第一讲 平抛运动和圆周运动
- 格式:ppt
- 大小:2.89 MB
- 文档页数:48
匀速圆周运动公式1.线速度:v (矢量)单位:米/秒(m/s )公式:v =t s ∆∆=ωr=T r π2=2 f r=2n r (或30nr π) 2.角速度:ω(矢量)单位:弧度/秒(rad/s )公式:ω=t ∆∆θ=r v =T π2=2 f =2n (或30n π)(转速n 前者单位为r/s 后者为r/min ) 3.向心加速度:n a (矢量)单位:米2/秒(m 2/s )公式:n a =t v ∆∆=rv 2=ω2r=224T r π=4π2fr=v ω 4.向心力:n F (矢量)单位:牛(N )公式:n F = m n a =m r v 2 =m ω2r=m 224T r π 5.周期:T (标量)单位:秒(s ) 周期与频率的关系:fT 1=6.频率:f (标量)单位:赫兹,简称:赫,符号:Hz7.转速:n (标量)单位:转/秒(r/s) 或 转/分(r/min)与频率的关系:f=n (转速单位为r/s )注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心。
(2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。
(3)氢原子核外电子绕核作匀速圆周运动的向心力是原子核对核外电子的库仑力。
平抛运动公式t ∆t g v ∆=∆v∆1.水平分运动: 匀速直线运动水平位移: x = 0v t 水平分速度:x v = 0v2.竖直分运动: 初速度为零的匀加速直线运动(即自由落体运动)竖直位移: y =21g t 2 竖直分速度:y v = g t gy v y 22=3.合速度:v = y x v v + tan θ =x yv v =0v gt 4.合位移:22y x l += tan α= x y =02v gt 即:tan θ=2 tan α速度方向延长线过水平位移重点x /25.飞行时间:g ht 2=6.水平射程: x =0v t =g hv 20其中:h 为下落高度7.速度改变量:任意相等时间间隔内的速度改变量相同,方向恒为竖直向下 lv。
2021年高考物理【热点·重点·难点】专练(新高考专用)重难点04 平抛运动与圆周运动【知识梳理】考点一 平抛运动基本规律的理解 1.飞行时间:由ght 2=知,时间取决于下落高度h ,与初速度v 0无关. 2.水平射程:x =v 0t =v 0 gh 2,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3.落地速度:gh v v v v x y x 2222+=+=,以θ表示落地速度与x 轴正方向的夹角,有2tan v ghv v xy ==θ,所以落地速度也只与初速度v 0和下落高度h 有关. 4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt ;相同,方向恒为竖直向下,如图所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ. 【重点归纳】1.在研究平抛运动问题时,根据运动效果的等效性,利用运动分解的方法,将其转化为我们所熟悉的两个方向上的直线运动,即水平方向的匀速直线运动和竖直方向的自由落体运动.再运用运动合成的方法求出平抛运动的规律.这种处理问题的方法可以变曲线运动为直线运动,变复杂运动为简单运动,是处理曲线运动问题的一种重要的思想方法. 2.常见平抛运动模型的运动时间的计算方法 (1)在水平地面上空h 处平抛: 由221gt h =知ght 2=,即t 由高度h 决定. (2)在半圆内的平抛运动(如图),由半径和几何关系制约时间t :221gt h =t v h R R 022=-+联立两方程可求t . (3)斜面上的平抛问题: ①顺着斜面平抛(如图)方法:分解位移 x =v 0t221gt y =x y=θtan可求得gv t θtan 20=②对着斜面平抛(如图)方法:分解速度 v x =v 0 v y =gttan v gt v v xy ==θ 可求得gv t θtan 0=(4)对着竖直墙壁平抛(如图)水平初速度v 0不同时,虽然落点不同,但水平位移相同.vd t =3.求解多体平抛问题的三点注意(1)若两物体同时从同一高度(或同一点)抛出,则两物体始终在同一高度,二者间距只取决于两物体的水平分运动.(2)若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同,二者间距由两物体的水平分运动和竖直高度差决定.(3)若两物体从同一点先后抛出,两物体竖直高度差随时间均匀增大,二者间距取决于两物体的水平分运动和竖直分运动.考点二 圆周运动中的运动学分析描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:1.传动装置(1)高中阶段所接触的传动主要有:①皮带传动(线速度大小相等);②同轴传动(角速度相等);③齿轮传动(线速度大小相等);④摩擦传动(线速度大小相等).(2)传动装置的特点:(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同;(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等.2.圆周运动各物理量间的关系(1)对公式v =ωr 的理解 当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比.(2)对a =rv 2=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比. 考点三 竖直平面内圆周运动的绳模型与杆模型问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”. 2.绳、杆模型涉及的临界问题均是没有支撑的小球均是有支撑的小球竖直面内圆周运动的求解思路(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同. (2)确定临界点:gr v =临,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N表现为支持力还是拉力的临界点.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向. (5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程. 【限时检测】(建议用时:30分钟) 一、单项选择题:本题共4小题。
曲线运动(平抛运动、圆周运动)曲线运动及其特点(1)物体作曲线运动的条件:运动质点所受的合外力(或加速度)的方向跟它的速度方向不在同一直线(2)曲线运动的特点:质点在某一点的速度方向,就是通过该点的曲线的切线方向。
质点的速度方向时刻在改变,所以曲线运动一定是变速运动。
(3)曲线运动的轨迹:做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合外力的大致方向,如平抛运动的轨迹向下弯曲,圆周运动的轨迹总向圆心弯曲等。
★★★平抛运动(1)特点:①具有水平方向的初速度;②只受重力作用,是加速度为重力加速度g的匀变速曲线运动。
(2)运动规律:平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动。
①建立直角坐标系(一般以抛出点为坐标原点O,以初速度vo方向为x轴正方向,竖直向下为y轴正方向);②由两个分运动规律来处理(如右图)。
★★★圆周运动(1)描述圆周运动的物理量①线速度:描述质点做圆周运动的快慢,大小v=s/t(s是t时间内通过弧长),方向为质点在圆弧某点的线速度方向沿圆弧该点的切线方向②角速度:描述质点绕圆心转动的快慢,大小ω=φ/t(单位rad/s),φ是连接质点和圆心的半径在t时间内转过的角度。
其方向在中学阶段不研究。
③周期T,频率f---------做圆周运动的物体运动一周所用的时间叫做周期。
做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数叫做频率。
④向心力:总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小。
大小[注意]向心力是根据力的效果命名的。
在分析做圆周运动的质点受力情况时,千万不可在物体受力之外再添加一个向心力。
(2)匀速圆周运动:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的,是速度大小不变而速度方向时刻在变的变速曲线运动。
(3)变速圆周运动:速度大小方向都发生变化,不仅存在着向心加速度(改变速度的方向),而且还存在着切向加速度(方向沿着轨道的切线方向,用来改变速度的大小)。
四、平抛运动当物体初速度水平且仅受重力作用时的运动,被称为平抛运动。
其轨迹为抛物线,性质为匀变速运动。
平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体运动这两个分运动。
广义地说,当物体所受的合外力恒定且与初速度垂直时,做类平抛运动。
1、 (合成与分解的角度)平抛运动基本规律① 速度:0v v x =,gt v y = 合速度 22yx v v v += 方向 :tan θ=oxy v gt v v =②位移x =v o t y =221gt 合位移大小:s =22y x + 方向:tan α=t v g x y o ⋅=2 ③时间由y =221gt 得t =x y 2(由下落的高度y 决定) 竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。
④一个有用的推论平抛物体任意时刻瞬时时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。
证明:设时间t 内物体的水平位移为s ,竖直位移为h ,则末速度的水平分量v x =v 0=s/t ,而竖直分量v y =2h/t , s hv v 2tan x y ==α,所以有2tan s h s =='α 2、平抛运动是匀变速曲线运动3、平抛中能量守恒注意:两个分解(位移和速度)和两个物理量(角度和时间)4.应用举例【例5】 已知网高H ,半场长L ,扣球点高h ,扣球点离网水平距离s 、求:水平扣球速度v 的取值范围。
解析:假设运动员用速度v max 扣球时,球刚好不会出界,用速度v min 扣球时,球刚好不触网,从图中数量关系可得:()hgs L g h s L v 2)(2/max +=+=; )(2)(2/min H h gsg H h s v -=-= hH s LvOAθ v v 0v yA OB D C实际扣球速度应在这两个值之间。
例6、如图8在倾角为θ的斜面顶端A 处以速度V 0水平抛出一小球,落在斜面上的某一点B 处,设空气阻力不计,求(1)小球从A 运动到B 处所需的时间;(2)从抛出开始计时,经过多长时间小球离斜面的距离达到最大?分析与解:(1)小球做平抛运动,同时受到斜面体的限制,设从小球从A 运动到B 处所需的时间为t,则: 水平位移为x=V 0t 竖直位移为y=221gt 数学关系得到:gV t t V gt θθtan 2,tan )(21002== (2)从抛出开始计时,经过t 1时间小球离斜面的距离达到最大,当小球的速度与斜面平行时,小球离斜面的距离达到最大。
平抛运动、圆周运动考纲要求:运动的合成与分解Ⅱ抛体运动Ⅱ匀速圆周运动、角速度、线速度、向心加速度Ⅰ匀速圆周运动的向心力Ⅱ离心现象Ⅰ知识回扣:一、曲线运动1、 曲线运动速度方向:曲线运动中速度的方向是时刻改变的,质点在某一点的瞬时速度的方向在曲线的这一点的 上。
2、 曲线运动的特点:速度方向时刻在变,因此曲线运动一定是 运动;3、 曲线运动的条件和轨迹:合外力方向与速度方向 同一条直线上,且合力总是指向曲线的凹侧。
二、运动的合成与分解1.合运动与分运动具有 性、 性和 性;2.合运动与分运动的关系(1)两个匀速直线运动的合运动一定是匀速直线运动(2)一个匀速直线运动和一个匀变速直线运动的合运动一定是匀变速运动。
(当两者共线时为匀变速直线运动,不共线时为匀变速曲线运动)(3)两个匀变速直线运动的合运动一定是匀变速运动。
(当合初速度方向与合加速度方向共线上时为匀变速直线运动,不共线时为匀变速曲线运动)3.小船渡河问题:(1)船静水速度大于水流速度时,渡河最短距离垂直河岸且等于河宽(2)船静水速度小于水流速度时,渡河最短距离不垂直河岸且大于河宽(3)船头垂直河岸时,船渡河时间最短;水流的变化不会影响渡河最短时间。
4.绳端速度问题:将实际运动沿 方向和 绳子的方向分解三、抛体运动:(是匀变速运动)1.竖直上抛运动(是匀变速直线运动)(1)解答竖直上抛运动问题有分步和整体两种方法可以把竖直上抛分解为上升和下落两个阶段,也可以把上升和下落看做一个完整的匀变速直线运动。
(2)竖直上抛运动上升过程和下落过程具有对称性(3)竖直上抛运动上升的最大高度为v 02/2g ,所需时间为v 0/g2.平抛运动(是匀变速曲线运动)(1)平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动(2)平抛运动的落地时间与初速度大小无关,只与抛出点的高度有关(t=gh 2) (3) 平抛运动落地时的水平位移与抛出点的高度和初速度有关3.斜抛运动(是匀变速运动)(1)斜抛运动可以分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动4.实验(研究平抛运动)(1)抛出点已知:用平抛运动规律计算(x=v0t ,y=gt2/2)(2)抛出点未知:若水平方向等距,则竖直方向可用相邻等时间间隔公式计算Δs=gT2第二章圆周运动一、匀速圆周运动(是变速运动)1.线速度:匀速圆周运动线速度大小不变方向不断改变(v=s/t =2πr/T)2.角速度:匀速圆周运动角速度不变(ω=φ/t =2π/T)3.周期T,转速n(频率f):n=1/T4.关系式:v=rω =2πr/T =2πrn二、向心力1.向心力特点:向心力方向与线速度方向垂直(指向圆心),只改变线速度方向不改变大小2.向心力大小:F=mv2/r =mrω23.向心加速度:表示速度方向变化的快慢(a= v2/r =rω2)4.向心力应用:物体作匀速圆周运动则合外力必为向心力(F合=F向=mv2/r)(1)水平面内:物体在竖直方向受力平衡:N=mg水平方向的合外力提供向心力:F=mv2/r =mrω2三、离心现象做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动的向心力的情况下,就会做逐渐远离圆心的运动方法指南:本专题解决的是物体(或带电体)的受力和在力的作用下的曲线运动问题.高考对本专题的考查形式以运动组合为线索进而从力和能的角度进行命题,题目情景新,过程复杂,具有一定的综合性.考查的主要内容有:①曲线运动的条件和运动的合成与分解;②平抛运动规律;③圆周运动的规律;④平抛运动与圆周运动的多过程组合问题;⑤应用万有引力定律解决天体运动问题;⑥带电粒子在电场中的类平抛运动问题;⑦带电粒子在磁场内的匀速圆周运动问题;⑧带电粒子在简单组合场内的运动问题等.用到的主要物理思想和方法有:运动的合成与分解思想、应用临界条件处理临界问题的方法、建立类平抛运动模型方法、等效的思想方法等.。
平抛运动与圆周运动的综合应用教学设计收稿日期:2016-11-03基金项目:全国教育科学“十二五”规划2013年度单位资助教育部规划课题“少数民族地区新课标背景下高效课堂教学研究”(FHB130507)作者简介:肖有福(1968-),男(壮族),广西乐业人,本科,中学高级(广西特级教师),研究方向:高中物理教学。
一、教学背景:新课程标准:(1)通过事例让学生认识平抛物体的运动,并结合运动的合成和分解分析平抛物体的运动。
(2)通过生活中的事例分析圆周运动和匀速圆周运动,并引入线速度、角速度等相关概念。
(3)通过实例分析向心加速度的相关因素,并在此让学生学会利用向心力的公式解决相关的问题。
(4)通过对生活中的圆周运动的事例分析,让学生理解理论联系实际的观点,提高学生利用所学物理知识分析问题和解决问题的能力。
考点:(1)抛体运动(Ⅱ);(2)匀速圆周运动、角速度、线速度(Ⅰ);(3)向心加速度(Ⅰ);(4)向心力(Ⅱ)。
教学目标:(1)能求平抛运动的速度和位移,会用运动的合成和分解的方法处理平抛运动。
(2)知道描述匀速圆周运动的各物理量之间的关系,会用它们之间的关系进行简单的计算。
(3)知道向心力的大小和那些因素有关,理解向心力的公式。
(4)了解变速圆周运动和平抛运动的分析方法,能分析生活中的圆周运动的向心力的来源。
(5)会用平抛运动的规律和向心加速度、向心力的公式对具体问题进行计算,能分析生活中的一些常见平抛运动和圆周运动的综合问题。
教学重难点:(1)理解掌握抛体运动的规律。
(2)对向心加速度和向心力公式的理解和应用。
(3)能利用平抛运动和圆周运动的规律来分析、解决一些简单物理现象。
教学方法:根据班级学生人数进行分组,每组4位同学左右,分成若干小组,学生先自主探究,然后小组讨论,小组展示结果,教师点评,总结提高,当堂检测,利用知识拓展激发学生学习积极性和创新潜能。
二、教学过程(一)课题导入(3分钟)1.平抛运动的规律和计算公式?2.圆周运动的规律及向心加速度和向心力的公式?提示:生活中经常遇到有平抛运动又有圆周运动的现象,如何解决?教师活动:教师用媒体展示问题、提出问题。
物理必修二圆周运动与平抛运动结合圆周运动和平抛运动这两个看似毫不相关的物理现象,其实在某些时候却是可以结合在一起的。
你可能会想,这两个东西有啥关系呢?一个是物体绕着圆轨道转,另一个是物体飞出去后受重力影响,呈弯曲轨迹下落。
听起来好像差得很远,是不是?别急,我们慢慢往下看。
生活中的很多现象,表面看着没什么联系,其实背后都有共同的物理规律。
如果你搞明白了这两个运动的结合,嘿,说不定以后看那些飞得又高又远的篮球,或者旋转的摩天轮时,你就能秒懂了!咱先从圆周运动说起。
圆周运动其实就是物体沿着一个圆形轨道转动的运动。
你知道的,很多东西都能转,比如摩天轮、轮胎、还有那种咻咻旋转的秋千。
转得越快,离中心越远,转得越“猛”,感觉就越刺激。
你是不是也在旋转木马上体验过那种“天旋地转”的感觉?这种天旋地转的感觉就是圆周运动的一个直观表现。
物体在圆周上运动时,它的速度方向不停地变化,虽然它的速度大小可能不变,但方向不停地变化,所以它实际上一直在做加速运动。
没错,你没听错,虽然看着好像匀速在转,但它可是在不断加速的!好啦,说到这,接下来咱聊聊平抛运动。
别看它名字平平无奇,实际上一抛就飞,给你个不小的“惊喜”。
想象一下,你把一个篮球使劲儿往空中一扔,篮球不是笔直地往上飞,而是弯弯曲曲的,最后“啪”的一声掉下来。
为什么它不是一条直线呢?这就跟地球的引力脱不了干系。
篮球刚开始被你扔出去时,它的初速度是沿着水平方向的。
然后重力作用下,篮球会不断地向下掉,搞得它的轨迹就像个弯弯的抛物线。
篮球在飞的过程中,水平速度是一直存在的,直到它“着陆”之前,这个速度也没有消失。
所以,平抛运动给我们的最大感受就是它的“弯”,就像你拐弯抹角说话一样,总不可能一开始就直来直去,是吧?既然都明白了这两种运动的基本概念,接下来就是把它们结合起来。
想象一下,你站在一个转盘上,身边有个篮球架。
你轻轻把篮球从转盘的边缘处抛出去,这个时候,篮球的运动轨迹可就有意思了。
运动学中的平抛运动与圆周运动运动学是物理学中研究物体的运动规律和基本运动情况的学科。
在运动学中有许多重要的运动形式,其中包括平抛运动和圆周运动。
本文将重点介绍这两种运动形式,并探讨它们的特点和应用。
一、平抛运动平抛运动,顾名思义,是指物体在水平方向上以一定的初速度被抛出后,在竖直方向上受到重力的作用而运动的过程。
平抛运动中,物体的加速度只有垂直向下的重力加速度,并且速度沿着抛出的方向保持不变。
在平抛运动中,物体的轨迹呈抛物线形状。
这是因为在水平方向上,物体的速度始终保持不变;而在竖直方向上,物体受到重力作用逐渐加速向下运动。
因此,物体的运动轨迹是在垂直方向上平均变化的。
平抛运动具有一些重要的特点。
首先,抛出的物体在沿着水平方向上的运动速度始终保持不变。
其次,抛出物体在竖直方向上的运动满足自由落体运动的规律,即竖直方向上的位移随时间的平方增加。
最后,平抛运动的时间是由物体在竖直方向上运动到最高点再下落到原点的时间所决定的。
平抛运动在实际中有着广泛的应用。
例如,投掷运动中的铁饼、标枪和投球等都属于平抛运动。
此外,在工程领域中,人们常常需要计算投射物体的飞行轨迹以及抛出物体的最远距离等,这都离不开平抛运动的基本原理。
二、圆周运动圆周运动是指物体围绕圆心做运动的过程。
在圆周运动中,物体沿着一个圆周路径运动,它的速度和加速度的方向始终朝着圆心,而速度大小保持不变。
圆周运动具有一些重要的特点。
首先,物体在圆周运动中的加速度是向心加速度,它的方向指向圆心,大小与速度大小和半径的乘积成正比。
其次,物体的速度大小在圆周运动中保持不变,但速度的方向在每一个时刻都发生变化。
最后,圆周运动的周期是物体沿着圆周路径运动一周所需要的时间。
圆周运动在日常生活和自然界中都有着广泛的应用。
例如,地球绕太阳的公转和月球绕地球的运动都是典型的圆周运动。
此外,许多机械运动,如旋转的轮车、风扇叶片以及地球上的旋转木马等,也都属于圆周运动的范畴。