板至少多长才能使物块不从木板上滑下?答案 (1)46 N (2)6 m解析 (1)设物块经过B 点时的速度为v B ,则 v B sin 37°=v 0设物块经过C 点的速度为v C ,由机械能守恒得: 12m v 2B +mg (R +R sin 37°)=12m v 2C 物块经过C 点时,设轨道对物块的支持力为F C ,根据牛顿第二定律得:F C -mg =m v C 2R联立解得:F C =46 N由牛顿第三定律可知,物块经过圆轨道上的C 点时对轨道的压力为46 N(2)物块在木板上滑动时,设物块和木板的加速度大小分别为a 1、a 2,得:μ1mg =ma 1 μ1mg -μ2(M +m )g =Ma 2设物块和木板经过时间t 达到共同速度v ,其位移分别为x 1、x 2,则:对物块有: v C -a 1t =v v 2-v 2C =-2a 1x 1 对木板有:a 2t =v v 2=2a 2x 2设木板长度至少为L ,由题意得:L ≥x 1-x 2 联立解得:L ≥6 m即木板长度至少6 m 才能使物块不从木板上滑下.13、 某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图7所示,赛车从起点A 出发,沿水平直线轨道运动L 后,由B 点进入 半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直 轨道上运动到C 点,并能越过壕沟.已知赛车质量m =0.1 kg , 通电后以额定功率P =1.5 W 工作,进入竖直轨道前受到的阻力 恒为0.3 N ,随后在运动中受到的阻力均可不计.图中L =10.00 m , R =0.32 m ,h =1.25 m ,x =1.50 m .问:要使赛车完成比赛,电动 机至少工作多长时间?(取g =10 m/s 2)答案 2.53 s解析 设赛车越过壕沟需要的最小速度为v 1,由平抛运动的规律x =v 1t ,h =12gt 2解得v 1=x g2h=3 m/s设赛车恰好越过圆轨道,对应圆轨道最高点的速度为v 2,最低点速度为v 3,由牛顿运动定律及机械能守恒定律得mg =m v 22/R 12m v 23=12m v 22+mg (2R ) 解得v 3=5gR =4 m/s通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是v min =4 m/s 设电动机工作时间至少为t ,根据功能关系,有Pt -F f L =12m v 2m in ,由此解得t =2.53 s。
曲线运动一:曲线运动(1)基本知识1:定义:轨迹是曲线的运动2:条件:速度和合外力不在一条直线上3:速度的合成和分解运动的合成与分解:运动的合成与分解就是矢量的合成与分解,它涉及运动学中的位移、速度、加速度三个矢量的合成与分解。
两个互相垂直方向上的直线运动合成后可能是直线运动,也可能是曲线运动,反过来,两个方向的直线运动合成后可能是曲线,这就提供了研究曲线运动的途径——将曲线运动转化为直线运动进行研究。
运动的独立作用原理:如同力的独立作用原理一样,运动的合成与分解也是建立在各个方向分运动独立的基础上。
合运动与分运动的关系:①分运动具有独立性。
②分运动与合运动具有等时性。
③分运动与合运动具有等效性。
④合运动运动通常就是我们所观察到的实际运动。
(2)练习题1。
质点做曲线运动时()A.速度的大小一定在时刻变化 B.速度的方向一定在时刻变化C.它一定做变速运动 D.它可能是速率不变的运动2.下列叙述正确的是()A.物体在变力作用下不可能做曲线运动 B.物体在变力作用下不可能作直线运动C.物体在变力和恒力作用下都有可能作曲线运动 D.物体在变力和恒力作用下都有可能作直线运动3.某质点做曲线运动时()A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间内的位移大小总是大于路程C.在任意时刻质点受到的合力不可能为零 D.速度的方向与合力的方向必不在一直线上4.在下列说法中,不正确的是()A.物体在不垂直与速度方向的合力作用下,速度大小一定变化B.物体做曲线运动时,某点的加速度方向就是通过这一点曲线的切线方向C.物体受到变化的合力作用时,它的速度大小一定改变D.做曲线运动的物体,一定受到与速度不在同一直线上的外力作用5.下列关于运动状态与受力关系的说法中,正确的是()A.物体运动状态发生变化,物体受力情况一定发生变化 B.物体在恒力作用下的运动,一定是匀变速直线运动C.物体运动状态保持不变,说明物体受到的合力为零 D.物体在做曲线运动的过程中,受到的合力不可能是恒力6.做曲线运动的物体,在运动过程中,一定变化的物理量是()A.速率 B.速度 C.加速度 D.合力7.关于曲线运动,下列叙述中正确的是()A.物体作曲线运动时所受的合力一定是变力 B.变速运动一定是曲线运动C.当物体所受合力的方向与物体速度方向不在一条直线上,物体一定做曲线运动D.当物体做曲线运动时,所受的合力方向与物体的加速度方向一定不在一直线上9.关于曲线运动,下列说法正确的是()A.曲线运动可以是直线运动 B.曲线运动一定是变速运动C.曲线运动的速度大小和方向一定都在变化 D.曲线运动的方向是沿着曲线的10.做曲线运动的质点在其轨迹上某一点的加速度方向( )A.就在通过该点的曲线的切线方向上B.与通过该点的曲线切线垂直C.与质点在该点所受合外力方向相同D.与该点即时速度方向成一定夹角11.当物体的初速度υ0和所受的外力F分别满足下列(1)—(6)小题中所给定的条件时,物体的运动情况将会是A.静止B.匀速直线运动C.匀加速直线运动D.匀减速直线运动E.匀变速运动F.曲线运动(1)υ0=0,F=0( ) (2)υ0≠0,F≠0( )(3)υ0≠0,F≠0且恒定,方向相同( )(4)υ0≠0,F≠0且恒定,方向相反( ) (5)υ0≠0,F≠0且恒定,方向不在一条直线上( )(6)υ0≠0,F≠0不恒定,大小、方向都随着时间变化( )12:物体受到几个外力的作用而做匀速直线运动,如果突然撤掉其中的一个力,它可能做()A.匀速直线运动B.匀加速直线运动C.匀减速直线运动D.曲线运动13.关于运动的合成和分解,下述说法中正确的是[ ]A.合运动的速度大小等于分运动的速度大小之和B.物体的两个分运动若是直线运动,则它的合运动一定是直线运动C.合运动和分运动具有同时性D.若合运动是曲线运动,则其分运动中至少有一个是曲线运动14.某人以一定速率垂直河岸向对岸游去,当水流运动是匀速时,他所游过的路程、过河所用的时间与水速的关系是[A.水速大时,路程长,时间长B.水速大时,路程长,时间短C.水速大时,路程长,时间不变D.路程、时间与水速无关15:如图所示,物体在恒力F作用下沿曲线从A运动到B,这时,突然使它所受力反向,大小不变,即由F变为-F。
在此力的作用下,物体以后的运动情况,下列正确的是()A.物体不可能沿曲线Ba运动B.物体不可能沿直线Bb运动C.物体不可能沿曲线Bc运动D.物体不可能沿原曲线由B返回A运动分解1:如图5所示,湖中有一条小船,岸边的人用缆绳跨过一个定滑轮拉船靠岸,若绳子被以恒定的速度v拉动,绳子与水平方向成的角1度是α,船是否做匀加速直线运动?小船前进的瞬时速度多大?2:【例题2】一根绕过定滑轮的长绳吊起一重物B ,如图所示,设汽车和重物的速度的大小分别为B A v v ,,则( )A 、B A v v = B 、B A v v >C 、B A v v <D 、重物B 的速度逐渐增大小船渡河问题分析【例9】一条宽度为L 的河,水流速度为v s ,已知船在静水中的航速为v c ,那么,(1)怎样渡河时间最短?(2)若v s <v c 怎样渡河位移最小?(3)若v s >v c ,怎样渡河船漂下的距离最短?分析与解:(1)如图2甲所示,设船上头斜向上游与河岸成任意角θ,这时船速在垂直于河岸方向的速度分量V 1=V c sin θ,渡河所需时间为:θsin c V Lt =.可以看出:L 、V c 一定时,t 随sin θ增大而减小;当θ=900时,sin θ=1,所以,当船头与河岸垂直时,渡河时间最短,cV L t =min . (2)如图2乙所示,渡河的最小位移即河的宽度。
为了使渡河位移等于L ,必须使船的合速度V 的方向与河岸垂直。
这是船头应指向河的上游,并与河岸成一定的角度θ。
根据三角函数关系有:V c cos θ─V s =0.所以θ=arccosV s /V c ,因为0≤cos θ≤1,所以只有在V c >V s 时,船才有可能垂直于河岸横渡。
(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。
怎样才能使漂下的距离最短呢?如图2丙所示,设船头V c 与河岸成θ角,合速度V 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以V s 的矢尖为圆心,以V c 为半径画圆,当V 与圆相切时,α角最大,根据cos θ=V c /V s ,船2 图2甲图2乙头与河岸的夹角应为:θ=arccosV c /V s . 船漂的最短距离为:θθsin )cos (min c c s V LV V x -=. 此时渡河的最短位移为:L V VL s cs ==θcos . 思考:①小船渡河过程中参与了哪两种运动?这两种运动有何关系? ②过河的最短时间和最短位移分别决定于什么?例题:1:在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2(v 1>v 2)。
河岸宽度为d ,则战士想渡河救人,则摩托艇的最短距离为A .dv 2/2122v v - B .0C .dv 1/v 2D .dv 2/v 12.小船在200 m 宽的河中横渡,水流速度为2 m/s ,船在静水中的航速是4 m/s ,求:(1)当小船的船头始终正对对岸时,它将在何时、何地到达对岸? ⑵要使小船到达正对岸,应如何行驶?历时多长?二:平抛运动(1)基本知识 1:定义物体以一定的初水平方向抛出,如果物体仅受重力作用(受力特点),这样的运动叫做平抛运动。
2:运动特点平抛运动可看作水平方向的匀速直线运动以及竖直方向的自由落体运动的合运动。
水平方向和竖直方向的两个分运动既具有独立性,又具有等时性.a x =0……① a y =0……④水平方向 v x =v 0 ……② 竖直方向 v y =gt ……⑤x=v 0t ……③ y=½gt 2……⑥ ①平抛物体在时间t 内的位移S 可由③⑤两式推得s=()222021⎪⎭⎫ ⎝⎛+gt t v =224042t g v t +, ②位移的方向与水平方向的夹角α由下式决定tg α=y/x=½gt 2/v 0t=gt/2v 0③平抛物体经时间t 时的瞬时速度v t 可由②⑤两式推得v t =()220gt v +,④速度v t 的方向与水平方向的夹角β可由下式决定tg β=v y /v x =gt/v 0 ⑤平抛物体的轨迹方程可由③⑥两式通过消去时间t 而推得:y=202v g·x 2, 可见,平抛物体运动的轨迹是一条抛物线.⑥运动时间由高度决定,与v 0无关,所以t=g h /2,水平距离x =v 0t =v 0g h /2 ⑦Δt 时间内速度改变量相等,即△v =g Δt ,ΔV 方向是竖直向下的.说明平抛运动是匀变速曲线运动.3:轨迹:平抛物体的运动轨迹为一抛物线。
4:匀变速曲线运动平抛运动的物体,由于所受的合外力为恒力,所以平抛运动是匀变速曲线运动, 5:运动时间平抛运动是曲线运动 平抛运动的时间仅与抛出点的竖直高度有关; 6:水平位移物体落地的水平位移与时间(竖直高度)及水平初速度有关。
7:速度变化其速度变化的方向始终是竖直向下的。
和加速度(合外力)的方向总是一致的。
在任意相等的时间里,速度的变化量相等,方向也相同. 是加速度大小,方向不变的曲线运动平抛运动是匀变速曲线运动,故相等的时间内速度的变化量相等.由△v=gt ,速度的变化必沿竖直方向,如下图所示.2、处理平抛物体的运动时应注意:① 水平方向和竖直方向的两个分运动是相互独立的,其中每个分运动都不会因另一个分运动的存在而受到影响——即垂直不相干关系;② 水平方向和竖直方向的两个分运动具有等时性,运动时间由高度决定,与v 0无关;平抛运动重要推论平抛物体任意时刻瞬时时速度方向的反向延长线与初速度延长线的交点到抛出水平方向和竖直方向的位移之比,下列说法正确的是()A.1:2:3:4;1:4:9:16 B.1:3:5:7;1:1:1:1C.1:1:1:1;1:3:5:7 D.1:4:9:16;1:2:3:44:一物体从某高度以初速度v0水平抛出,落地时速度大小为v t,则它运动时间为()5、关于平抛运动,下列说法正确的是:( )A 、是匀速运动B 、是匀变速运动C 、是非匀变速运动D 、合力恒定6、小球在离地面h 处以初速度v 水平抛出,球从抛出到着地,速度变化量的大小和方向为:( )A 、gh v 22+方向竖直向下B 、gh 2方向竖直向下C 、gh v 22+方向斜向下D 、gh 2方向斜向下7、在水平匀速飞行的飞机上,相隔1s 落下物体A 和B ,在落地前,A 物体将 [ ]A.在B 物体之前B.在B 物体之后C.在B 物体正下方D.在B 物体前下方8.火车以2/1s m 的加速度在平直轨道上加速行驶,车厢中一乘客把手伸到窗外,从距地面2.5m 高处自由释放一物体,如不计空气阻力,则物体落地时与乘客的水平距离为(取2/10s m g =)A .0B .0.50mC .0.25mD .因不知火车当时的速度,故无法判断9:做平抛运动的物体( )A .每秒内速率的变化相等B .每秒内速度的变化相等C .水平飞行的距离只与初速度大小有关D .水平飞行的时间只与抛出点高度有关10.一个物体以初速度v0水平抛出,经t秒时,其速度竖直方向分量和v大小相等,t等于()。