高一三角函数复习资料
- 格式:doc
- 大小:535.00 KB
- 文档页数:11
高考三角函数知识点总结一、基本概念和性质1.弧度制:单位圆上的弧所对应的圆心角的大小定义为该弧的弧度。
1弧度等于圆周的1/2π。
2. 三角函数:正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。
3.三角恒等式:包括同角三角恒等式、余角三角恒等式、反三角函数同角恒等式等。
4.周期性:正弦函数、余弦函数、正割函数和余割函数的周期都是2π;正切函数和余切函数的周期是π。
二、基本关系式1.正弦函数:在直角三角形中,正弦函数是指对于一个锐角三角形,三角形的对边和斜边的比值。
- sin(x) = a / c,其中a是对边,c是斜边。
- sin(x) = y / r,其中y是斜边在y轴上的投影,r是半径。
2.余弦函数:在直角三角形中,余弦函数是指对于一个锐角三角形,三角形的邻边和斜边的比值。
- cos(x) = b / c,其中b是邻边,c是斜边。
- cos(x) = x / r,其中x是斜边在x轴上的投影,r是半径。
3.正切函数:在直角三角形中,正切函数是指对于一个锐角三角形,三角形的对边和邻边的比值。
- tan(x) = a / b,其中a是对边,b是邻边。
- tan(x) = y / x,其中y是斜边在y轴上的投影,x是斜边在x轴上的投影。
4.余切函数:余切函数是正切函数的倒数。
- cot(x) = 1 / tan(x)。
5.正割函数:在直角三角形中,正割函数是指对于一个锐角三角形,三角形的斜边和邻边的比值的倒数。
- sec(x) = 1 / cos(x)。
6.余割函数:在直角三角形中,余割函数是指对于一个锐角三角形,三角形的斜边和对边的比值的倒数。
- csc(x) = 1 / sin(x)。
三、平面内角与弧度制之间的关系1.弧度制与度数之间的转换:-弧度=度数×π/180-度数=弧度×180/π2.弧度制下的角的性质:-一个圆上的圆心角的弧度数等于该弧所对应的弧的弧度数。
三角函数知识点归纳高一必修一三角函数知识点归纳一、定义与基本性质三角函数是以角的度量为自变量,输出正弦、余弦、正切等数值的函数。
常见的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)。
1. 正弦函数(sin):- 定义:在单位圆上,点P在坐标系中的纵坐标与原点O连线与x轴的夹角为θ时,P点的纵坐标就是正弦值(sinθ)。
- 性质:正弦函数是一个奇函数,其定义域为实数集合R,值域为[-1, 1]。
2. 余弦函数(cos):- 定义:在单位圆上,点P在坐标系中的横坐标与原点O连线与x轴的夹角为θ时,P点的横坐标就是余弦值(cosθ)。
- 性质:余弦函数是一个偶函数,其定义域为实数集合R,值域为[-1, 1]。
3. 正切函数(tan):- 定义:正切函数定义为:tanθ = sinθ / cosθ。
- 性质:正切函数是一个奇函数,其定义域为实数集合R减去{x | x = (2k + 1)π / 2, k为整数},值域为实数集合R。
二、基本关系式1. 三角函数的平方关系:- sin²θ + cos²θ = 1- 1 + tan²θ = sec²θ- 1 + cot²θ = cosec²θ2. 值域关系:- -1 ≤ sinθ ≤ 1- -1 ≤ cosθ ≤ 1- tanθ的值域为全体实数三、三角函数的周期性1. 正弦函数和余弦函数的周期:- sin(θ + 2π) = sinθ,周期为2π- cos(θ + 2π) = cosθ,周期为2π2. 正切函数的周期:- tan(θ + π) = tanθ,周期为π四、三角函数的图像与性质1. 正弦函数的图像:- 值域为[-1, 1]的连续曲线,以直线y = 0为中心对称。
- 最小正周期为2π。
- 从图像上看,正弦函数是一个周期性的波状曲线。
2. 余弦函数的图像:- 值域为[-1, 1]的连续曲线,以直线y = 1和y = -1为对称轴。
学习必备 欢迎下载高一数学必修 4 三角函数(专题复习)同角三角函数基本关系式 sin 2α + cos 2α =1sin αcos α =tan αtan α cot α =11. 诱导公式 (奇变偶不变,符号看象限 )(一)sin(π - α )= ___________ sin(π +α )= ___________cos(π - α )= ___________ cos(π +α )=___________ tan(π - α)= ___________ tan(π +α )= ___________ sin(2π - α )= ___________ sin(2π +α )= ___________ cos(2π -α )= ___________cos(2π+α )= ___________tan(2π - α )= ___________ tan(2π +α )= ___________(二) sin(ππ+α )= ____________2 - α )= ____________sin( 2 ππcos( 2 - α )= ____________cos( 2 +α )= _____________π πtan( 2 - α )= ____________ tan( 2 +α )= _____________3π 3πsin( 2 - α )= ____________ sin( 2 +α )= ____________3π 3πcos( 2 - α )= ____________ cos( 2 +α )= ____________3π 3πtan( 2-α )=____________tan( 2 +α )= ____________sin(- α )=- sin α cos(- α )=cos α tan(- α )=- tan α 公式的配套练习5πsin(7π -α )= ___________cos( 2 -α )= ___________9πcos(11π - α )= __________ sin( 2+α )= ____________2. 两角和与差的三角函数cos(α +β )=cos α cos β - sin α sin β cos(α -β )=cos α cos β + sin α sin β sin (α +β )=sin α cos β + cos α sin β sin (α - β )=sin α cos β -cos α sin βtan α +tan βtan(α+β)=1- tan α tan βtan(α - β )=tan α - tan β1+ tan α tan β3. 二倍角公式sin2α =2sin α cos αcos2α =cos 2α - sin 2α= 2 cos 2α - 1= 1- 2 sin 2 α2tanαtan2α =1-tan2α4.公式的变形( 1)升幂公式: 1+ cos2α= 2cos2α—α =2α1cos22sin( 2)降幂公式: cos2α=1+ cos2αsin2α= 1- cos2α22(3)正切公式变形: tanα +tan β= tan(α +β )( 1- tanα tanβ)tanα - tanβ= tan(α -β)( 1+ tanα tanβ )( 4)万能公式(用tanα表示其他三角函数值)2tanα1- tan2α2tan αsin2α=1+tan2αcos2α=1+tan2αtan2α=1-tan2α5.插入辅助角公式22basinx+ bcosx= a +b sin(x+φ )(tanφ = a)特殊地: sinx± cosx= 2sin(x±π)46.熟悉形式的变形(如何变形)1± sinx± cosx1± sinx1± cosx tanx+ cotx1- tanα1+ tanα1+ tanα1- tanαπ若 A、 B 是锐角, A+B =4,则( 1+ tanA ) (1+tanB)=2αα2α ⋯ cos2nsin2 n+1αα =n+1cos cos2cos22sinα7.在三角形中的结论(如何证明)若: A+ B+C= πA+B+Cπ2= 2tanA + tanB + tanC=tanAtanBtanCA B B C C Atan 2tan2+ tan2tan2+ tan2tan2= 19.求值问题(1)已知角求值题如: sin555°(2)已知值求值问题常用拼角、凑角π33π5如: 1)已知若 cos( 4-α )=5, sin( 4+β )=13,π3ππ又<α < 4,0<β < 4,求 sin(α+β )。
高一三角函数知识点归纳总结公式以下是高一三角函数的一些知识点和公式:1. 三角函数的基本性质:周期性:sin(x) 和 cos(x) 的周期都是2π。
奇偶性:sin(x) 是奇函数,cos(x) 是偶函数。
有界性:sin(x) 和 cos(x) 的取值范围都是 [-1, 1]。
2. 三角函数的定义域和值域:定义域:对于所有实数 x,sin(x) 和 cos(x) 的定义域都是 R。
值域:sin(x) 和 cos(x) 的值域都是 [-1, 1]。
3. 三角函数的周期性和对称性:周期性:sin(x) 和 cos(x) 的周期都是2π。
对称性:sin(x) 在(0, π) 上是增函数,在(π, 2π) 上是减函数;cos(x) 在(0, π/2) 和(π, 3π/2) 上是减函数,在(π/2, π) 和(3π/2, 2π) 上是增函数。
4. 三角函数的和差公式:sin(x+y) = sinxcosy + cosxsinycos(x+y) = cosxcosy - sinxsiny5. 三角函数的倍角公式:sin2x = 2sinxcosxcos2x = cos²x - sin²xtan2x = 2tanx / (1 - tan²x)6. 三角函数的半角公式:sin(x/2) = ±√[(1 - cosx) / 2]cos(x/2) = ±√[(1 + cosx) / 2]tan(x/2) = ±√[(1 - cosx) / (1 + cosx)]7. 三角函数的和差化积公式:sin(x+y)-siny=2sin((x-y)/2)cos((x+3y)/2)cos(x+y)-coxy=-2sin((x-y)/2)cos((x+3y)/2)8. 其他常用公式:sin²θ + cos²θ = 1(勾股定理)tanθ = sinθ / cosθ(正切的定义)arcsin(x)、arccos(x)、arctan(x) 等反三角函数。
高中数学必修三角函数知识点归纳总结经典一、正弦函数、余弦函数、正切函数的定义1. 正弦函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。
则y=sinθ称为角θ的正弦函数。
2. 余弦函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。
则x=cosθ称为角θ的余弦函数。
3. 正切函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。
则y/x=tanθ称为角θ的正切函数。
二、基本性质1.周期性:正弦函数、余弦函数、正切函数的周期都是2π。
2.奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
3.值域:正弦函数和余弦函数的值域为[-1,1],正切函数的值域为R。
三、基本公式1. 正弦函数的基本公式:sin(θ±α) = sinθcosα ±cosθsinα2. 余弦函数的基本公式:cos(θ±α) = cosθcosα ∓ sinθsinα3. 正切函数的基本公式:tan(θ±α) =(tanθ±tanα)/(1∓tanθtanα)四、三角函数的图像与性质1.正弦函数图像的性质:周期为2π,在(0,0)处取得最小值-1,在(π/2,1)、(3π/2,-1)处取得最大值1,是一个奇函数。
2.余弦函数图像的性质:周期为2π,在(0,1)处取得最大值1,在(π,-1)处取得最小值-1,是一个偶函数。
3.正切函数图像的性质:周期为π,在(0,0)处取得最小值-∞,在(π/2,∞)处取得最大值∞,是一个奇函数。
五、三角函数的性质1.三角函数的和差化积公式:sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA±tanB)/(1∓tanAtanB)2.三角函数的倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ)/(1-tan^2θ)3.三角函数的半角公式:sin(θ/2) = √[(1-cosθ)/2]cos(θ/2) = √[(1+cosθ)/2]tan(θ/2) = sinθ/(1+cosθ)4.三角函数的积化和差公式:sinA·sinB = (1/2)[cos(A-B)-cos(A+B)]cosA·cosB = (1/2)[cos(A-B)+cos(A+B)]sinA·cosB = (1/2)[sin(A-B)+sin(A+B)]六、三角函数的应用1.解三角形:利用正弦定理、余弦定理和正弦函数、余弦函数的性质,可以解决三角形的边长和角度。
三角函数相关知识点三角函数知识点学习资料一、基本概念1. 角的概念推广正角、负角和零角:按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角,不作任何旋转形成的角为零角。
象限角:使角的顶点与原点重合,角的始边与x轴的非负半轴重合,角的终边落在第几象限,就说这个角是第几象限角。
终边在坐标轴上的角不属于任何象限。
终边相同的角:所有与角α终边相同的角(连同α在内),可构成一个集合S ={β|β=α + k·360^∘,k∈ Z}。
2. 弧度制定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示。
弧度与角度的换算:180^∘=π rad,所以1^∘=(π)/(180) rad,1 rad = ((180)/(π))^∘。
弧长公式:l =|α|r(其中l为弧长,α为圆心角弧度数,r为半径)。
扇形面积公式:S=(1)/(2)lr=(1)/(2)|α|r^2。
二、三角函数定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sinα=y,cosα = x,tanα=(y)/(x)(x≠0)。
对于角α终边上任意一点P(x,y)(r=√(x^2)+y^{2}),则sinα=(y)/(r),cosα=(x)/(r),tanα=(y)/(x)(x≠0)。
2. 三角函数值在各象限的符号正弦函数y = sin x:一、二象限为正,三、四象限为负。
余弦函数y=cos x:一、四象限为正,二、三象限为负。
正切函数y = tan x:一、三象限为正,二、四象限为负。
三、同角三角函数的基本关系1. 平方关系sin^2α+cos^2α = 1。
2. 商数关系tanα=(sinα)/(cosα)(cosα≠0)。
四、诱导公式1. α + 2kπ(k∈ Z)与α的三角函数关系sin(α + 2kπ)=sinα,cos(α+2kπ)=cosα,tan(α + 2kπ)=tanα。
sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα。
(完整版)高中三角函数知识点总结高中三角函数知识点总结1. 基本三角函数概念- 三角函数是以单位圆为基础的函数,包括正弦函数、余弦函数和正切函数。
- 正弦函数(sin):在直角三角形中,对于一个锐角,其对边与斜边的比值称为正弦值。
即:sinA = 对边/斜边。
- 余弦函数(cos):在直角三角形中,对于一个锐角,其邻边与斜边的比值称为余弦值。
即:cosA = 邻边/斜边。
- 正切函数(tan):在直角三角形中,对于一个锐角,其对边与邻边的比值称为正切值。
即:tanA = 对边/邻边。
2. 基本三角函数性质和公式- 三角函数的周期性:正弦函数和余弦函数的周期都是2π;正切函数的周期是π.- 三角函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
- 三角函数的同角关系:sinA/cosA = tanA。
- 三角函数的和差化积公式和积化和差公式:具体公式可根据需要进行查阅。
3. 三角函数图像和性质- 正弦函数图像:在0到2π的区间内,正弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于零值。
- 余弦函数图像:在0到2π的区间内,余弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于最大值。
- 正切函数图像:在0到π的区间内,正切函数的图像无法在x=π/2和3π/2时定义,其他点对应的图像为一条连续的射线。
4. 三角函数的应用- 三角函数广泛应用于科学和工程领域中的周期性现象的描述和计算,例如电流的正弦波,声波的波动等。
- 在几何学中,三角函数也应用于测量角度和距离等问题的解决。
以上为高中三角函数的基本知识点总结,更详细的内容和公式可以参考相关教材或资料。
高中数学三角函数复习专题一、知识点整理 :1、角的看法的推行:正负,范围,象限角,坐标轴上的角;2、角的会集的表示:①终边为一射线的角的会集:x x2k, k Z=|k 360o, k Z②终边为向来线的角的会集:x x k, k Z;③两射线介定的地域上的角的会集:x 2k x2k, k Z④两直线介定的地域上的角的会集:x k x k, k Z;3、任意角的三角函数:(1)弧长公式: l a R R 为圆弧的半径,a为圆心角弧度数, l 为弧长。
(2)扇形的面积公式:S 1lR R 为圆弧的半径, l 为弧长。
2(3)三角函数定义:角中边上任意一点 P 为 ( x, y) ,设 | OP |r 则:sin y, cos x ,tan y r= a 2b2 r r x反过来,角的终边上到原点的距离为r 的点P的坐标可写为:P r cos, r sin 比如:公式 cos()cos cossin sin的证明(4)特别角的三角函数值α032 64322sin α012310-10222cosα13210-101222tan α0313不存不存0 3在在(5)三角函数符号规律:第一象限全正,二正三切四余弦。
(6)三角函数线:(判断正负、比较大小,解方程或不等式等)y T 如图,角的终边与单位圆交于点P,过点 P 作 x 轴的垂线,P 垂足为 M ,则Ao 过点 A(1,0)作 x 轴的切线,交角终边OP 于点 T,则M x。
(7)同角三角函数关系式:①倒数关系: tana cot a 1sin a ②商数关系: tan acosa③平方关系: sin 2 a cos2 a1( 8)引诱公试sin cos tan三角函数值等于的同名三角函数值,前方-- sin+ cos- tan加上一个把看作锐角时,原三角函数值的- tan-+ sin- cos符号;即:函数名不变,符号看象限+- sin- cos+ tan2-- sin+ cos- tan2k++ sin+ cos+ tansin con tan2+ cos+ sin+ cot三角函数值等于的异名三角函数值,前方2+ cos- sin- cot加上一个把看作锐角时,原三角函数值的3- cos- sin+ cot2符号 ;3- cos+ sin- cot2即:函数名改变,符号看象限 : sin x cos x cos x比方444cos x sin x444.两角和与差的三角函数:(1)两角和与差公式:cos() cos a cos sin a sin sin( a) sin a coscosa sintan a(atan a tan注:公式的逆用也许变形)1 tan a tan.........(2)二倍角公式:sin 2a 2sin acosa cos 2a cos2 a sin 2 a12 sin2 a 2 cos2 a 12 tan atan 2a1 tan2 a(3)几个派生公式:①辅助角公式:a sinx bcosx a2b2 sin(x)a22 cos()b x比方: sinα± cosα= 2 sin4= 2 cos4.sinα±3 cosα= 2sin3=2cos3等.②降次公式: (sin cos) 21sin 2cos21cos2,sin 21cos222③ tan tan tan()(1 tan tan)5、三角函数的图像和性质:(此中 k z )三角函数y sin x定义域(- ∞, +∞)值域[-1,1]最小正周期T2奇偶性奇[ 2k,2k]22单调性单调递加[ 2k,2k3 ]22单调递减x k对称性2(k ,0)零值点x ky cosx(- ∞, +∞)[-1,1]T 2偶[( 2k 1) ,2k ]单调递加[( 2k , (2k 1) ]单调递减x k(k,0)2x k2y tan xx k2(-∞,+∞)T奇(k,k)22单调递加k(,0)x kx k2x 2 k,最值点y max1ymax 1;无x k2x(2k 1) ,y min1y min1 6、 .函数y Asin( x) 的图像与性质:(本节知识观察一般能化成形如y Asin( x) 图像及性质)( 1)函数 y Asin( x) 和 y Acos( x2 ) 的周期都是T( 2)函数y A tan( x) 和 y Acot( x) 的周期都是T( 3)五点法作y Asin( x) 的简图,设t x,取0、、、3、2来求相应x22的值以及对应的y 值再描点作图。
《三角函数》复习一、知识点整理: 1、角的概念的推广:正负,范围,象限角,坐标轴上的角; 2、角的集合的表示:①终边为一射线的角的集合:⇔{}Z k k x x ∈+=,2απ={}|360,k k Z ββα=+⋅∈②终边为一直线的角的集合⇔{}Z k k x x ∈+=,απ;③两射线介定的区域上的角的集合:⇔{}Z k k x k x ∈+≤<+,22απβπ④两直线介定的区域上的角的集合:⇔{}Z k k x k x ∈+≤<+,απβπ;3、角的度量制与换算 (1)换算关系:180()π=弧度 1︒=180radπ1801()5718π'=≈弧度 (2)弧长公式:l r θ= 扇形面积公式:21122S lr r θ==4.三角函数的定义:sin ,cos ,tan y x yr r xααα===(其中||r PO ==)反过来,角α的终边上到原点的距离为r 的点P 的坐标可写为:()cos ,sin P r r αα5.熟记三角函数在各象限的符号:6.结合定义、诱导公式、直角三角形等记住特殊角:2350,,,.,,,,6432346ππππππππ及150,750等角的各个三角函数值.7. 三角函数线及简单应用(判断正负、比较大小,解方程或不等式等) 在右图中:sin MP α=,cos OM α=,tan AT α=8. 正弦函数sin y x =、余弦函数cos y x =、正切函数tan y x =的图像和性质:y=sinx y=cosx y=tanx定义域: R R ⎭⎬⎫⎩⎨⎧+≠∈2,|ππk x R x x值域: [-1,1] [-1,1] R周期: 2π 2π π奇偶性: 奇函数 偶函数 奇函数增区间: ⎥⎦⎤⎢⎣⎡++-ππππk k 22,22[]πππk k 2,2+- ⎥⎦⎤⎢⎣⎡++-ππππk k 2,2减区间: ⎥⎦⎤⎢⎣⎡++ππππk k 223,22 []πππk k 2,2+ 无减区间对称轴: 2ππ+=k xπk x = 无对称轴对称中心: ()0,πk ⎪⎭⎫ ⎝⎛+0,2ππk ⎪⎭⎫ ⎝⎛0,2πk9.函数sin()y A x ϖϕ=+的图像和性质:在研究函数)sin(ϕω+=x A y 的各项性质时,常设u x =+ϕω,先由x 的范围得u x =+ϕω的范围,从而只需讨论u y sin =的各项性质就可得到)sin(ϕω+=x A y 的各项性质;作图时常用两种方法:①五点法:结合周期依次确定 第一、五、三、二、四个点,②图象变换法:平移、伸缩两个程序)sin()(sin )2()sin()sin()1(sin ϕϖϕϖϖϕϖϕ+=+=→=+=→+==x A y x six y xy x y x y xy变换方式一:先平移再周期变换(伸缩变换) 变换方式二:先周期变换(伸缩变换)再平移注意:同理可作:的图象)cos(ϕϖ+=x A y 和的图象)tan(ϕϖ+=x A y10.结合函数B x A y ++=)sin(ϕω),(其中00>>ωA 的简图可知: 该函数的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;11.几种图像变换:平移:y=f(x+k)与y=f(x)+k 、翻折:|f(x)|与f(|x|)、对称:y=f(-x)与y=-f(x) 伸缩12几组重要公式一)同角三角函数的基本关系式: 1)平方关系1cos sin22=+αα; αααα2222tan 11cos cos 1tan 1+=⇔=+2)商式关系αααtan cos sin =;sin α=tan α·cos α 3)关于公式1cos sin 22=+αα的深化:(1)221sin cos αα=+,逆代用,如:已知2tan =α,求2cos sin 3sin 52-+ααα的值。
高一三角函数复习资料广东省肇庆市实验中学 张建荣一、范例分析例1、 已知函数y=21cos 2x+23sinx ·cosx+1 (x ∈R ), (1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图像可由y=sinx(x ∈R)的图像经过怎样的平移和伸缩变换得到?说明:这类题一般的解法是:先化成关于sin ωx,cos ωx 的齐次式,降幂后最终化成y=22b a +sin (ωx+ϕ)+k 的形式。
解:(1)y=21cos 2x+23sinx ·cosx+1=41 (2cos 2x -1)+ 41+43(2sinx ·cosx )+1 =41cos2x+43sin2x+45=21(cos2x ·sin 6π+sin2x ·cos 6π)+45 =21sin(2x+6π)+45 所以y 取最大值时,只需2x+6π=2π+2k π,(k ∈Z ),即 x=6π+k π,(k ∈Z )。
所以当函数y 取最大值时,自变量x 的集合为{x|x=6π+k π,k ∈Z}(2)将函数y=sinx 依次进行如下变换:(i )把函数y=sinx 的图像向左平移6π,得到函数y=sin(x+6π)的图像; (ii )把得到的图像上各点横坐标缩短到原来的21倍(纵坐标不变),得到函数y=sin(2x+6π)的图像;(iii )把得到的图像上各点纵坐标缩短到原来的21倍(横坐标不变),得到函数y=21sin(2x+6π)的图像; (iv )把得到的图像向上平移45个单位长度,得到函数y=21sin(2x+6π)+45的图像。
综上得到y=21cos 2x+23sinxcosx+1的图像。
例2()已知向量,,,,,,其中a x xb x xc =⎛⎝ ⎫⎭⎪=-⎛⎝ ⎫⎭⎪=-cos sin cos sin 32322231x R ∈.(I )当a ⊥b 时,求x 值的集合;()求的最大值。
II a c -解:()由⊥·I a b a b →→→→⇔=0即··coscos sin sin 3223220x x x x-=则cos20x =()得22x k k Z =+∈ππ()∴x k k Z =+∈ππ24∴当⊥时值的集合为,a b x x x k k Z →→=+∈⎧⎨⎩⎫⎬⎭|ππ24解法一:()II a c a c a a c c a a c c ||()||||→→→→→→→→→→→→-=-=-+=-+22222222又||c o s s i n a x x →=⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪=22232321()||c →=+-=222314a b x x x x x →→=-=-⎛⎝ ⎫⎭⎪=+⎛⎝ ⎫⎭⎪·332322323212322326cossin cos sin cos π∴||cos cos a c x x →→-=-+⎛⎝ ⎫⎭⎪+=-+⎛⎝ ⎫⎭⎪214326454326ππ∴||m a xa c →→-=29∴||m i n a c →→-=3即的最大值为||a c →→-3解法二:||cos sin a c x x →→-=-+⎛⎝ ⎫⎭⎪22323321, =-⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪cos sin 32332122x x =-++++cos cos sin sin 223223323322321x x x x=-⎛⎝ ⎫⎭⎪+2323325sin cos x x =-⎛⎝ ⎫⎭⎪+43235sin x π∴||maxa c →→-=29∴||max a c →→-=3说明:三角函数与向量之间的联系很紧密,所以此类题目往往是命题人所青睐。
解题时要注意三角函数的图像和性质。
二、相应练习:1.(2003 江苏)已知x ∈(2π-,0),cosx=54,则tan2x =A. 247B. 247-C. 724D.724-2、(2002江苏)在)2,0(π内,使x x cos sin >成立的x 取值范围为A. )45,()2,4(ππππ⋃ B. ),4(ππ C. )45,4(ππ D. )23,45(),4(ππππ⋃ 3、(2002北京)已知)(x f 是定义在)3,3(-上的奇函数,当30<<x 时,)(x f 的图象如图所示,那么不等式0cos )(<x x f 的解集是A. )3,2()1,0()2,3(ππ⋃⋃-- B. )3,2()1,0()1,2(ππ⋃⋃--C. )3,1()1,0()1,3(⋃⋃--D. )3,1()1,0()2,3(⋃⋃--π4、已知sin α>sin β,那么下列命题成立的是A.若α、β是第一象限角,则cos α>cos βB.若α、β是第二象限,则tan α>tan βC.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β 5、函数y=sin(2x+3π)的图象是由函数y=sin2x 的图像 A.向左平移3π单位 B.向右平移6π单位C.向左平移65π单位D.向右平移65π单位6、要得到函数⎪⎭⎫ ⎝⎛-=42cos 3πx y 的图象,可以将函数y = 3 sin2 x 的图象 A . 沿x 轴向左平移8π单位 B . 沿x 轴向右平移8π单位C . 沿x 轴向左平移4π单位D . 沿x 轴向右平移4π单位7. 已知函数x x x x x f 44sin cos sin 2cos )(--=(1)求f(x)的最小正周期; (2)若x ∈[0,2π],求f(x)的最大值,最小值. 8、已知sin(4π+α)·sin(4π-α)=61, α∈(2π,π),求sin4α三、相应高考题:一、选择题1、(全国卷Ⅰ)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ① A=B ②1sin =C ③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是A .①③B .②④C .①④D .②③ 2、(全国卷Ⅰ)点O 是三角形ABC 所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 是ABC ∆的A .三个内角的角平分线的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三条高的交点3、已知α为第三象限角,则2α所在的象限是 A .第一或第二象限 B .第二或第三象限C .第一或第三象限D .第二或第四象限4、 αααα2cos cos 2cos 12sin 22⋅+ =A .tan αB .tan 2αC .1D .125、(湖南卷)tan600°的值是A .33-B .33C .3-D .36、 函数y =A sin (ωx +ϕ)(ω>0,2||πϕ<,x ∈R)的部分图象如图所示,则函数表达式为 A .)48sin(4ππ+-=x y B .)48sin(4ππ-=x y C .)48sin(4ππ--=x y D .)48sin(4ππ+=x y7、(福建卷)函数x y 2cos =在下列哪个区间上是减函数A .]4,4[ππ-B .]43,4[ππ C .]2,0[πD .],2[ππ8、(浙江卷)函数sin 26y x π⎛⎫=+ ⎪⎝⎭的最小正周期是A .2πB . πC . 2πD .4π 9、(江西卷)已知==ααcos ,32tan 则A .54B .-54C .154 D .-5310、(重庆卷)=+-)12sin12)(cos 12sin12(cosππππA .23-B .21-C .21D .23 11、已知函数sin cos 1212y x x ππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭,则此函数的最小周期和一个对称中心是 A .2π,,012π⎛⎫⎪⎝⎭ B .π,,012π⎛⎫⎪⎝⎭C .2π,,06π⎛⎫ ⎪⎝⎭D .π,,06π⎛⎫ ⎪⎝⎭12、(江苏卷)若1sin()63πα-=,则2cos(2)3πα+=A .97-B .31-C .31D .97二、填空题1、(福建卷)在△ABC 中,∠A=90°,k AC k AB 则),3,2(),1,(==的值是 .2、(上海文)函数 y=cos2x+sinxcosx 的最小正周期T= .3、(上海文)若cos α=71,α∈(0.2π),则cos(α+3π)= . 三、解答题1、(全国卷Ⅰ)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x 。
(Ⅰ)求ϕ; (Ⅱ)求函数)(x f y =在区间],0[π上的单调增区间;2、 已知函数].2,0[,2sin sin 2)(2π∈+=x x x x f 求使()f x 为正值的x 的集合.3、(广东卷)化简),,)(23sin(32)2316cos()2316cos()(Z k R x x x k x k x f ∈∈++--+++=πππ并求函数)(x f 的值域和最小正周期.4、(天津卷)已知1027)4sin(=-πα,2572cos =α,求sin α及3tan(πα+5、(福建卷)已知51cos sin ,02=+<<-x x x π. (Ⅰ)求x x cos sin -的值;(Ⅱ)求xxx tan 1sin 22sin 2-+的值.6、(北京卷)已知tan2α=2,求(I )tan()4πα+的值; (II )6sin cos 3sin 2cos αααα+-的值7、(江西卷)已知向量b a x f x x b x x a ⋅=-+=+=)()),42tan(),42sin(2()),42tan(,2cos2(令πππ. 求函数f (x )的最大值,最小正周期,并写出f (x )在[0,π]上的单调区间.8、(重庆卷)若函数)4sin(sin )2sin(22cos 1)(2ππ+++-+=x a x x x x f 的最大值为32+,试确定常数a 的值.9.已知函数f (x )= )sin 2(cos2x xa ++b (1)当a =1时,求f (x )的单调递增区间;(2)当a <0,x ∈[0,π]时,f (x )的值域是[3,4],求a ,b 的值,四、相应练习参考答案1. D 2 C 3 B. 4D 5D 6A .7. )4x 2cos(2x 2sin x 2cos x 2sin )x sin x )(cos x sin x (cos )x (f 2222π+=-=--+=,(1)π=T ; (2) ]2,0[x π∈,∴]45,4[4x 2ππ∈π+, ]1,2[)4x 2cos(2-∈π+∴, 1)x (f m a x = , 此时 0x = , 2)x (f min -= , 此时 83x π= .8、解∵α+4π+4π-α=2π∴sin(4π-α)=cos(4π+α) ∴sin(4π+α)·sin(4π-α)=sin(4π+α)·cos(4π+α)=21sin(2π+2α)= 21cos2α= 61相应高考参考答案一、选择题:1 B 2 D 3D 4 B 5 D 6 A 7 C 8B 9 B 10 D 11 B 12 A 二、填空题:1 . 23- 2 . π 3 . 1411三、解答题:1、2、解:∵()1cos 2sin 2f x x x =-+1)4x π=-()02s i n (2)04f x x π∴>⇔->s i n (2)42x π⇔->-5222444k x k πππππ⇔-+<-<+34k x k πππ⇔<<+又[0,2].x π∈ ∴37(0,)(,)44x πππ∈⋃3、解:xx x x x k x k x f 2cos 4)23sin(32)23cos(2)23sin(32)232cos()232cos()(=+++=++--+++=πππππππ函数f(x)的值域为[4-,4]; 函数f(x)的周期πωπ==2T ;4、解:由题设条件,应用两角差的正弦公式得)cos (sin 22)4sin(1027ααπα-=-=,即57cos sin =-αα①由题设条件,应用二倍角余弦公式得)sin (cos 57)sin )(cos sin (cos sin cos 2cos 25722ααααααααα+-=+-=-== 故51sin cos -=+αα ② 由①和②式得53sin =α,5cos =α因此,43tan -=α,由两角和的正切公式11325483343344331433tan 313tan )3tan(-=+-=+-=-+=+ααπα5、解:(1)由 51cos sin =+x x ,等式两端平方得: 251cos sin 2cos sin 22=⋅++x x x x 即:2524cos sin 2-=⋅x x ,从而()254925241cos sin 2cos sin cos sin 222=⎪⎭⎫ ⎝⎛--=⋅-+=-x x x x x x 又由,0cos sin 02<-⇒<<-x x x π所以x x cos sin -=—7/56、解:(I )∵ tan2α=2, ∴ 22tan2242tan 1431tan 2ααα⨯===---; 所以tan tan tan 14tan()41tan 1tan tan 4παπααπαα+++==--=41134713-+=-+;(II )由(I), tan α=-34, 所以6sin cos 3sin 2cos αααα+-=6tan 13tan 2αα+-=46()17363()23-+=--.7、解:)42tan()42tan()42sin(2cos 22)(πππ--++=⋅=x x x x b a x f12cos 22cos 2sin 22tan112tan 2tan 12tan1)2cos 222sin 22(2cos 222-+=+-⋅-+++=x x x x xx x x x x x x cos sin +==)4sin(2π+x . 所以2)(的最大值为x f ,最小正周期为]4,0[)(,2ππ在x f 上单调增加,]4,0[π上单调减少.11 8、解:)4sin(sin )2sin(21cos 21)(22ππ+++--+=x a x x x x f)4sin(cos sin )4sin(sin cos 2cos 2222ππ+++=+++=x a x x x a x x x )4sin()2()4sin()4sin(222πππ++=+++=x a x a x因为)(x f 的最大值为)4sin(,32π++x 的最大值为1,则,3222+=+a 所以,3±=a9、解:(1)∵a =1,∴f (x ) =b x x ++sin 2cos 22=sin x +cos x +b +1=)4sin(2π+x +1+b , ∵y =sin x 的单调递增区间是[2k π2π-, 2k π+2π],k ∈Z . ∴当2k π2π-≤x +4π≤2k π+2π,即2k π-43π≤x ≤2k π+4π,k ∈Z 时f (x )时是增函数, ∴f (x )单调递增区间是[2k π43π-, 2k π+43π],k ∈Z . (2)由(1)得f (x )= )4sin(2π+x a +a +b , ∵x ∈[0,π],∴4π≤x +4π≤45π, ∴22-≤)4sin(π+x ≤1. ∵a <0, 2a ≤)4sin(2π+x a ≤-a , ∴2a0+a +b ≤f (x )≤b ,∵f (x )的值域是, ∴a =1-2,b =4.。