06 受压构件的截面承载力
- 格式:ppt
- 大小:4.90 MB
- 文档页数:82
第 6 章 受压构件的截面承载力第 5 章 受压构件的截面承载力本章要点受压构件的一般构造要求; 轴心受压构件正截面受压承载力; 偏心受压构件正截面受压破坏形态; 矩形截面偏心受压构件受压承载力计算; 对称配筋 I 形截面偏心受压构件受压承载力计算; 偏心受压构件斜截面受剪承载力计算;第 6 章 受压构件的截面承载力概述以承受轴向压力为主的构件属于受压构件。
轴心受压构件 受压构件 偏心受压构件 单向偏心受压构件 双向偏心受压构件5.1 受压构件的一般构造要求截面形式及尺寸受压构件一般使用方形、矩形、圆形或多边形,为了 节省材料有时用I形截面,为了适应建筑要求,近些年 异形柱越来越多被使用。
第 6 章 受压构件的截面承载力方形柱的截面尺寸不宜小于250×250mm; 柱的长细比常取 l0/b ≤30, l0/h ≤25; 为施工方便,截面尺寸宜用 50mm的倍数(<800mm) 100mm的倍数(≥800mm) 对于I形截面 翼缘厚度不宜小于120mm 腹部厚度不宜小于100mm材料强度混凝土强度等级对受压构件的承载能力影响较大,为了减 小构件的尺寸,节省钢材,宜采用较高强度等级的混凝土。
纵向钢筋一般采用HRB400级、HRB335级和RRB400级, 不宜采用高强钢筋,这是因为它与混凝土共同受压时,不能 充分发挥其高强度的作用。
箍筋同梁。
第 6 章 受压构件的截面承载力纵筋配筋率:全部纵筋的配筋率≥ 0.6%,同时一侧≥0.2%; 全部纵筋的配筋率不宜大于5%; 钢筋的布置 轴心受压构件:沿截面四周均匀放置 ; 钢筋根数不少于4根 ; 偏心受压构件:纵向受力钢筋放置在偏心 方向截面的两边; h≥600mm,须设构造筋; 钢筋间距:净距不应小于50mm,中距不大于300mm; 钢筋连接:可用机械连接、焊接连接和搭接连接,对于 直径大于28mm的受拉钢筋和直径大于30mm的受 压钢筋接头不宜用绑扎搭接的连接方法。
第6 章受压构件的截面承载力思考题6.1 轴心受压普通钢筋短柱与长柱的破坏形态有何不同?轴心受压长柱的稳定系数? 如何确定?轴心受压普通箍筋短柱的破坏形态是随着荷载的增加,柱中开始出现微细裂缝,在临近破坏荷载时,柱四周出现明显的纵向裂缝,箍筋间的纵筋发生压屈,向外凸出,混凝土被压碎,柱子即告破坏。
而长柱破坏时,首先在凹侧出现纵向裂缝,随后混凝土被压碎,纵筋被压屈向外凸出;凸侧混凝土出现垂直于纵轴方向的横向裂缝,侧向挠度急剧增大,柱子破坏。
l s l s 《混凝土结构设计规范》采用稳定系数? 来表示长柱承载力的降低程度,即? =N u / N u ,N u 和N u 分别为长柱和短柱的承载力。
根据试验结果及数理统计可得? 的经验计算公式:当l0/b=8~34 时,? =1.177-0.021l0/b;当l0/b=35~50 时,? =0.87-0.012l0/b。
《混凝土结构设计规范》中,对于长细比l0/b 较大的构件,考虑到荷载初始偏心和长期荷载作用对构件承载力的不利影响较大,的? 取值比按经验公式所得到的? 值还要降低一些,以保证安全。
对于长细比l0/b 小于20 的构件,考虑到过去使用经验,? 的取值略微抬高一些,以使计算用钢量不致增加过多。
6.2 简述偏心受压短柱的破坏形态。
偏心受压构件如何分类?钢筋混凝土偏心受压短柱的破坏形态有受拉破坏和受压破坏两种情况。
受拉破坏形态又称大偏心受压破坏,它发生于轴向力N 的相对偏心距较大,且受拉钢筋配置得不太多时。
随着荷载的增加,首先在受拉区产生横向裂缝;荷载再增加,拉区的裂缝随之不断地开裂,在破坏前主裂缝逐渐明显,受拉钢筋的应力达到屈服强度,进入流幅阶段,受拉变形的发展大于受压变形,中和轴上升,使混凝土压区高度迅速减小,最后压区边缘混凝土达到极限压应变值,出现纵向裂缝而混凝土被压碎,构件即告破坏,破坏时压区的纵筋也能达到受压屈服强度,这种破坏属于延性破坏类型,其特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎。
第3章 受压构件的截面承载力本章提要受压构件是钢筋混凝土结构中的重要章节,它分为轴心受压和偏心受压(单向偏心受压构件和双向偏心受压构件)两部分。
轴心受压构件截面应力分布均匀,两种材料承受压力之和,在考虑构件稳定影响系数后,即为构件承载力计算公式。
对于配有纵筋及螺旋箍筋的柱,由于螺旋箍筋约束混凝土的横向变形,因而其承载力将会有限度的提高。
偏心受压构件因偏心距大小和受拉钢筋多少的不同,截面将有两种破坏情况,即大偏心受压(截面破坏时受拉钢筋能屈服)和小偏心受压(截面破坏时受拉钢筋不能屈服)构件。
在考虑了偏心距增大系数后,根据截面力的平衡条件,即可得偏心受压构件的计算公式。
截面有对称配筋和不对称配筋两类,实用上对称配筋截面居多。
无论是对称配筋或不对称配筋,计算时均应判别大、小偏心的界限,分别用其计算公式对截面进行计算。
本章学习目标:了解轴心受压构件的受力全过程,偏心受压构件的受力工作特性;熟悉两种不同偏心受压构件的破坏特征及由此划分成的两类偏心受压构件,掌握两类偏心受压构件的判别方法;掌握轴心受压构件、两类偏心受压构件的正截面承载力计算方法;掌握偏心受压构件的斜截面承载力计算方法;熟悉受压构件的构造要求。
课堂教学学时:12学时主要教学内容:3.1 受压构件一般构造要求3.1.1 截面型式及尺寸1. 截面型式一般采用方形或矩形,有时也采用圆形或多边形。
偏心受压构件一般采用矩形截面,但为了节约混凝土和减轻柱的自重,较大尺寸的柱常常采用I形截面。
拱结构的肋常做成T形截面。
采用离心法制造的柱、桩、电杆以及烟囱、水塔支筒等常用环形截面。
2. 截面尺寸:(1) 方形或矩形截面柱截面不宜小于300mm×300mm。
为了避免矩形截面轴心受压构件长细比过大,承载力降低过多,通常取l0/b≤30,l0/h≤25。
此处l0为柱的计算长度,b为矩形截面短边边长,h为长边边长。
为了施工支模方便,柱截面尺寸宜使用整数,截面尺寸≤800mm,以50mm 为模数;截面尺寸>800 mm ,以100mm 为模数。
偏心受压构件正截面受压破坏形态偏心受压短柱的破坏形态试验表明,钢筋混凝土偏心受压短柱的破坏形态有受拉破坏和受压破坏两种情况。
1.受拉破坏形态受拉破坏又称大偏心受压破坏,它发生于轴向力N的相对偏心距较大,且受拉钢筋配置得不太多时。
受拉破坏形态的特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎,是与适筋梁破坏形态相似的延性破坏类型。
构件破坏时,其正截面上的应力状态如上图(a)所示;构件破坏时的立面展开图见下图(b)。
2.受压破坏形态受压破坏形态又称小偏心受压破坏,截面破坏是从受压区开始的,发生于以下两种情况。
(1)当轴向力N的相对偏心距较小时,构件截面全部受压或大部分受压,如图(a)或下图(b)所示的情况。
(2)当轴向力的相对偏心距虽然较大,但却配置了特别多的受拉钢筋,致使受拉钢筋始终不屈服。
破坏时,受压区边缘混凝土达到极限压应变值,受压钢筋应力达到抗压屈服强度,而远侧钢筋受拉而不屈服,其截面上的应力状态如下图(a)所示。
破坏无明显预兆,压碎区段较长,混凝土强度越高,破坏越带突然性,见下图(c)。
总之,受压破坏形态或称小偏心受压破坏形态的特点是混凝土先被压碎,远侧钢筋可能受拉也可能受压,但都不屈服,属于脆性破坏类型。
在“受拉破坏形态”与“受压破坏形态”之间存在着一种界限破坏形态,称为“界限破坏”。
它不仅有横向主裂缝,而且比较明显.。
其主要特征是:在受拉钢筋应力达到屈服强度的同时、受压区混凝土被压碎。
界限破坏形态也属子受拉破坏形态。
长柱的正截面受压破坏试验表明,钢筋混凝土柱在承受偏心受压荷载后,会产生纵向弯曲。
但长细比小的柱,即所谓“短柱”,由于纵向弯曲小,在设计时一般可忽略不计。
对于长细比较大的柱则不同,它会产生比较大的纵向弯曲,设计时必须予以考虑。
下图是一根长柱的荷载一侧向变形(N -f)实验曲线。
偏心受压长柱在纵向弯曲影响下‘可能发生两种形式的破坏。
长细比很大时,构件的破坏不是由于材料引起的,而是由于构件纵向弯曲失去平衡引起的,称为“失稳破坏”。
《结构设计原理》教案第六章钢筋混凝⼟受压构件承载能⼒计算精品1、轴⼼受压构件在实际⼯程中⼏乎没有。
如果荷载偏⼼距很⼩,所产⽣的弯矩与其轴⼒相⽐甚⼩,可略去不计时,则视为轴⼼受压构件。
其计算⽅法简单,但应重视它的构造要求,并注意细长⽐对失稳的重要影响。
螺旋箍盘柱施⼯较复杂,只有当柱⼦受⼒很⼤时,才考虑采⽤它。
2、矩形、I形偏⼼受压构件必须确定是⼤偏⼼还是⼩偏⼼,因为两者在计算上有本质的差别。
3、偏⼼受压构件可以看成是轴⼼压⼒N和弯矩M=N·e0 的共同作⽤。
由于M的作⽤将使构件产⽣挠曲变形f⼜和轴⼼压⼒N组成附加弯矩,从⽽使其计算复杂化。
附加弯矩的⼤⼩与N、e0和f 有关,⽽f⼜与截⾯尺⼨、配筋多少、混凝⼟强度等级、钢筋种类等因素有关。
4、学习时要注意⼤⼩偏⼼⼆种情况的计算公式、分界条件、适⽤条件等。
5、⼤偏⼼受压构件的受⼒和变形特点,与受弯构件双筋梁相类似;⼩偏受压构件的受⼒和变形特点与轴⼼受压构件相类似。
学习时可与受弯构件和轴⼼受压构件结合起来学习,以加深理解。
6、圆形截⾯偏⼼受压构件不分⼤⼩偏⼼,重点掌握实⽤计算法。
第⼀节轴⼼受压构件的强度计算⼀、普通箍筋柱⼆、螺旋箍筋柱以承受轴向压⼒为主的构件称为受压构件。
凡荷载的合⼒通过截⾯形⼼的受压构件称之为轴⼼受压构件(compression members with axial load at zero eccentricity)。
若纵向荷载的合⼒作⽤线偏离构件形⼼的构件称之为偏⼼受压构件。
受压构件(柱)往往在结构中具有重要作⽤,⼀旦产⽣破坏,往往导致整个结构的损坏,甚⾄倒塌。
按箍筋作⽤的不同,钢筋混凝⼟轴⼼受压构件可分为两种基本类型:⼀种为配有纵向钢筋及普通箍筋的构件,称为普通箍筋柱(tied columns),如图;另⼀种为配有纵向钢筋及螺旋箍筋或焊环形箍筋的螺旋箍筋柱(spirally reinforced columns),如图。
第6章受压构件的截面承载力6.1选择题1.钢筋混凝土轴心受压构件,稳定系数是考虑了( D )。
A.初始偏心距的影响;B.荷载长期作用的影响;C.两端约束情况的影响;D.附加弯矩的影响;2.对于高度、截面尺寸、配筋完全相同的柱,以支承条件为( A )时,其轴心受压承载力最大。
A.两端嵌固;B.一端嵌固,一端不动铰支;C.两端不动铰支;D.一端嵌固,一端自由;3.钢筋混凝土轴心受压构件,两端约束情况越好,则稳定系数(A)。
A.越大;B.越小;C.不变;4.一般来讲,配有螺旋箍筋的钢筋混凝土柱同配有普通箍筋的钢筋混凝土柱相比,前者的承载力比后者的承载力(B)。
A.低;B.高;C.相等;5.对长细比大于12的柱不宜采用螺旋箍筋,其原因是( D )。
A.这种柱的承载力较高;B.施工难度大;C.抗震性能不好;D.这种柱的强度将由于纵向弯曲而降低,螺旋箍筋作用不能发挥;6.轴心受压短柱,在钢筋屈服前,随着压力而增加,混凝土压应力的增长速率(C)。
A.比钢筋快;B.线性增长;C.比钢筋慢;7.两个仅配筋率不同的轴压柱,若混凝土的徐变值相同,柱A配筋率大于柱B,则引起的应力重分布程度是(B)。
A.柱A=柱B;B.柱A>柱B;C.柱A<柱B;8.与普通箍筋的柱相比,有间接钢筋的柱主要破坏特征是(D)。
A.混凝土压碎,纵筋屈服;B.混凝土压碎,钢筋不屈服;C.保护层混凝土剥落;D.间接钢筋屈服,柱子才破坏;9. 螺旋筋柱的核心区混凝土抗压强度高于fc 是因为( C )。
A .螺旋筋参与受压;B .螺旋筋使核心区混凝土密实;C .螺旋筋约束了核心区混凝土的横向变形;D .螺旋筋使核心区混凝土中不出现内裂缝;10. 有两个配有螺旋钢箍的柱截面,一个直径大,一个直径小,其它条件均相同,则螺旋箍筋对哪一个柱的承载力提高得大些( B )。
A .对直径大的;B .对直径小的;C .两者相同;11. 为了提高钢筋混凝土轴心受压构件的极限应变,应该( C )。