平抛运动与竖直面内圆周运动
- 格式:docx
- 大小:30.34 KB
- 文档页数:1
竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。
2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。
物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。
小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。
G =10 m/s 2。
求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。
这是最小速度即是过最高点的临界速度v 0。
以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。
高中物理平抛运动的知识点详细介绍平抛运动是高中物理的重要知识点,一般会出现在物理的大题上,下面店铺的小编将为大家带来物理平抛运动的介绍,希望能够帮助到大家。
高中物理平抛运动的知识点物体以一定的初速度沿水平方向抛出,如果物体仅受重力作用,这样的运动叫做平抛运动。
平抛运动是匀变速曲线运动。
平抛运动可看作水平方向的匀速直线运动以及竖直方向的自由落体运动的合运动。
其实,这里平抛运动,就是数学中讲到的抛物线(二次曲线)中“抛物”二字的由来了。
平抛运动的公式(1)平抛运动的位移公式(2)平抛运动的分速度公式平抛运动轨迹是二次函数的证明前文中讲到了,平抛运动轨迹与是数学中讲到的抛物线一致。
下面我们来给大家做一个证明。
我们知道抛物线轨迹是二次曲线(函数y 关于自变量x的二次曲线),下面我们来对抛物线轨迹做一个证明,证明其也是二次函数关系。
这是新课标改革新添加的内容,在大纲版中没有涉及。
前面已经提及,做平抛运动的物体,在水平与竖直两个方向上的位移公式如下:水平方向x=v0t;(1)竖直方向y=½gt2;(2)把(1)中的t=x/v0带入到(2)中,不难得到这样的结论y=gx2/(2v02)我们可以将其写成y=kx2的形式;其中k=g/(2V02)。
显然,y与x这两个位移量之间是二次线性关系,且此函数图像过原点。
这个二次函数(y=ax2+bx+c)的特点是b和c均为零。
平抛运动的三种典型轨迹分析(1)落到斜面上示意图如下图所示,这种情况下,同学们要列出唯一方程。
因为根据题中限制,要求的是平抛运动轨迹与斜面直线相交。
需写出唯一方程,这种情况下在N点满足y和x的比例,等于θ角的正切值。
(2)垂直打到斜面上示意图如图所示,这种情况下要从速度方程入手。
题中的垂直落到,指的是速度的问题,速度的方向与斜面所在直线垂直。
因此,满足的是在P点,物体的合速度方向与水平速度方向的夹角与斜面夹角互余。
(3)距离斜面最远示意图如下图所示,这种情况下,满足的是B点合速度的方向与斜面方向平行。
2021届高考复习之核心考点系列之物理考点总动员【名师精品】考点03平抛运动与圆周运动【命题意图】考查平抛运动规律,摩擦力、向心力的来源、圆周运动的规律以及离心运动等知识点,意在考查考生对圆周运动知识的理解能力和综合分析能力。
【专题定位】本专题解决的是物体(或带电体)在力的作用下的曲线运动的问题.高考对本专题的考查以运动的组合为线索,进而从力和能的角度进行命题,题目情景新,过程复杂,具有一定的综合性.考查的主要内容有:①曲线运动的条件和运动的合成与分解;②平抛运动规律;③圆周运动规律;④平抛运动与圆周运动的多过程组合问题;⑤应用万有引力定律解决天体运动问题;⑥带电粒子在电场中的类平抛运动问题;⑦带电粒子在磁场内的匀速圆周运动问题;⑧带电粒子在简单组合场内的运动问题等.用到的主要物理思想和方法有:运动的合成与分解思想、应用临界条件处理临界问题的方法、建立类平抛运动模型方法、等效代替的思想方法等。
【考试方向】高考对平抛运动与圆周运动知识的考查,命题多集中在考查平抛运动与圆周运动规律的应用及与生活、生产相联系的命题,多涉及有关物理量的临界和极限状态求解或考查有关平抛运动与圆周运动自身固有的特征物理量。
竖直平面内的圆周运动结合能量知识命题,匀速圆周运动结合磁场相关知识命题是考试重点,历年均有相关选择题或计算题出现。
单独命题常以选择题的形式出现;与牛顿运动定律、功能关系、电磁学知识相综合常以计算题的形式出现。
平抛运动的规律及其研究方法、近年考试的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题。
圆周运动的角速度、线速度及加速度是近年高考的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题,这样的题目往往难度较大。
【应考策略】熟练掌握平抛、圆周运动的规律,对平抛运动和圆周运动的组合问题,要善于由转折点的速度进行突破;熟悉解决天体运动问题的两条思路;灵活应用运动的合成与分解的思想,解决带电粒子在电场中的类平抛运动问题;对带电粒子在磁场内的匀速圆周运动问题,掌握找圆心、求半径的方法。
2021年高考物理【热点·重点·难点】专练(新高考专用)重难点04 平抛运动与圆周运动【知识梳理】考点一 平抛运动基本规律的理解 1.飞行时间:由ght 2=知,时间取决于下落高度h ,与初速度v 0无关. 2.水平射程:x =v 0t =v 0 gh 2,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3.落地速度:gh v v v v x y x 2222+=+=,以θ表示落地速度与x 轴正方向的夹角,有2tan v ghv v xy ==θ,所以落地速度也只与初速度v 0和下落高度h 有关. 4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt ;相同,方向恒为竖直向下,如图所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ. 【重点归纳】1.在研究平抛运动问题时,根据运动效果的等效性,利用运动分解的方法,将其转化为我们所熟悉的两个方向上的直线运动,即水平方向的匀速直线运动和竖直方向的自由落体运动.再运用运动合成的方法求出平抛运动的规律.这种处理问题的方法可以变曲线运动为直线运动,变复杂运动为简单运动,是处理曲线运动问题的一种重要的思想方法. 2.常见平抛运动模型的运动时间的计算方法 (1)在水平地面上空h 处平抛: 由221gt h =知ght 2=,即t 由高度h 决定. (2)在半圆内的平抛运动(如图),由半径和几何关系制约时间t :221gt h =t v h R R 022=-+联立两方程可求t . (3)斜面上的平抛问题: ①顺着斜面平抛(如图)方法:分解位移 x =v 0t221gt y =x y=θtan可求得gv t θtan 20=②对着斜面平抛(如图)方法:分解速度 v x =v 0 v y =gttan v gt v v xy ==θ 可求得gv t θtan 0=(4)对着竖直墙壁平抛(如图)水平初速度v 0不同时,虽然落点不同,但水平位移相同.vd t =3.求解多体平抛问题的三点注意(1)若两物体同时从同一高度(或同一点)抛出,则两物体始终在同一高度,二者间距只取决于两物体的水平分运动.(2)若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同,二者间距由两物体的水平分运动和竖直高度差决定.(3)若两物体从同一点先后抛出,两物体竖直高度差随时间均匀增大,二者间距取决于两物体的水平分运动和竖直分运动.考点二 圆周运动中的运动学分析描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:1.传动装置(1)高中阶段所接触的传动主要有:①皮带传动(线速度大小相等);②同轴传动(角速度相等);③齿轮传动(线速度大小相等);④摩擦传动(线速度大小相等).(2)传动装置的特点:(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同;(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等.2.圆周运动各物理量间的关系(1)对公式v =ωr 的理解 当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比.(2)对a =rv 2=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比. 考点三 竖直平面内圆周运动的绳模型与杆模型问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”. 2.绳、杆模型涉及的临界问题均是没有支撑的小球均是有支撑的小球竖直面内圆周运动的求解思路(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同. (2)确定临界点:gr v =临,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N表现为支持力还是拉力的临界点.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向. (5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程. 【限时检测】(建议用时:30分钟) 一、单项选择题:本题共4小题。
专题二十 三种面内的圆周运动及临界问题(精讲)一、水平面内的圆周运动 1.水平面内的圆周运动(1)题型简述:此类问题相对简单,物体所受合外力充当向心力,合外力大小不变,方向总是指向圆心。
(2)方法突破:①选择做匀速圆周运动的物体作为研究对象。
②分析物体受力情况,其合外力提供向心力。
③由F n =m v 2r=mr ω2=m 224T r 列方程求解。
【题1】如图所示,内壁光滑的弯曲钢管固定在天花板上,一根结实的细绳穿过钢管,两端分别拴着一个小球A 和B 。
小球A 和B 的质量之比m A m B =12。
当小球A 在水平面内做匀速圆周运动时,小球A 到管口的绳长为l ,此时小球B 恰好处于平衡状态。
管子的内径粗细不计,重力加速度为g 。
试求:(1)拴着小球A 的细绳与竖直方向的夹角θ; (2)小球A 转动的周期。
【答案】(1)60°(2)π2lg(2)对于小球A ,细绳拉力的水平分量提供圆周运动的向心力,有F sin θ=m A v 2rr =l sin θ解得小球A 的线速度为v =32gl又T =2πr v ,则小球A 转动的周期T =π2lg。
2.水平面内圆周运动的临界问题(1)题型简述:在水平面内做圆周运动的物体,当转速变化时,会出现绳子张紧、绳子突然断裂、静摩擦力达最大值、弹簧弹力大小或方向发生变化等,从而出现临界问题。
(2)方法突破——步骤:①判断临界状态:有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点;若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应着临界状态;若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往对应着临界状态。
②确定临界条件:判断题述的过程存在临界状态之后,要通过分析弄清临界状态出现的条件,并以数学形式表达出来。
③选择物理规律:当确定了物体运动的临界状态和临界条件后,要分别对不同的运动过程或现象,选择相对应的物理规律,然后列方程求解。
竖直面内圆周运动问题的分析有三种典型的情况:(1) 绳(单轨,无支撑):绳只能给物体施加拉力,而不能有支持力。
这种情况下有mg Rmv mg F ≥=+2所以小球通过最高点的条件是gR v ≥,通过最高点的临界速度min vgR = 当临界v v <(实际上小球还没滑到最高点就脱离了轨道)。
(2)外轨(单轨,有支撑),只能给物体支持力,而不能有拉力。
有支撑的小球,但弹力只可能向上,如车过桥.在这种情况下有:gR v mg Rmv F mg ≤∴≤=-,2,否则车将离开桥面,做平抛运动. (3)杆(双轨,有支撑):对物体既可以有拉力,也可以有支持力,如图3所示。
①过最高点的临界条件:0≥v 。
②在最高点,如果小球的重力恰好提供其做圆周运动的向心力,即Rmv mg 2=,gR v =,杆或轨道内壁对小球没有力的作用。
当0<gR v <时,小球受到重力和杆对球的支持力(或轨道内壁下侧对球的向上的支持力),此二力的合力提供向心力;当gR v >时,小球受到重力和杆向下的拉力(或轨道内壁上侧对球竖直向下的压力),这二力的合力提供向心力。
因此,gR v =是小球在最高点受到杆的拉力还是支持力的分界速度,是受到轨道内壁下侧的弹力还是内壁上侧的弹力的分界速度。
【例7】(04甘肃理综)如图所示,轻杆的一端有一个小球,另一端有光滑的固定轴O 。
现给球一初速度,使球和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 表示球到达最高点时杆对小球的作用力,则F ( )A .一定是拉力B .一定是推力C .一定等于0D .可能是拉力,可能是推力,也可能等于0【解析】本题是物体在竖直面内圆周运动的典型模型――轻杆模型(有支撑的情况),杆可以对物体有拉力,也可以有推力,对物体的弹力还可以为零,答案D 。
【答案】D【例8】(西城二模理综(物理部分)2007.5)如图4-36所示的是杂技演员表演的“水流星”.一根细长绳的一端,系着一个盛了水的容器.以绳的另一端为圆心,使容器在竖直平面内做半径为R 的圆周运动.N 为圆周的最高点,M 为圆周的最低点.若“水流星”通过最低点时的速度gR v 5=.则下列判断正确的是( )A .“水流星”到最高点时的速度为零甲图3GFB .“水流星”通过最高点时,有水从容器中流出C .“水流星”通过最高点时,水对容器底没有压力D .“水流星”通过最高点时,绳对容器有向下的拉力 解析:假设水能够通过最高点,则到达到最高点时的速度设为v 1,由机械能守恒定律得:22111222mv mv mgR =+,得1v =,而当容器恰好能上升到最高点时的临界条件1v ,此时水对容器的压力为0时,C 正确.【答案】C【例9】(07年潍坊理科综合考试物理试题)如图4-37所示,小物块位于半径为R 的半球形物体顶端,若给小物块一水平速度gR v o 2=,则物块 ( )A .立即做平抛运动B .落地时水平位移为R 2C .落地速度大小为D .落地时速度方向与地面成45°角解析:物体恰好不受轨道的支持力的情况下(物体在最高点做圆周运动)的临界条件是,gR v o 2=A正确;由平抛运动的规律可得:R =212gt ,x =v 0t ,所以可得x =2R ,B 答案正确;落地时竖直分速度y v =,合速度v ==45°角,CD 正确.【答案】ACD .。
四、平抛运动当物体初速度水平且仅受重力作用时的运动,被称为平抛运动。
其轨迹为抛物线,性质为匀变速运动。
平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体运动这两个分运动。
广义地说,当物体所受的合外力恒定且与初速度垂直时,做类平抛运动。
1、 (合成与分解的角度)平抛运动基本规律① 速度:0v v x =,gt v y = 合速度 22yx v v v += 方向 :tan θ=oxy v gt v v =②位移x =v o t y =221gt 合位移大小:s =22y x + 方向:tan α=t v g x y o ⋅=2 ③时间由y =221gt 得t =x y 2(由下落的高度y 决定) 竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。
④一个有用的推论平抛物体任意时刻瞬时时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。
证明:设时间t 内物体的水平位移为s ,竖直位移为h ,则末速度的水平分量v x =v 0=s/t ,而竖直分量v y =2h/t , s hv v 2tan x y ==α,所以有2tan s h s =='α 2、平抛运动是匀变速曲线运动3、平抛中能量守恒注意:两个分解(位移和速度)和两个物理量(角度和时间)4.应用举例【例5】 已知网高H ,半场长L ,扣球点高h ,扣球点离网水平距离s 、求:水平扣球速度v 的取值范围。
解析:假设运动员用速度v max 扣球时,球刚好不会出界,用速度v min 扣球时,球刚好不触网,从图中数量关系可得:()hgs L g h s L v 2)(2/max +=+=; )(2)(2/min H h gsg H h s v -=-= hH s LvOAθ v v 0v yA OB D C实际扣球速度应在这两个值之间。
例6、如图8在倾角为θ的斜面顶端A 处以速度V 0水平抛出一小球,落在斜面上的某一点B 处,设空气阻力不计,求(1)小球从A 运动到B 处所需的时间;(2)从抛出开始计时,经过多长时间小球离斜面的距离达到最大?分析与解:(1)小球做平抛运动,同时受到斜面体的限制,设从小球从A 运动到B 处所需的时间为t,则: 水平位移为x=V 0t 竖直位移为y=221gt 数学关系得到:gV t t V gt θθtan 2,tan )(21002== (2)从抛出开始计时,经过t 1时间小球离斜面的距离达到最大,当小球的速度与斜面平行时,小球离斜面的距离达到最大。
竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。
2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。
物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。
小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。
G =10 m/s 2。
求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。
这是最小速度即是过最高点的临界速度v 0。
以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。
平抛运动与圆周运动的综合应用教学设计收稿日期:2016-11-03基金项目:全国教育科学“十二五”规划2013年度单位资助教育部规划课题“少数民族地区新课标背景下高效课堂教学研究”(FHB130507)作者简介:肖有福(1968-),男(壮族),广西乐业人,本科,中学高级(广西特级教师),研究方向:高中物理教学。
一、教学背景:新课程标准:(1)通过事例让学生认识平抛物体的运动,并结合运动的合成和分解分析平抛物体的运动。
(2)通过生活中的事例分析圆周运动和匀速圆周运动,并引入线速度、角速度等相关概念。
(3)通过实例分析向心加速度的相关因素,并在此让学生学会利用向心力的公式解决相关的问题。
(4)通过对生活中的圆周运动的事例分析,让学生理解理论联系实际的观点,提高学生利用所学物理知识分析问题和解决问题的能力。
考点:(1)抛体运动(Ⅱ);(2)匀速圆周运动、角速度、线速度(Ⅰ);(3)向心加速度(Ⅰ);(4)向心力(Ⅱ)。
教学目标:(1)能求平抛运动的速度和位移,会用运动的合成和分解的方法处理平抛运动。
(2)知道描述匀速圆周运动的各物理量之间的关系,会用它们之间的关系进行简单的计算。
(3)知道向心力的大小和那些因素有关,理解向心力的公式。
(4)了解变速圆周运动和平抛运动的分析方法,能分析生活中的圆周运动的向心力的来源。
(5)会用平抛运动的规律和向心加速度、向心力的公式对具体问题进行计算,能分析生活中的一些常见平抛运动和圆周运动的综合问题。
教学重难点:(1)理解掌握抛体运动的规律。
(2)对向心加速度和向心力公式的理解和应用。
(3)能利用平抛运动和圆周运动的规律来分析、解决一些简单物理现象。
教学方法:根据班级学生人数进行分组,每组4位同学左右,分成若干小组,学生先自主探究,然后小组讨论,小组展示结果,教师点评,总结提高,当堂检测,利用知识拓展激发学生学习积极性和创新潜能。
二、教学过程(一)课题导入(3分钟)1.平抛运动的规律和计算公式?2.圆周运动的规律及向心加速度和向心力的公式?提示:生活中经常遇到有平抛运动又有圆周运动的现象,如何解决?教师活动:教师用媒体展示问题、提出问题。
运动学中的平抛运动与圆周运动运动学是物理学中研究物体的运动规律和基本运动情况的学科。
在运动学中有许多重要的运动形式,其中包括平抛运动和圆周运动。
本文将重点介绍这两种运动形式,并探讨它们的特点和应用。
一、平抛运动平抛运动,顾名思义,是指物体在水平方向上以一定的初速度被抛出后,在竖直方向上受到重力的作用而运动的过程。
平抛运动中,物体的加速度只有垂直向下的重力加速度,并且速度沿着抛出的方向保持不变。
在平抛运动中,物体的轨迹呈抛物线形状。
这是因为在水平方向上,物体的速度始终保持不变;而在竖直方向上,物体受到重力作用逐渐加速向下运动。
因此,物体的运动轨迹是在垂直方向上平均变化的。
平抛运动具有一些重要的特点。
首先,抛出的物体在沿着水平方向上的运动速度始终保持不变。
其次,抛出物体在竖直方向上的运动满足自由落体运动的规律,即竖直方向上的位移随时间的平方增加。
最后,平抛运动的时间是由物体在竖直方向上运动到最高点再下落到原点的时间所决定的。
平抛运动在实际中有着广泛的应用。
例如,投掷运动中的铁饼、标枪和投球等都属于平抛运动。
此外,在工程领域中,人们常常需要计算投射物体的飞行轨迹以及抛出物体的最远距离等,这都离不开平抛运动的基本原理。
二、圆周运动圆周运动是指物体围绕圆心做运动的过程。
在圆周运动中,物体沿着一个圆周路径运动,它的速度和加速度的方向始终朝着圆心,而速度大小保持不变。
圆周运动具有一些重要的特点。
首先,物体在圆周运动中的加速度是向心加速度,它的方向指向圆心,大小与速度大小和半径的乘积成正比。
其次,物体的速度大小在圆周运动中保持不变,但速度的方向在每一个时刻都发生变化。
最后,圆周运动的周期是物体沿着圆周路径运动一周所需要的时间。
圆周运动在日常生活和自然界中都有着广泛的应用。
例如,地球绕太阳的公转和月球绕地球的运动都是典型的圆周运动。
此外,许多机械运动,如旋转的轮车、风扇叶片以及地球上的旋转木马等,也都属于圆周运动的范畴。
曲线运动专题二 平抛运动与圆周运动相结合的问题说明:1. 平抛运动与圆周运动的组合题,用平抛运动的规律求解平抛运动问题,用牛顿定律求解圆周运动问题,关键是找到两者的速度关系.若先做圆周运动后做平抛运动,则圆周运动的末速度等于平抛运动的水平初速度;若物体平抛后进人圆轨道,圆周运动的初速度等于平抛末速度在圆切线方向的分速度。
2. 分析多解原因:匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在确定做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去. 3. 确定处理方法:(1)抓住联系点:明确两个物体参与运动的性质和求解的问题,两个物体参与的两个运动虽然独立进行,但一定有联系点,其联系点一般是时间或位移等,抓住两运动的联系点是解题关键。
(2)先特殊后一般:分析问题时可暂时不考虑周期性,表示出一个周期的情况,再根据运动的周期性,在转过的角度θ上再加上 2πr,具体π的取值应视情况而定。
练习题1.(多选)水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,一小球以初速度v 0沿直轨道向右运动.如图所示,小球进入圆形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的d 点,则( )A .小球到达c 点的速度为gRB .小球到达b 点进入圆形轨道时对轨道的压力为mgC .小球在直轨道上的落点d 与b 点距离为RD .小球从c 点落到d 点所需时间为2Rg2.如图为俯视图,利用该装置可以测子弹速度大小。
直径为d 的小纸筒,以恒定角速度ω绕O 轴逆时针转动,一颗子弹沿直径水平快速穿过圆纸筒,先后留下a 、b 两个弹孔,且Oa 、Ob 间的夹角为α.不计空气阻力,则子弹的速度为多少?3.(单选)如图所示,一位同学做飞镖游戏,已知圆盘的直径为d ,飞镖距圆盘为L ,且对准圆盘上边缘的A 点水平抛出,初速度为v 0,飞镖抛出的同时,圆盘以垂直圆盘过盘心O 的水平轴匀速运动,角速度为ω.若飞镖恰好击中A 点,则下列关系正确的是( )A .02dv ω=B .ωL =π(1+2n )v 0,(n =0,1,2,3,…)C.2dv02=L2gD.dω2=gπ2(1+2n)2,(n=0,1,2, 3,…)4.一半径为R、边缘距地高h的雨伞绕伞柄以角速度ω匀速旋转时(如图所示),雨滴沿伞边缘的切线方向飞出.则:⑴雨滴离开伞时的速度v多大?⑵甩出的雨滴在落地过程中发生的水平位移多大?⑶甩出的雨滴在地面上形成一个圆,求此圆的半径r为多少?5.如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R=0.5m,离水平地面的高度H=0.8m,物块平抛落地过程水平位移的大小s=0.4m.设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2求:(1)物块做平抛运动的初速度大小v0;(2)物块与转台间的动摩擦因数μ.6.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地,如图所示.已d,重力加速度为g.忽略手的运动半径和空气阻力.知握绳的手离地面高度为d,手与球之间的绳长为34(1)求绳断开时球的速度大小v1(2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?7.如图为一个简易的冲击式水轮机的模型,水流自水平的水管流出,水流轨迹与下边放置的轮子边缘相切,水冲击轮子边缘上安装的挡水板,可使轮子连续转动.当该装置工作稳定时,可近似认为水到达轮子边缘时的速度与轮子边缘的线速度相同.调整轮轴O的位置,使水流与轮边缘切点对应的半径与水平方向成θ=37°角.测得水从管口流出速度v0=3 m/s,轮子半径R=0.1 m.不计挡水板的大小,不计空气阻力.取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)轮子转动角速度ω;(2)水管出水口距轮轴O的水平距离l和竖直距离h.题目点评:1、抓住刚好能通过c 点(无支撑)得条件,到达b 点进入圆形轨道时,有竖直向上的向心加速度,超重状态,对轨道的压力大于mg 。
高二学考专题11平抛运动与圆周运动组合问题考点一平抛运动与直线运动的组合问题1.平抛运动可以分为水平方向的匀速直线运动和竖直方向的自由落体运动,两分运动具有等时性.2.当物体做直线运动时,分析物体受力是解题的关键.正确分析物体受力,求出物体的加速度,然后运用运动学公式确定物体的运动规律.3.平抛运动与直线运动的衔接点的速度是联系两个运动的桥梁,因此解题时要正确分析衔接点速度的大小和方向.★典型例题★如图甲所示,在高h =0.8m的平台上放置一质量为M=1kg的小木块(视为质点),小木块距平台右边缘d =2m。
现给小木块一水平向右的初速度v0,其在平台上运动的v2-x关系如图乙所示。
小木块最终从平台边缘滑出落在距平台右侧水平距离s =0.8m的地面上,g取10m/s2,求:(1)小木块滑出时的速度v;(2)小木块在水平面滑动的时间t;(3)小木块在滑动过程中产生的热量Q。
★针对练习1★如图所示,滑板运动员以速度v0从离地高度为h的平台末端水平飞出,落在水平地面上。
忽略空气阻力,运动员和滑板可视为质点,下列表述正确的是:()A.v0越大,运动员在空中运动时间越长B.B.v0越大,运动员落地时重力的瞬时功率越大C.v0越大,运动员落地时机械能越大D.v0越大,运动员落地时偏离水平水平方向的夹角越大考点二平抛运动与圆周运动的组合问题1.物体的圆周运动主要是竖直面内的圆周运动,通常应用动能定理和牛顿第二定律进行分析,有的题目需要注意物体能否通过圆周的最高点.2.平抛运动与圆周运动的衔接点的速度是解题的关键.★典型例题★如图所示为圆弧形固定光滑轨道,a点切线方向与水平方向夹角53o,b点切线方向水平。
一小球以水平初速度6m/s做平抛运动刚好能沿轨道切线方向进入轨道,已知轨道半径1m ,小球质量1kg 。
(sin53o =0.8,cos53o =0.6,g =10m/s 2)求 (1)小球做平抛运动的飞行时间。
一、平抛运动
1、定义:平抛运动是指物体只在作用下,以一定初速度开始的运动。
2、运动性质:尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g,因而平抛运动是一个
运动。
g
a=
3、研究平抛运动的方法:通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的运动,一个是竖直方向(沿着恒力方向)的运动。
4、平抛运动的规律
①水平速度:,竖直速度:
合速度(实际速度)的大小:
合速度用下落高度与初速度表示
物体的合速度v与x轴之间的夹角为:
②水平位移:,竖直位移;飞行时间
水平射程用初速度和下落高度表示合位移(实际位移)的大小:
物体的合位移s与x轴之间的夹角为:
合速度、合位移与水平方向夹角正切值关系推论:合速度反向延长线经过
二、竖直面内圆周运动
1.如图所示细绳系着的小球或在圆轨道内侧运动的小球,当它们通过最高点的条件
(1)时,物体恰好通过轨道最高点,绳或轨道与物体间无作用力。
(2) 时,物体不能达到最高点
(3)时,方程,速度增大时压力,绳或轨道对物体产生向下的作用力。
2.在轻杆或管的约束下的圆周运动:杆和管对物体能产生拉力,也能产生支持力
当物体能通过最高点时的条件
(1)当0
v=时,,杆中表现为支持力。
(物体到达最高点的速度为0。
)
(2)当时,方程,速度增大压力,杆或轨道产生对物体向上的支持力。
(3)当时,方程,FN=0,杆或轨道对物体无作用力。
(4)当时,方程,速度增大压力,杆或轨道对物体产生向下的作用力。
V
y
x
S
O
x
x2/
V y
V0
V x=V0
P()
x y,
θα。