3受压构件截面承载力计算
- 格式:docx
- 大小:36.91 KB
- 文档页数:2
受压构件的承载力计算一、梁柱的承载力计算方法对于受压构件,在弹性范围内,可以采用弹性承载力计算方法。
弹性承载力计算方法是根据梁柱的理论,主要应用弹性力学原理和应变能平衡条件进行计算。
在弹性承载力计算之外,受压梁柱的承载力还受到稳定性要求的限制。
稳定性要求主要包括屈曲的要求和稳定的要求。
稳定性承载力计算方法就是根据稳定性要求来计算的。
二、承载力计算的基本原理和方法1.构件的截面形态与材料的力学性能有关。
几何形态方面,可以通过截面形心深度、截面形态系数和截面面积等参数来描述。
力学性能方面,主要包括材料的抗压强度、屈服强度和弹性模量等参数。
2.构件的边界条件与受力特性有关。
边界条件主要包括自由端的约束、内力的约束和约束条件等。
边界条件对构件的承载力有着直接的影响,需要进行准确的分析和计算。
3.构件的荷载和荷载组合也是影响承载力计算的重要因素。
荷载包括静力荷载和动力荷载,荷载组合则是不同荷载的叠加组合。
需要根据具体情况来确定荷载和荷载组合,并进行相应的计算。
假设一个矩形柱的尺寸为300mm×400mm,材料抗压强度为250MPa,弹性模量为200 GPa。
根据以上参数,可以进行如下步骤的承载力计算。
1.计算截面形态参数:矩形柱的形心深度h=400/2=200mm形态系数α=(h/t)f/π^2=2.692.弹性承载力计算:根据梁柱的理论,弹性承载力可通过以下公式计算:Pcr=(π^2*E*I)/(kl)^2其中,E为弹性模量,I为惯性矩,kl为有效长度系数。
惯性矩I=1/12*b*h^3=1/12*300*400^3=32,000,000mm^4有效长度系数kl可根据梁柱的边界条件和约束情况进行计算。
假设矩形柱两端均固定,则kl=0.5代入以上参数,可以得到弹性承载力Pcr=200,000N=200kN。
3.稳定性承载力计算:稳定性承载力计算主要包括屈曲的要求和稳定的要求。
对于矩形柱,屈曲要求可通过欧拉公式计算,稳定的要求可通过查表确定。
第3章 受压构件的截面承载力本章提要受压构件是钢筋混凝土结构中的重要章节,它分为轴心受压和偏心受压(单向偏心受压构件和双向偏心受压构件)两部分。
轴心受压构件截面应力分布均匀,两种材料承受压力之和,在考虑构件稳定影响系数后,即为构件承载力计算公式。
对于配有纵筋及螺旋箍筋的柱,由于螺旋箍筋约束混凝土的横向变形,因而其承载力将会有限度的提高。
偏心受压构件因偏心距大小和受拉钢筋多少的不同,截面将有两种破坏情况,即大偏心受压(截面破坏时受拉钢筋能屈服)和小偏心受压(截面破坏时受拉钢筋不能屈服)构件。
在考虑了偏心距增大系数后,根据截面力的平衡条件,即可得偏心受压构件的计算公式。
截面有对称配筋和不对称配筋两类,实用上对称配筋截面居多。
无论是对称配筋或不对称配筋,计算时均应判别大、小偏心的界限,分别用其计算公式对截面进行计算。
本章学习目标:了解轴心受压构件的受力全过程,偏心受压构件的受力工作特性;熟悉两种不同偏心受压构件的破坏特征及由此划分成的两类偏心受压构件,掌握两类偏心受压构件的判别方法;掌握轴心受压构件、两类偏心受压构件的正截面承载力计算方法;掌握偏心受压构件的斜截面承载力计算方法;熟悉受压构件的构造要求。
课堂教学学时:12学时主要教学内容:3.1 受压构件一般构造要求3.1.1 截面型式及尺寸1. 截面型式一般采用方形或矩形,有时也采用圆形或多边形。
偏心受压构件一般采用矩形截面,但为了节约混凝土和减轻柱的自重,较大尺寸的柱常常采用I形截面。
拱结构的肋常做成T形截面。
采用离心法制造的柱、桩、电杆以及烟囱、水塔支筒等常用环形截面。
2. 截面尺寸:(1) 方形或矩形截面柱截面不宜小于300mm×300mm。
为了避免矩形截面轴心受压构件长细比过大,承载力降低过多,通常取l0/b≤30,l0/h≤25。
此处l0为柱的计算长度,b为矩形截面短边边长,h为长边边长。
为了施工支模方便,柱截面尺寸宜使用整数,截面尺寸≤800mm,以50mm 为模数;截面尺寸>800 mm ,以100mm 为模数。
受压构件截面承载力计算
受压构件截面承载力计算是结构工程中的重要计算内容之一、在设计
受压构件时,需要保证构件的承载力不低于设计要求,以确保结构的安全
性和稳定性。
受压构件截面承载力的计算涉及到材料力学、截面形状和尺寸,以及截面临界状态等多个因素。
以下是受压构件截面承载力计算的基
本步骤和方法。
1.分析受压构件的材料力学性能:首先需要确定受压构件的材料类型
和性能参数,包括弹性模量、屈服强度、抗压强度等。
这些参数可以在材
料手册中查找或者进行材料试验获得。
2.确定构件的截面几何特征:受压构件的截面形状决定了其承载能力。
常见的受压构件截面形状包括矩形、圆形、T形、工字形等。
需要根据实
际情况确定构件的截面几何参数,如截面面积、惯性矩、受压边缘等。
3.计算截面承载能力:使用截面承载能力公式或者截面性能表格,根
据受压构件的材料性能和截面几何特征计算截面的承载能力。
常用的计算
方法有强度设计法、极限状态设计法和变形极限设计法等。
4.考虑临界状态和稳定性:受压构件在承载过程中可能会出现临界状
态和稳定性问题,如屈曲、侧扭、局部稳定等。
需根据受压构件的长度、
约束条件、支承条件等因素,对构件进行临界状态和稳定性分析,以确保
构件在正常使用条件下不会失稳。
总结起来,受压构件截面承载力计算是一项复杂的工作,需要综合考
虑材料力学、截面形状和尺寸、临界状态和稳定性等多个因素。
设计工程
师需要有扎实的结构力学和材料力学基础,以及丰富的实际工程经验,才
能进行准确可靠的受压构件截面承载力计算。
第10节钢筋混凝土受压构件承载力计算钢筋混凝土结构中,钢筋混凝土受压构件(如柱和墙)的承载力计算是结构设计中的重要内容之一、本文将从受压构件承载力计算的基本原理、假设条件和计算方法等方面进行详细介绍。
1.基本原理:钢筋混凝土受压构件的承载力计算是基于构件在受压状态下的稳定性和极限强度理论进行的。
根据弹性力学理论,构件在受外载荷作用下会发生弹性变形,当荷载增大到一定程度时,构件进入非弹性变形阶段,到达极限承载力。
因此,承载力计算涉及到弹性极限状态和极限承载力的确定。
2.假设条件:在承载力计算中,一般采用以下假设条件:(1)材料的弹性线性:混凝土和钢筋的应力-应变关系符合弹性线性假设,线性弹性模量E为常数;(2)平面截面假定:构件截面平面仍是平面在载荷作用下仍处于平面;(3)材料的强度:混凝土和钢筋的强度符合破坏准则,常用的有混凝土的抗压强度、钢筋的屈服强度和附加应力等。
3.计算方法:(1)弹性计算:首先进行弹性计算,即通过材料特性和几何性质,计算出构件在设计荷载下的应力和应变,进行稳定性分析,检查是否满足弹性稳定性和承载力要求;(2)极限强度计算:当弹性计算不满足要求时,需要进行极限强度计算。
根据材料的破坏准则,分别计算混凝土的抗压强度和钢筋的屈服强度,并根据材料的强度进行构件抗弯承载力和轴向承载力的计算;(3)受限状态计算:在受压构件中,由于受到压力作用,有可能出现多种破坏状态,如混凝土挤压破坏、钢筋屈服、钢筋断裂等,需要确定受限构件状态下的承载力。
4.常用计算方法:(1)弹性计算:可使用弹性理论方法,如戴森公式、沃弗公式等进行计算;(2)极限强度计算:可使用极限强度理论方法,如塑性区方法、破坏准则方法进行计算;(3)受限状态计算:通常使用零应变截面方法、等效矩形应力块法、等效矩形应力块-受压钢筋法等进行计算。
总之,钢筋混凝土受压构件承载力计算是结构设计中的重要环节,需要根据构件的几何形状、受力情况和所用材料的特性等进行合理的计算。
3受压构件截面承载力计算
受压构件截面承载力计算指的是根据构件材料和几何形状对受压构件
的最大承载能力进行估算和计算的过程。
在工程设计和结构分析中,准确
计算截面承载力对于保证结构的安全性和经济性至关重要。
受压构件一般是指在受纵向压力作用下,梁、柱、墙等构件的截面。
构件材料可以是钢材、钢筋混凝土、木材等。
常见的受压构件截面形状有
矩形、圆形、T形、L形等。
截面承载力计算的基本步骤如下:
1.截面区域的几何形状计算:根据构件的型号和梁、柱的跨度、高度
等参数,计算出截面区域的几何形状,如截面面积、惯性矩、截面模数等。
2.材料的力学性质计算:根据构件所采用的材料,查找相应的力学性
质数据,如弹性模量、屈服强度、抗压强度等。
3.塑性计算和极限状态设计:根据构件所处的工况和受力情况,进行
塑性计算和极限状态设计。
塑性计算是指构件材料在超过屈服强度后,发
生塑性变形的计算。
极限状态设计是指在允许的极限荷载状态下,不发生
塑性变形的构件设计。
4.受压构件的稳定计算:对于长细比较大的构件,需要进行稳定计算,考虑构件在受压状态下的侧扭承载能力和稳定性。
5.弯曲和剪切计算:受压构件在受力时,还会发生弯曲和剪切作用,
需要进行相应的计算。
6.验算和比较:完成上述计算后,进行验算和比较,检查计算结果是
否满足设计要求和规范规定。
需要注意的是,截面承载力的计算一般采用强度理论和极限平衡理论进行,计算结果应该参考相应的设计规范和标准。
总结起来,受压构件截面承载力的计算包括几何形状的计算、材料性质的计算、塑性计算和极限状态设计、稳定性计算、弯曲和剪切计算等步骤。
对于不同的构件材料和几何形状,计算方法有所不同,需要根据具体情况进行估算和计算。