热力学第一章
- 格式:pdf
- 大小:821.68 KB
- 文档页数:49
热力学第一章绪论一、概述:能源科学的入门课自然界中常用能源:风能、水能、常规燃料中的化学能、太阳能、地热、核。
其中常规燃料中的化学能、太阳能、地热、核为热能,占90%,可以直接利用,约占利用的16%,为传热学研究;风能、水能为机械能,工程热力学所研究,间接利用占84%。
二、研究对象:热能与机械能之间的相互转换规律和方法,并探讨提高转换效率的途径。
三、主要研究内容1、基本概念、基本定律2、工质的热力性质3、热力过程、热力循环第二章基本概念一、工质:用来实现相互能量转换的媒介物质具备特点:对体积的变化敏感且迅速有效:气(汽)体;易发生气液相变的液体。
二、热力系1、定义:人为地选取一定范围内的物质作为研究对象称为热力系统,简称系统。
开口系用控制体积法研究,即CV系三、状态与状态参数1、状态:是热力系在某一瞬时呈现出的宏观物理状况。
2、状态参数:描述系统工质状态的宏观物理量(1)、一一对应状态==========状态系数状态参数的改变只取决于给定的初始和终了状态而与过程所经历的路径无关。
(2)、常用的状态参数压力P、温度T、体积V、内能U、焓H、熵S其中P、T与质量无关,也叫强度量V、U、H、S和质量有关,具有可加性,称作尺度量,尺度量/M称为比参数,v、u、h、s就也可称为强度量(3)、基本状态参数,可直接用仪表测得p、t、v其它状态参数可由它们之间的关系导出。
3、压力P(1)、实质:气体分子运动撞击壁面,在垂直于单位面积的容器壁面上所呈现的平均作用力。
单位1Pa=1N/m3(2)几种压力之间的关系绝对压力P:真实压力,分子运动撞击的结果表压力Pg:压力表测得的压力值真空度Pv:真空计测得上述两种压力也叫相对压力大气压Pb:大气层对地球表面的压力,由地面上空气柱的重量造成的,大气压随着纬度、海拔、气候条件的不同而不同,有气压计测得。
P=Pg+Pb(3)、常用压力单位的核算液柱:1mmH2O=9.8Pa 1mmHg=133.3Pa4、温度T(1)宏观:标志了物体的冷热程度,是系统热平衡的唯一判据(2)微观:标志分子热运动的激烈程度,是大量分子平移动能平均值的量度(3)温标:温度的数量表示法摄氏温标t:1atm下,纯水冰点为0度,沸点为100度,中间100等分绝对温标:也叫热力学温标或开氏温标T=t+273.155、比容v:v=V/M=1/密度,单位m3/Kg,指单位质量的工质所占有的体积。
经验 总结 总结归纳提高 引出或定义出 解决 的 能量效应(功与热) 过程的方向与限度 即有关能量守恒 和物质平衡的规律 物质系统的状态变化 第一章 热力学第一定律 §1.1 热力学基本概念1.1.1 热力学的理论基础和研究方法1、热力学理论基础热力学是建立在大量科学实验基础上的宏观理论,是研究各种形式的能量相互转化的规律,由此得出各种自发变化、自发进行的方向、限度以及外界条件的影响等。
⇨ 热力学四大定律:热力学第一定律——Mayer&Joule :能量守恒,解决过程的能量衡算问题(功、热、热力学能等);热力学第二定律——Carnot&Clousius&Kelvin :过程进行的方向判据; 热力学第三定律——Nernst&Planck&Gibson :解决物质熵的计算;热力学第零定律——热平衡定律:热平衡原理T 1=T 2,T 2=T 3,则T 1= T 3。
2、热力学方法——状态函数法⇨ 热力学方法的特点: ①只研究物质变化过程中各宏观性质的关系,不考虑物质的微观结构;(p 、V 、T etc ) ②只研究物质变化过程的始态和终态,而不追究变化过程中的中间细节,也不研究变化过程的速率和完成过程所需要的时间。
⇨ 局限性:不知道反应的机理、速率和微观性质。
只讲可能性,不讲现实性。
3、热力学研究内容热力学研究宏观物质在各种条件下的平衡行为:如能量平衡,化学平衡,相平衡等,以及各种条件对平衡的影响,所以热力学研究是从能量平衡角度对物质变化的规律和条件得出正确的结论。
热力学只能解决在某条件下反应进行的可能性,它的结论具有较高的普遍性和可靠性,至于如何将可能性变为现实性,还需要动力学方面知识的配合。
1.1.2 热力学的基本概念1、系统与环境⇨ 系统(System ):热力学研究的对象(微粒组成的宏观集合体)。
在科学研究时必须先确定研究对象,把一部分物质与其余部分分开,这种分离可以是实际的,也可以是想象的。
第一章热力学第一定律本章主要公式及其使用条件一、热力学第一定律W Q U +∆= W Q dU δδ+=热力学中规定体系吸热为正值,体系放热为负值;体系对环境作功为负值,环境对体系作功为正值。
功分为体积功和非体积功。
二、体积功的计算体积功:在一定的环境压力下,体系的体积发生改变而与环境交换的能量。
体积功公式⎰⋅-=dV p W 外 1 气体向真空膨胀:W =0 2气体在恒压过程:)(12 21V V p dV p W V V --=-=⎰外外3理想气体等温可逆过程:2112ln lnp p nRT V V nRT W -=-= 4理想气体绝热可逆过程:)(12,T T nC W U m V -=∆=理想气体绝热可逆过程中的p ,V ,T 可利用下面两式计算求解1212,ln ln V V R T T C m V -=21,12,ln lnV V C p p C m p m V =三、热的计算热:体系与环境之间由于存在温度差而引起的能量传递形式。
1. 定容热与定压热及两者关系定容热:只做体积功的封闭体系发生定容变化时, U Q V ∆= 定压热:只做体积功的封闭体系定压下发生变化, Q p = ΔH定容反应热Q V 与定压反应热Q p 的关系:V p Q Q V p ∆+= nRT U H ∆+∆=∆n ∆为产物与反应物中气体物质的量之差。
或者∑+=RT g Q Q m V m p )(,,ν ∑+∆=∆RT g U Hm m)(ν式中∑)(g ν为进行1mol 反应进度时,化学反应式中气态物质计量系数的代数和。
2.热容 1.热容的定义式dTQ C δ=dT Q C VV δ=dT Q C pp δ=n CC VmV =,n C C p m p =, C V ,C p 是广度性质的状态函数,C V ,m ,C p,m 是强度性质的状态函数。
2.理想气体的热容对于理想气体 C p ,m - C V ,m =R 单原子理想气体 C V ,m = 23R ;C p ,m = 25R 双原子理想气体 C V ,m =25R ;C p ,m = 27R 多原子理想气体: C V ,m = 3R ;C p ,m = 4R通常温度下,理想气体的C V ,m 和C p,m 均可视为常数。