受压构件的截面承载力计算-
- 格式:ppt
- 大小:3.10 MB
- 文档页数:48
受压构件的承载力计算一、梁柱的承载力计算方法对于受压构件,在弹性范围内,可以采用弹性承载力计算方法。
弹性承载力计算方法是根据梁柱的理论,主要应用弹性力学原理和应变能平衡条件进行计算。
在弹性承载力计算之外,受压梁柱的承载力还受到稳定性要求的限制。
稳定性要求主要包括屈曲的要求和稳定的要求。
稳定性承载力计算方法就是根据稳定性要求来计算的。
二、承载力计算的基本原理和方法1.构件的截面形态与材料的力学性能有关。
几何形态方面,可以通过截面形心深度、截面形态系数和截面面积等参数来描述。
力学性能方面,主要包括材料的抗压强度、屈服强度和弹性模量等参数。
2.构件的边界条件与受力特性有关。
边界条件主要包括自由端的约束、内力的约束和约束条件等。
边界条件对构件的承载力有着直接的影响,需要进行准确的分析和计算。
3.构件的荷载和荷载组合也是影响承载力计算的重要因素。
荷载包括静力荷载和动力荷载,荷载组合则是不同荷载的叠加组合。
需要根据具体情况来确定荷载和荷载组合,并进行相应的计算。
假设一个矩形柱的尺寸为300mm×400mm,材料抗压强度为250MPa,弹性模量为200 GPa。
根据以上参数,可以进行如下步骤的承载力计算。
1.计算截面形态参数:矩形柱的形心深度h=400/2=200mm形态系数α=(h/t)f/π^2=2.692.弹性承载力计算:根据梁柱的理论,弹性承载力可通过以下公式计算:Pcr=(π^2*E*I)/(kl)^2其中,E为弹性模量,I为惯性矩,kl为有效长度系数。
惯性矩I=1/12*b*h^3=1/12*300*400^3=32,000,000mm^4有效长度系数kl可根据梁柱的边界条件和约束情况进行计算。
假设矩形柱两端均固定,则kl=0.5代入以上参数,可以得到弹性承载力Pcr=200,000N=200kN。
3.稳定性承载力计算:稳定性承载力计算主要包括屈曲的要求和稳定的要求。
对于矩形柱,屈曲要求可通过欧拉公式计算,稳定的要求可通过查表确定。
矩形截面偏心受压构件正截面的承载力计算一、矩形截面大偏心受压构件正截面的受压承载力计算公式 (一)大偏心受压构件正截面受压承载力计算(1)计算公式由力的平衡条件及各力对受拉钢筋合力点取矩的力矩平衡条件,可以得到下面两个基本计算公式:s y s y c A f A f bx f N -+=''1α (7-23)()'0''012a h A f x h bx f Ne s y c -+⎪⎭⎫ ⎝⎛-=α (7-24)式中: N —轴向力设计值;α1 —混凝土强度调整系数;e —轴向力作用点至受拉钢筋A S 合力点之间的距离;a he e i -+=2η (7-25) a i e e e +=0 (7-26)η—考虑二阶弯矩影响的轴向力偏心距增大系数,按式(7-22)计算;e i —初始偏心距;e 0 —轴向力对截面重心的偏心距,e 0 =M/N ;e a —附加偏心距,其值取偏心方向截面尺寸的1/30和20㎜中的较大者; x —受压区计算高度。
(2)适用条件1) 为了保证构件破坏时受拉区钢筋应力先达到屈服强度,要求b x x ≤ (7-27)式中 x b — 界限破坏时,受压区计算高度,o b b h x ξ= ,ξb 的计算见与受弯构件相同。
2) 为了保证构件破坏时,受压钢筋应力能达到屈服强度,和双筋受弯构件相同,要求满足:'2a x ≥ (7-28) 式中 a ′ — 纵向受压钢筋合力点至受压区边缘的距离。
(二)小偏心受压构件正截面受压承载力计算(1)计算公式根据力的平衡条件及力矩平衡条件可得s s s y c A A f bx f N σα-+=''1 (7-29)⎪⎭⎫ ⎝⎛'-+⎪⎭⎫ ⎝⎛-=s s y c a h A f x h bx f Ne 0''012α (7-30) ()'0''1'2s s s s c a h A a x bx f Ne -+⎪⎭⎫⎝⎛-=σα (7-31)式中 x — 受压区计算高度,当x >h ,在计算时,取x =h ;σs — 钢筋As 的应力值,可根据截面应变保持平面的假定计算,亦可近似取:y b s f 11βξβξσ--=(7-32)要求满足:y s y f f ≤≤σ'x b — 界限破坏时受压区计算高度,0h x b b ξ=;b ξξ、 — 分别为相对受压区计算高度 x/h 0和相对界限受压区计算高度x b /h 0 ;'e e 、′— 分别为轴向力作用点至受拉钢筋A s 合力点和受压钢筋A s ′合力点之间的距离 a he e i -+=2η (7-33) ''2a e he i --=η (7-34) (2)对于小偏心受压构件当bh f N c >时,除按上述式(7-30)和式(7-31)或式(7-32)计算外,还应满足下列条件:()()s s y c a a h A f h h bh f e e a h N -+⎪⎭⎫⎝⎛-≤⎥⎦⎤⎢⎣⎡---'0''00'22 (7-35 )式中 '0h — 钢筋's A 合力点至离纵向较远一侧边缘的距离,即s a h h -='0。
第六章受压构件截面承载力计算受压构件包括柱、短杆、墙等结构中的竖向构件。
在受到外部压力的作用下,受压构件会产生内部应力,当该应力超过材料的承载能力时,结构就会发生破坏。
因此,了解受压构件截面的承载能力非常重要,可以保证结构的安全性。
截面承载力计算按照材料的不同分类,一般分为钢材和混凝土结构的计算方法。
以下将分别介绍这两种材料的截面承载力计算方法。
钢材截面承载力计算方法:1.确定边缘受压构件的型式,常见的有矩形、L形、T形和带肋板等,根据构件的几何形状,选择相应的计算方法。
2.通过截面分析,确定构件的有效高度和宽度。
3.确定截面的截面系数,根据构件的几何形状和受力状态,计算出截面系数。
4.根据材料的特性,计算出计算强度和材料的安全系数。
5.通过计算公式,结合以上参数,得出受压构件的截面承载力。
混凝土结构截面承载力计算方法:1.确定混凝土的试验结果,包括抗压强度、抗弯强度等。
2.根据受压构件的几何形状和受力状态,计算出截面的面积和惯性矩。
3.确定混凝土的计算强度和材料的安全系数。
4.根据截面形状和受力状态,选取相应的公式,计算出截面承载力。
5.根据所得结果,进行合理的构造设计。
在受压构件截面承载力计算中,不同材料的计算方法有所不同,但都需要考虑材料的特性和截面的几何形状。
此外,还需要参考相关的标准和规范,以确保计算结果的准确性和可靠性。
总而言之,受压构件截面承载力计算是一个复杂而重要的工作,需要考虑多个因素,包括材料的特性、截面的几何形状和受力状态等。
通过合理的计算方法和准确的数据,可以确定受压构件的最大承载能力,保证结构的安全性和稳定性。
受压构件截面承载力计算
受压构件截面承载力计算是结构工程中的重要计算内容之一、在设计
受压构件时,需要保证构件的承载力不低于设计要求,以确保结构的安全
性和稳定性。
受压构件截面承载力的计算涉及到材料力学、截面形状和尺寸,以及截面临界状态等多个因素。
以下是受压构件截面承载力计算的基
本步骤和方法。
1.分析受压构件的材料力学性能:首先需要确定受压构件的材料类型
和性能参数,包括弹性模量、屈服强度、抗压强度等。
这些参数可以在材
料手册中查找或者进行材料试验获得。
2.确定构件的截面几何特征:受压构件的截面形状决定了其承载能力。
常见的受压构件截面形状包括矩形、圆形、T形、工字形等。
需要根据实
际情况确定构件的截面几何参数,如截面面积、惯性矩、受压边缘等。
3.计算截面承载能力:使用截面承载能力公式或者截面性能表格,根
据受压构件的材料性能和截面几何特征计算截面的承载能力。
常用的计算
方法有强度设计法、极限状态设计法和变形极限设计法等。
4.考虑临界状态和稳定性:受压构件在承载过程中可能会出现临界状
态和稳定性问题,如屈曲、侧扭、局部稳定等。
需根据受压构件的长度、
约束条件、支承条件等因素,对构件进行临界状态和稳定性分析,以确保
构件在正常使用条件下不会失稳。
总结起来,受压构件截面承载力计算是一项复杂的工作,需要综合考
虑材料力学、截面形状和尺寸、临界状态和稳定性等多个因素。
设计工程
师需要有扎实的结构力学和材料力学基础,以及丰富的实际工程经验,才
能进行准确可靠的受压构件截面承载力计算。
偏心受压构件正截面受压破坏形态偏心受压短柱的破坏形态试验表明,钢筋混凝土偏心受压短柱的破坏形态有受拉破坏和受压破坏两种情况。
1.受拉破坏形态受拉破坏又称大偏心受压破坏,它发生于轴向力N的相对偏心距较大,且受拉钢筋配置得不太多时。
受拉破坏形态的特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎,是与适筋梁破坏形态相似的延性破坏类型。
构件破坏时,其正截面上的应力状态如上图(a)所示;构件破坏时的立面展开图见下图(b)。
2.受压破坏形态受压破坏形态又称小偏心受压破坏,截面破坏是从受压区开始的,发生于以下两种情况。
(1)当轴向力N的相对偏心距较小时,构件截面全部受压或大部分受压,如图(a)或下图(b)所示的情况。
(2)当轴向力的相对偏心距虽然较大,但却配置了特别多的受拉钢筋,致使受拉钢筋始终不屈服。
破坏时,受压区边缘混凝土达到极限压应变值,受压钢筋应力达到抗压屈服强度,而远侧钢筋受拉而不屈服,其截面上的应力状态如下图(a)所示。
破坏无明显预兆,压碎区段较长,混凝土强度越高,破坏越带突然性,见下图(c)。
总之,受压破坏形态或称小偏心受压破坏形态的特点是混凝土先被压碎,远侧钢筋可能受拉也可能受压,但都不屈服,属于脆性破坏类型。
在“受拉破坏形态”与“受压破坏形态”之间存在着一种界限破坏形态,称为“界限破坏”。
它不仅有横向主裂缝,而且比较明显.。
其主要特征是:在受拉钢筋应力达到屈服强度的同时、受压区混凝土被压碎。
界限破坏形态也属子受拉破坏形态。
长柱的正截面受压破坏试验表明,钢筋混凝土柱在承受偏心受压荷载后,会产生纵向弯曲。
但长细比小的柱,即所谓“短柱”,由于纵向弯曲小,在设计时一般可忽略不计。
对于长细比较大的柱则不同,它会产生比较大的纵向弯曲,设计时必须予以考虑。
下图是一根长柱的荷载一侧向变形(N -f)实验曲线。
偏心受压长柱在纵向弯曲影响下‘可能发生两种形式的破坏。
长细比很大时,构件的破坏不是由于材料引起的,而是由于构件纵向弯曲失去平衡引起的,称为“失稳破坏”。
矩形截面偏心受压构件正截面承载力的计算一、基本公式1. 计算图式2. 基本公式由0=∑x N 得:)](11[g g g gsa cb u j A A R bx R N N σγγγ-''+=≤ 由0=∑gA M 得:)](1)2(1[00g g g sa cb u j a h A R x h bx R M e N '-''+-=≤γγγ由0=∑'gA M 得:)](1)2(1[0g g g sg a c b u j a h A a x bx R M e N '-+'--=≤'σγγγ 混凝土受压区高度由下式确定:e A R e A xh e bx R g gg g a '''-=+-σ)2(0(对偏心作用力点取矩) e e '、-分别为偏心压力j N 作用点至钢筋g A 合力作用点和钢筋g A '合力作用点的距离,按下式计算:η=e g a h e -+20;η='e g a h e '+-203.公式的注意事项(1)钢筋g A 的应力g σ取值当jg h x ξξ≤=0时,构件属于大偏心受压构件,这时取g g R =σ(受拉钢筋屈服);当jg h x ξξ>=0时,构件属于小偏心受压构件,这时g σ按下式计算,但不大于g R 值:)19.0(003.0-=ξσg g E ,式中g E 为受拉钢筋的弹性模量。
(2)为保证构件破坏时,大偏心受压构件截面上的受压钢筋能达到抗压设计强度gR ',必须满足g a x '≥2,否则受压钢筋的应力可能达不到g R '。
与双筋截面受弯构件类似,这时可近似取g a x '=2,由截面受力平衡条件(0=∑'g A M )可得:)(0gg g s bu j a h A R M e N '-=≤'γγ 上式计算的正截面承载力u M 比不考虑受压钢筋gA '更小时,计算中不考虑受压钢筋g A '的影响。