受压构件截面承载力计算详解
- 格式:pptx
- 大小:549.72 KB
- 文档页数:42
受压构件的承载力计算一、梁柱的承载力计算方法对于受压构件,在弹性范围内,可以采用弹性承载力计算方法。
弹性承载力计算方法是根据梁柱的理论,主要应用弹性力学原理和应变能平衡条件进行计算。
在弹性承载力计算之外,受压梁柱的承载力还受到稳定性要求的限制。
稳定性要求主要包括屈曲的要求和稳定的要求。
稳定性承载力计算方法就是根据稳定性要求来计算的。
二、承载力计算的基本原理和方法1.构件的截面形态与材料的力学性能有关。
几何形态方面,可以通过截面形心深度、截面形态系数和截面面积等参数来描述。
力学性能方面,主要包括材料的抗压强度、屈服强度和弹性模量等参数。
2.构件的边界条件与受力特性有关。
边界条件主要包括自由端的约束、内力的约束和约束条件等。
边界条件对构件的承载力有着直接的影响,需要进行准确的分析和计算。
3.构件的荷载和荷载组合也是影响承载力计算的重要因素。
荷载包括静力荷载和动力荷载,荷载组合则是不同荷载的叠加组合。
需要根据具体情况来确定荷载和荷载组合,并进行相应的计算。
假设一个矩形柱的尺寸为300mm×400mm,材料抗压强度为250MPa,弹性模量为200 GPa。
根据以上参数,可以进行如下步骤的承载力计算。
1.计算截面形态参数:矩形柱的形心深度h=400/2=200mm形态系数α=(h/t)f/π^2=2.692.弹性承载力计算:根据梁柱的理论,弹性承载力可通过以下公式计算:Pcr=(π^2*E*I)/(kl)^2其中,E为弹性模量,I为惯性矩,kl为有效长度系数。
惯性矩I=1/12*b*h^3=1/12*300*400^3=32,000,000mm^4有效长度系数kl可根据梁柱的边界条件和约束情况进行计算。
假设矩形柱两端均固定,则kl=0.5代入以上参数,可以得到弹性承载力Pcr=200,000N=200kN。
3.稳定性承载力计算:稳定性承载力计算主要包括屈曲的要求和稳定的要求。
对于矩形柱,屈曲要求可通过欧拉公式计算,稳定的要求可通过查表确定。
两类偏心受压构件正截面承载力的计算方法嘿,咱今儿就来唠唠这两类偏心受压构件正截面承载力的计算方法。
你说这偏心受压构件啊,就好像是咱生活中的那些有点特别的情况。
想象一下,这就好比你要挑担子,一边重一边轻,这就是偏心受压啦。
那怎么知道这担子咱能不能挑得起来呢,这就得靠计算方法啦。
一类计算方法呢,就像是个经验丰富的老手,它会仔细地考虑各种因素。
它会看看这个构件的尺寸啊、材料的强度啊,然后通过一系列的公式和计算,得出一个结果,告诉你这个构件能不能承受住压力。
这就好比你去看病,医生会根据各种检查结果来判断你的身体状况一样。
另一类计算方法呢,则更像是个机灵的小鬼头,它会从不同的角度去思考问题。
它可能会更注重构件的变形情况呀,或者是压力分布的特点呀。
用它来计算,就好像是在玩一个解谜游戏,要找到那个最合适的答案。
你说这计算方法重要不?那可太重要啦!要是没算好,这构件说不定啥时候就出问题啦,那可就麻烦大了。
就像盖房子,要是柱子的承载力没算对,房子不就摇摇欲坠啦?而且啊,这两种计算方法还得结合着用呢。
不能光靠一种方法就下定论,那可不行。
就跟咱做事一样,得多方面考虑,不能一根筋。
在实际工程中,工程师们就得熟练掌握这两种方法,就跟咱熟练掌握自己的工作技能一样。
他们得根据具体情况,选择最合适的方法来计算。
有时候可能这个方法好用,有时候可能就得靠另一个方法啦。
咱可别小看了这小小的计算方法,它们背后可蕴含着大学问呢。
这就好比是一把钥匙,能打开偏心受压构件正截面承载力的秘密之门。
只有掌握了这把钥匙,才能让这些构件乖乖听话,发挥出它们应有的作用。
所以啊,咱得好好对待这两类偏心受压构件正截面承载力的计算方法。
要像对待宝贝一样,认真学习,仔细研究。
这样咱才能在建筑工程中。
第3章 受压构件的截面承载力本章提要受压构件是钢筋混凝土结构中的重要章节,它分为轴心受压和偏心受压(单向偏心受压构件和双向偏心受压构件)两部分。
轴心受压构件截面应力分布均匀,两种材料承受压力之和,在考虑构件稳定影响系数后,即为构件承载力计算公式。
对于配有纵筋及螺旋箍筋的柱,由于螺旋箍筋约束混凝土的横向变形,因而其承载力将会有限度的提高。
偏心受压构件因偏心距大小和受拉钢筋多少的不同,截面将有两种破坏情况,即大偏心受压(截面破坏时受拉钢筋能屈服)和小偏心受压(截面破坏时受拉钢筋不能屈服)构件。
在考虑了偏心距增大系数后,根据截面力的平衡条件,即可得偏心受压构件的计算公式。
截面有对称配筋和不对称配筋两类,实用上对称配筋截面居多。
无论是对称配筋或不对称配筋,计算时均应判别大、小偏心的界限,分别用其计算公式对截面进行计算。
本章学习目标:了解轴心受压构件的受力全过程,偏心受压构件的受力工作特性;熟悉两种不同偏心受压构件的破坏特征及由此划分成的两类偏心受压构件,掌握两类偏心受压构件的判别方法;掌握轴心受压构件、两类偏心受压构件的正截面承载力计算方法;掌握偏心受压构件的斜截面承载力计算方法;熟悉受压构件的构造要求。
课堂教学学时:12学时主要教学内容:3.1 受压构件一般构造要求3.1.1 截面型式及尺寸1. 截面型式一般采用方形或矩形,有时也采用圆形或多边形。
偏心受压构件一般采用矩形截面,但为了节约混凝土和减轻柱的自重,较大尺寸的柱常常采用I形截面。
拱结构的肋常做成T形截面。
采用离心法制造的柱、桩、电杆以及烟囱、水塔支筒等常用环形截面。
2. 截面尺寸:(1) 方形或矩形截面柱截面不宜小于300mm×300mm。
为了避免矩形截面轴心受压构件长细比过大,承载力降低过多,通常取l0/b≤30,l0/h≤25。
此处l0为柱的计算长度,b为矩形截面短边边长,h为长边边长。
为了施工支模方便,柱截面尺寸宜使用整数,截面尺寸≤800mm,以50mm 为模数;截面尺寸>800 mm ,以100mm 为模数。
第六章受压构件截面承载力计算受压构件包括柱、短杆、墙等结构中的竖向构件。
在受到外部压力的作用下,受压构件会产生内部应力,当该应力超过材料的承载能力时,结构就会发生破坏。
因此,了解受压构件截面的承载能力非常重要,可以保证结构的安全性。
截面承载力计算按照材料的不同分类,一般分为钢材和混凝土结构的计算方法。
以下将分别介绍这两种材料的截面承载力计算方法。
钢材截面承载力计算方法:1.确定边缘受压构件的型式,常见的有矩形、L形、T形和带肋板等,根据构件的几何形状,选择相应的计算方法。
2.通过截面分析,确定构件的有效高度和宽度。
3.确定截面的截面系数,根据构件的几何形状和受力状态,计算出截面系数。
4.根据材料的特性,计算出计算强度和材料的安全系数。
5.通过计算公式,结合以上参数,得出受压构件的截面承载力。
混凝土结构截面承载力计算方法:1.确定混凝土的试验结果,包括抗压强度、抗弯强度等。
2.根据受压构件的几何形状和受力状态,计算出截面的面积和惯性矩。
3.确定混凝土的计算强度和材料的安全系数。
4.根据截面形状和受力状态,选取相应的公式,计算出截面承载力。
5.根据所得结果,进行合理的构造设计。
在受压构件截面承载力计算中,不同材料的计算方法有所不同,但都需要考虑材料的特性和截面的几何形状。
此外,还需要参考相关的标准和规范,以确保计算结果的准确性和可靠性。
总而言之,受压构件截面承载力计算是一个复杂而重要的工作,需要考虑多个因素,包括材料的特性、截面的几何形状和受力状态等。
通过合理的计算方法和准确的数据,可以确定受压构件的最大承载能力,保证结构的安全性和稳定性。
受压构件截面承载力计算
受压构件截面承载力计算是结构工程中的重要计算内容之一、在设计
受压构件时,需要保证构件的承载力不低于设计要求,以确保结构的安全
性和稳定性。
受压构件截面承载力的计算涉及到材料力学、截面形状和尺寸,以及截面临界状态等多个因素。
以下是受压构件截面承载力计算的基
本步骤和方法。
1.分析受压构件的材料力学性能:首先需要确定受压构件的材料类型
和性能参数,包括弹性模量、屈服强度、抗压强度等。
这些参数可以在材
料手册中查找或者进行材料试验获得。
2.确定构件的截面几何特征:受压构件的截面形状决定了其承载能力。
常见的受压构件截面形状包括矩形、圆形、T形、工字形等。
需要根据实
际情况确定构件的截面几何参数,如截面面积、惯性矩、受压边缘等。
3.计算截面承载能力:使用截面承载能力公式或者截面性能表格,根
据受压构件的材料性能和截面几何特征计算截面的承载能力。
常用的计算
方法有强度设计法、极限状态设计法和变形极限设计法等。
4.考虑临界状态和稳定性:受压构件在承载过程中可能会出现临界状
态和稳定性问题,如屈曲、侧扭、局部稳定等。
需根据受压构件的长度、
约束条件、支承条件等因素,对构件进行临界状态和稳定性分析,以确保
构件在正常使用条件下不会失稳。
总结起来,受压构件截面承载力计算是一项复杂的工作,需要综合考
虑材料力学、截面形状和尺寸、临界状态和稳定性等多个因素。
设计工程
师需要有扎实的结构力学和材料力学基础,以及丰富的实际工程经验,才
能进行准确可靠的受压构件截面承载力计算。
偏心受压构件正截面受压破坏形态偏心受压短柱的破坏形态试验表明,钢筋混凝土偏心受压短柱的破坏形态有受拉破坏和受压破坏两种情况。
1.受拉破坏形态受拉破坏又称大偏心受压破坏,它发生于轴向力N的相对偏心距较大,且受拉钢筋配置得不太多时。
受拉破坏形态的特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎,是与适筋梁破坏形态相似的延性破坏类型。
构件破坏时,其正截面上的应力状态如上图(a)所示;构件破坏时的立面展开图见下图(b)。
2.受压破坏形态受压破坏形态又称小偏心受压破坏,截面破坏是从受压区开始的,发生于以下两种情况。
(1)当轴向力N的相对偏心距较小时,构件截面全部受压或大部分受压,如图(a)或下图(b)所示的情况。
(2)当轴向力的相对偏心距虽然较大,但却配置了特别多的受拉钢筋,致使受拉钢筋始终不屈服。
破坏时,受压区边缘混凝土达到极限压应变值,受压钢筋应力达到抗压屈服强度,而远侧钢筋受拉而不屈服,其截面上的应力状态如下图(a)所示。
破坏无明显预兆,压碎区段较长,混凝土强度越高,破坏越带突然性,见下图(c)。
总之,受压破坏形态或称小偏心受压破坏形态的特点是混凝土先被压碎,远侧钢筋可能受拉也可能受压,但都不屈服,属于脆性破坏类型。
在“受拉破坏形态”与“受压破坏形态”之间存在着一种界限破坏形态,称为“界限破坏”。
它不仅有横向主裂缝,而且比较明显.。
其主要特征是:在受拉钢筋应力达到屈服强度的同时、受压区混凝土被压碎。
界限破坏形态也属子受拉破坏形态。
长柱的正截面受压破坏试验表明,钢筋混凝土柱在承受偏心受压荷载后,会产生纵向弯曲。
但长细比小的柱,即所谓“短柱”,由于纵向弯曲小,在设计时一般可忽略不计。
对于长细比较大的柱则不同,它会产生比较大的纵向弯曲,设计时必须予以考虑。
下图是一根长柱的荷载一侧向变形(N -f)实验曲线。
偏心受压长柱在纵向弯曲影响下‘可能发生两种形式的破坏。
长细比很大时,构件的破坏不是由于材料引起的,而是由于构件纵向弯曲失去平衡引起的,称为“失稳破坏”。
3受压构件截面承载力计算受压构件截面承载力计算指的是根据构件材料和几何形状对受压构件的最大承载能力进行估算和计算的过程。
在工程设计和结构分析中,准确计算截面承载力对于保证结构的安全性和经济性至关重要。
受压构件一般是指在受纵向压力作用下,梁、柱、墙等构件的截面。
构件材料可以是钢材、钢筋混凝土、木材等。
常见的受压构件截面形状有矩形、圆形、T形、L形等。
截面承载力计算的基本步骤如下:1.截面区域的几何形状计算:根据构件的型号和梁、柱的跨度、高度等参数,计算出截面区域的几何形状,如截面面积、惯性矩、截面模数等。
2.材料的力学性质计算:根据构件所采用的材料,查找相应的力学性质数据,如弹性模量、屈服强度、抗压强度等。
3.塑性计算和极限状态设计:根据构件所处的工况和受力情况,进行塑性计算和极限状态设计。
塑性计算是指构件材料在超过屈服强度后,发生塑性变形的计算。
极限状态设计是指在允许的极限荷载状态下,不发生塑性变形的构件设计。
4.受压构件的稳定计算:对于长细比较大的构件,需要进行稳定计算,考虑构件在受压状态下的侧扭承载能力和稳定性。
5.弯曲和剪切计算:受压构件在受力时,还会发生弯曲和剪切作用,需要进行相应的计算。
6.验算和比较:完成上述计算后,进行验算和比较,检查计算结果是否满足设计要求和规范规定。
需要注意的是,截面承载力的计算一般采用强度理论和极限平衡理论进行,计算结果应该参考相应的设计规范和标准。
总结起来,受压构件截面承载力的计算包括几何形状的计算、材料性质的计算、塑性计算和极限状态设计、稳定性计算、弯曲和剪切计算等步骤。
对于不同的构件材料和几何形状,计算方法有所不同,需要根据具体情况进行估算和计算。
轴心受压构件正截面承载力计算首先,要计算轴心受压构件的正截面承载力,我们需要了解构件的几何参数,例如截面的尺寸和形状,以及构件的材料特性,如弹性模量和抗压强度等。
下面介绍一种常用的计算方法,即欧拉公式。
欧拉公式适用于细长的杆件,可以计算其承载力。
根据欧拉公式,轴心受压构件的正截面承载力可以表示为:Pcr = (π^2 * E * I) / (Lr)^2其中,Pcr 是构件的临界承载力,E 是构件的弹性模量,I 是构件截面的惯性矩,Lr 是约化长度。
对于不同的构件形状,惯性矩I的计算公式也不同。
以下是一些常见形状的惯性矩计算公式:1.矩形截面:I=(b*h^3)/12,其中b是截面的宽度,h是截面的高度;2.圆形截面:I=π*(d^4)/64,其中d是截面的直径;3.方管截面:I=(b*h^3-(b'*h')^3)/12,其中b是外边框的宽度,h是外边框的高度,b'是内边框的宽度,h'是内边框的高度。
约化长度Lr的计算取决于构件的边界条件。
以下是一些常见边界条件的约化长度计算公式:1.双端固定支承:Lr=L;2.一端固定支承、一端支座支承:Lr=0.7*L;3.双端支座支承:Lr=2*L。
通过使用上述公式,我们可以计算出轴心受压构件的正截面承载力。
需要注意的是,上述公式是基于一些理想化假设和条件下推导得出的,实际工程中还需要考虑一些因素,例如构件的稳定性和局部细部构造等。
因此,在实际设计中,应该根据具体情况综合考虑各种因素,并结合相关的规范和标准进行设计和验证,以确保构件的安全性和可靠性。
总之,轴心受压构件正截面承载力计算是工程设计中的重要环节。
通过合理的参数选择和计算,可以确定构件能够安全承受的最大压力,从而保证结构的安全和可靠性。
混凝土受压构件正截面受压承载力的计算方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!混凝土受压构件正截面受压承载力的计算方法引言混凝土结构是建筑工程中常见的结构形式之一,其受力性能直接关系到结构的安全性和稳定性。
第7章 受压构件正截面受压承载力知识点1.配有纵筋和箍筋的轴心受压柱的受力全过程及其破坏特征;2.配有纵筋和箍筋的轴心受压柱的承载力计算;3.配有纵筋和螺旋筋的轴心受压柱的承载力及计算公式;4.偏心受压构件的破坏形态及其分类,界限破坏,纵向弯曲(二阶弯矩)的影响;5.矩形、工字形截面偏心受压构件的正截面承载力计算,矩形截面不对称和对称配筋的计算方法;6.偏心受压构件斜截面受剪承载力计算;7.双向偏心受压矩形正截面承载力的简化计算方法;8.受压构件的构造要求;9.偏心受压构件的截面延性的特点。
要点1.螺旋箍筋柱较普通箍筋柱承载力提高的原因是螺旋筋约束了混凝土的横向变形。
2.轴心受压构件,配置纵筋的作用是帮助混凝土承受压力,减力构件截面尺寸。
3.《混凝土结构设计规范》规定,配有螺旋式或焊接环式间接钢筋柱的承载能力不能高于配有普通箍筋柱承载能力的50%。
4.偏心受压构件界限破坏的特点:偏心受压构件界限破坏时远离轴向力一侧的钢筋屈服与受压区混凝土压碎同时发生。
5.如何确定大偏心受压构件:计算偏心受压构件,当b ξξ≤时,构件确定属于大偏心受压构件。
6.偏心受压构件的破坏形态有大偏心受压和小偏心受压两种情况。
7.轴心受压承载力的计算公式:N =0.9φ(f c A +f ′′y A ′s )。
8.偏心受压构件斜截面受剪承载力计算公式是在受弯构件斜截面受剪承载力公式基础上多了一项0.07N ,同时要求当轴向力N>0.3f c A 时,取A f N c 3.0=。
9.《混凝土结构设计规范》采用稳定系数ϕ表示长柱承载能力的降低程度,所以,ϕ为长柱的承载力)(l u N 与短柱的承载力)(su N 之比。
<0.55h 0 >2a ′10.轴心受压构件中,配置纵筋的作用是帮助混凝土承受压力,减小构件截面尺寸。
11.偏心受压构件的破坏特征:大偏心受压破坏,属延性破坏;破坏特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎。
第七章受压构件的截面计算解析受压构件是指受到压力加载的结构构件,如柱子、墙体等。
在设计和施工中,需要对受压构件的截面进行计算解析,以保证其承载能力和稳定性。
受压构件截面计算解析主要包括以下几个方面:1.截面尺寸的确定:首先需要确定受压构件的截面尺寸,包括高度、宽度等。
一般来说,截面尺寸的确定要满足一定的几何限制,如对于矩形截面,要求宽度大于等于高度的1/6,以避免构件过于细长。
2.材料的选取:受压构件的材料一般选用混凝土、钢材等,根据设计要求和使用环境的不同,需要选择合适的材料。
在选取材料时,要考虑其强度、耐久性、抗震性等指标。
3.截面的承载力计算:截面的承载力是指受压构件在承受压力加载时能够抵抗破坏的能力。
对于不同的受压构件,有不同的承载力计算方法。
例如,对于矩形截面的受压构件,可以采用材料的抗压强度和构件的几何特性来计算承载力。
4.屈曲稳定性的考虑:受压构件在受到压力加载时,可能会发生屈曲现象,即构件整体发生弯曲。
屈曲的稳定性是指构件在发生弯曲后能够保持稳定的能力。
在设计中,需要计算受压构件的稳定系数,以判断其是否具有足够的稳定性,并采取适当的措施进行加固。
5.构件的连接方式:受压构件与其他构件的连接方式也需要考虑。
连接方式的选择应符合设计要求和结构安全性的要求,并考虑施工的便利性。
在计算解析中,需要对连接方式进行分析,包括焊接、螺栓连接等。
在进行受压构件的截面计算解析时,需要遵循相关的设计规范和标准,如国家标准《混凝土结构设计规范》、《钢结构设计规范》等。
同时,还需要考虑实际工程中的具体情况,如荷载、使用环境等因素,以保证构件的安全性和可靠性。
总之,受压构件的截面计算解析是保证结构安全性和稳定性的重要工作。
通过合理的截面尺寸、材料选取和构件连接方式的选择,以及承载力和稳定性的计算分析,可以保证受压构件在受压加载下能够满足设计要求,并确保结构的安全可靠。
受压构件正截面承载力计算受压构件是指在使用过程中承受压力作用的构件,如柱子、立柱等。
正截面承载力计算是指在已知受压构件材料和几何尺寸的情况下,计算其能够承受的最大压力,以保证结构的安全性。
正截面承载力计算主要包括以下几个步骤:1.确定受压构件截面形状及尺寸:根据结构设计要求和功能要求,确定受压构件的截面形状,如矩形、圆形等,以及截面尺寸,如高度、宽度、直径等。
2.分析受压构件受力状态:根据设计要求,确定受压构件受力状态,即确定压力作用方向、大小及作用点位置等,以便后面的计算。
3.计算受压构件的破坏性能:根据受压构件的材料性能,主要包括材料的强度和稳定性等方面的参数,计算受压构件在受力状态下的破坏性能,即确定截面的抗弯强度和抗屈服强度等。
4.计算受压构件的承载力:根据得到的受力状态和破坏性能,利用相应的理论方法和公式,计算受压构件的正截面承载力。
具体的计算方法分为两类:弯曲承载力计算和屈服承载力计算。
弯曲承载力计算是指根据受压构件的抗弯强度,计算受压构件在受力状态下的抗弯强度,以确定其可承受最大压力。
一般采用挠度控制理论或抗弯承载力计算方法来计算。
屈服承载力计算是指根据受压构件的抗屈服强度,计算受压构件在受力状态下的抗屈服强度,以确定其可承受的最大压力。
一般采用杆件稳定性理论或屈曲承载力计算方法来计算。
需要注意的是,在进行正截面承载力计算时,一般需要考虑钢材的弹性和塑性变形,从而保证受压构件在承受压力时不会发生破坏。
同时,还需要根据设计要求和使用条件,选择适当的安全系数,以确保受压构件的安全可靠。
总的来说,正截面承载力计算是受压构件设计和分析的重要内容,通过合理的计算和设计,可以保证受压构件的力学性能和结构安全,满足使用要求。