高二数学平面的基本性质2
- 格式:ppt
- 大小:945.00 KB
- 文档页数:27
平面的基本性质,两直线的位置关系一、选择题(本题每小题5分,共50分)1.若直线上有两个点在平面外,则 ( )A .直线上至少有一个点在平面内B .直线上有无穷多个点在平面内C .直线上所有点都在平面外D .直线上至多有一个点在平面内 2.在空间中,下列命题正确的是 ( ) A .对边相等的四边形一定是平面图形B .四边相等的四边形一定是平面图形C .有一组对边平行且相等的四边形是平面图形D .有一组对角相等的四边形是平面图形 3.在空间四点中,无三点共线是四点共面的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4.用一个平面去截正方体,则截面形状不可能是( )A .正三角形B .正方形C .正五边形D .正六边形 5.如图:正四面体S -ABC 中,如果E ,F 分别是SC ,AB 的中点, 那么异面直线EF 与SA 所成的角等于 ( ) A .90° B .45°C .60°D .30°6.一条直线与两条平行线中的一条是异面直线,那么它与另一条直线的位置关系是( )A .相交B .异面C .平行D .相交或异面7.异面直线a 、b 成60°,直线c ⊥a ,则直线b 与c 所成的角的范围为 ( )A .[30°,90°]B .[60°,90°]C .[30°,60°]D .[60°,120°]8.右图是正方体的平面展开图,在这个正方体中,① BM 与ED 平行; ② CN 与BE 是异面直线;③ CN 与BM 成60角; ④ DM 与BN 垂直.以上四个命题中,正确命题的序号是( )A .①②③B .②④C .③④D .②③④9.梯形ABCD 中AB//CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位 置关系只能是 ( ) A .平行 B .平行或异面 C .平行或相交 D .异面或相交 10.在空间四边形ABCD 中,E 、F 分别为AB 、AD 上的点,且AE :EB =AF :FDN D C ME A B F=1 :4,又H 、G 分别为BC 、CD 的中点,则 ( ) A .BD//平面EFGH 且EFGH 是矩形 B .EF//平面BCD 且EFGH 是梯形C .HG//平面ABD 且EFGH 是菱形 D .HE//平面ADC 且EFGH 是平行四边形二.填空题(本题每小题6分,共24分)11.若直线a, b 与直线c 相交成等角,则a, b 的位置关系是 .12.在四面体ABCD 中,若AC 与BD 成60°角,且AC =BD =a ,则连接AB 、BC 、CD 、DA 的中点的四边形面积为 .13.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =3,AA 1=4,则异面直线AB 1与 A 1D 所成的角的余弦值为 .14.把边长为a 的正方形ABCD 沿对角线BD 折起,使A 、C 的距离等于a ,如图所示,则异面直线AC 和BD 的距离为 . 三、解答题(共76分)15.(12分)已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线 .16.(12分)在空间四边形ABCD 中,M 、N 、P 、Q 分别是四边上的点,且满足PDCPQD AQ NB CN MB AM ====k .求证:M 、N 、P 、Q 共面.17.(12分)已知:平面,//,,,a c c A a b b a 且平面βαβα⊂=⋂⊂=⋂求证:b 、c 是异面直线18.(12分)如图,已知空间四边形ABCD 中,AB =CD =3,E 、F 分别是BC 、AD 上的点,并且BE ∶EC =AF ∶FD =1∶2,EF =7,求AB 和CD 所成角的大小.19.(14分)四面体A-BCD 的棱长均为a ,E 、F 分别为楞AD 、BC 的 中点,求异面直线AF 与CE 所成的角的余弦值.20.(14分)在棱长为a的正方体ABCD—A′B′C′D′中,E、F分别是BC、A′D′的中点.(2)求直线A′C与DE所成的角;直线和平面的位置关系一、选择题(本题每小题5分,共50分)1.下列命题:① 一条直线在平面内 的射影是一条直线;② 在平面内射影是直线的图形一 定是直线;③ 在同一平面内的射影长相等,则斜线长相等;④ 两斜线与平面所成的角 相等,则这两斜线互相平行.其中真命题的个数是 ( )A .0个B .1个C .2个D .3个2.下列命题中正确的是 ( )A .若平面M 外的两条直线在平面M 内的射影为一条直线及此直线外的一个点,则这两条直线互为异面直线B .若平面M 外的两条直线在平面M 内的射影为两条平行直线,则这两条直线相交C .若平面M 外的两条直线在平面M 内的射影为两条平行直线,则这两条直线平行D .若平面M 外的两条直线在平面M 内的射影为两条互相垂直的直线,则这两条直线垂直3.相交成60°的两条直线与一个平面α所成的角都是45°,那么这两条直线在平面α内的 射影所成的角是 ( )A .30°B .45°C .60°D .90°4.已知A 、B 两点在平面α的同侧,AC ⊥α于C ,BD ⊥α于D ,并且AD ∩BC =E ,EF ⊥α于F ,AC =a ,BD=b ,那么EF 的长等于 ( )A .b a ab +B .ab b a +C .b a 2+D .2ba +5.P A 、PB 、PC 是从P 点引出的三条射线,每两条夹角都是60°,那么直线PC 与平面P AB 所成角的余弦值是( )A .21B .22C .36 D .33 6.Rt △ABC 中,∠B =90°,∠C =30°,D 是BC 的中点,AC =2,DE ⊥平面ABC ,且DE =1,则点E 到斜边AC 的距离是 ( )A .25 B .211 C .27 D .419 7.如图,PA ⊥矩形ABCD ,下列结论中不正确的是( ) A .PB ⊥BC B .PD ⊥CD C .PD ⊥BD D .PA ⊥BD8.如果α∥β,AB 和AC 是夹在平面α与β之间的 两条线段,AB ⊥AC ,且AB =2,直线AB 与平面α所成的角为30°,那么线段AC 的长的取值范围是( )A. B .[1,)+∞ C. D.)+∞9.若a , b 表示两条直线,α表示平面,下面命题中正确的是 ( ) A .若a ⊥α, a ⊥b ,则b //α B .若a //α, a ⊥b ,则b ⊥αC .若a ⊥α,b ⊂α,则a ⊥bD .若a //α, b //α,则a //b10.如果直角三角形的斜边与平面α平行,两条直角边所在直线与平面α所成的角分别为 21θθ和,则 ( ) A .1sin sin 2212≥+θθ B .1sin sin 2212≤+θθC .1sin sin 2212>+θθD .1sin sin 2212<+θθ二、填空题(本题每小题6分,共24分)11.已知△ABC ,点P 是平面ABC 外一点,点O 是点P 在平面ABC 上的射影,(1)若点P 到△ABC 的三个顶点的距离相等,那么O 点一定是△ABC 的 ;(2)若点P 到△ABC 的三边所在直线的距离相等且O 点在△ABC 内,那么O 点一定是△ABC 的 .12.已知△ABC 中,AB=9,AC=15,∠BAC=120°,△ABC 所在平面外一点P 到此三角形 三个顶点的距离都是14,则点P 到平面ABC 的距离是 13.如图所示,矩形ABEF 与矩形EFDC 相交于EF , 且BE ⊥CE ,AB =CD =4,BE =3,CE =2, ∠EAC =α,∠ACD =β,则cos α∶cos β= .14.AB ∥CD ,它们都在平面α内,且相距28.EF ∥α,且相距15. EF ∥AB ,且相距17.则EF 和CD 间的距离为 . 三、解答题(共76分) 15.(12分)如图,在正方体ABCD —A 1B 1C 1D 1中,求A 1B 和平面A 1B 1CD 所成的角.16.(12分)A 是△BCD 所在平面外的点,∠BAC=∠CAD=∠DAB=60°,AB=3,AC=AD=2. (1)求证:AB ⊥CD ;(2)求AB 与平面BCD 所成角的余弦值.17.(12分)如图,已知矩形ABCD 所在平面外一点P ,P A ⊥平面ABCD ,E 、F 分别是AB 、PC 的中点.(1)求证:EF ∥平面P AD ; (2)求证:EF ⊥CD ;(3)若∠PDA =45︒,求EF 与平面ABCD 所成的角的大小.18.(12分)在ABC ∆中,︒=∠75BAC ,线段VA ⊥平面ABC ,点A 在平面VBC 上的射影为H.求证:H 不可能是VBC ∆的垂心.19.(14分)AB 是⊙O 的直径,C 为圆上一点,AB =2,AC =1, P 为⊙O 所在平面外一点,且PA ⊥⊙O , PB 与平面所成角为45 (1)证明:BC ⊥平面PAC ; (2)求点A 到平面PBC 的距离.20.(14分)如图所示,在斜边为AB的Rt△ABC中,过A作P A⊥平面ABC,AM⊥PB于M,AN⊥PC于N.(2)求证:PB⊥面AMN.(3)若P A=A B=4,设∠BPC=θ,试用tanθ表示△AMN的面积,当tanθ取何值时,△AMN的面积最大?最大面积是多少?平面和平面的位置关系一、选择题:本大题共12个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列命题中正确的是 ( ) A .垂直于同一平面的两平面平行 B .垂直于同一直线的两平面平行 C .与一直线成等角的两平面平行 D .Rt ∠ABC 在平面α的射影仍是一个直角,则∠ABC 所在平面与平面α平行 2.ABCD 是一个四面体,在四个面中最多有几个是直角三角形 ( ) A .1 B .2 C .3 D .4 3.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题: ①若m ⊂α、n ∥β,则m ∥n ; ②若m ∥α、n ∥β,则α∥β; ③若α∩β=n ,m ∥n ,则m ∥α,m ∥β;④若m ⊥α,m ⊥β,则α∥β. 其中真命题的个数是 ( ) A .0 B .1 C .2 D .3 4.已知二面角α-AB -β的平面角为θ,α内一点C 到β的距离为3,到棱AB 的距离为4, 则tan θ等于 ( )A .34B .35CD5.下列命题:① 若直线a //平面α,平面α⊥平面β,则α⊥β; ② 平面α⊥平面β,平 面β⊥平面γ,则α⊥γ;③ 直线a ⊥平面α,平面α⊥平面β,则a //β; ④ 平面α// 平面β,直线a ⊂平面α,则a //β.其中正确命题的个数是 ( ) A .1 B .2 C .3 D .4 6.二面角α-AB -β的平面角为锐角,C 是α内的一点 (它不在棱AB 上),点D 是C 在平面β内的射影,点E 是AB 上满足∠CEB 为锐角的任意一点,那么( ) A .∠CEB>∠DEB B .∠CEB<∠DEB C .∠CEB=∠DEB D .无法确定7.如果直线l 、m 与平面α、β、γ满足:l βγ=⋂,//l α,,m m αγ⊂⊥,那么必有( ) A .,l m αγ⊥⊥ B .,//m αγβ⊥ C .//,m l m β⊥ D .//,αβαβ⊥ 8.已知:矩形ADEF ⊥矩形BCEF ,记∠DBE =α, ∠DCE =β,∠BDC =θ,则 ( ) A .sin α=sin βsin θ B .sin β=sin αcos θ C .cos α=cos βcos θ D .cos β=cos αcos θ9.若有平面α与β,且l P P l ∉α∈β⊥α=βα,,, ,则下列命题中的假命题为 ( )A .过点P 且垂直于α的直线平行于βB .过点P 且垂直于l 的平面垂直于βC .过点P 且垂直于β的直线在α内D .过点P 且垂直于l 的直线在α内10.空间三条射线PA ,PB ,PC 满足∠APC=∠APB=60°,∠BPC=90°,则二面角B-PA-C的度数 ( )A .等于90°B .是小于120°的钝角C .是大于等于120°小于等于135°的钝角D .是大于135°小于等于150°的钝角二、填空题:本大题满分24分,每小题6分,各题只要求直接写出结果. 11.如图所示,E 、F 、G 是正方体ABCD -A 1B 1C 1D 1相应棱的中点,则(1)面EFG 与面ABCD 所成的角为 ;(2)面EFG 与面ADD 1A 1所成的角为 . 12.斜线PA 、PB 于平面α分别成40°和60°,则∠APB 的取值范围为13.在直角△ABC 中,两直角边AC =b ,BC =a ,CD ⊥AB 于D , 把这个Rt △ABC 沿CD 折成直二面角A -CD -B 后, cos ∠ACB = .14.如图,两个矩形ABCD 和ABEF 中,AD =AF =1, DC =EF =,则AB 与CF 所成角θ的大小范 围是 .三、解答题:本大题满分76分. 15.(本小题满分12分).//,,//,,,:αββαb b a a b a 且且是异面直线已知⊂⊂ 求证:βα//.16.(本小题满分12分)正方体ABCD-A ′B ′C ′D ′棱长为1.(1)证明:面A ′BD ∥面B ′CD ′; (2)求点B ′到面A ′BD 的距离.(14分)17.(本小题满分12分)如图,平面α∥平面β,点A 、C ∈α,B 、D ∈β,点E 、F 分别在线段AB 、CD 上,且FDCFEB AE =,求证:EF ∥β.18.(本小题满分12分)如图,四面体ABCD 中,△ABC 与△DBC 都是边长为4的正三角形.(1)求证:BC ⊥AD ;(2)若点D 到平面ABC 的距离不小于3,求二面角A —BC —D 的平面角的取值范围; (3)求四面体ABCD 的体积的最大值.19.(本小题满分14分)在长方体1111D C B A ABCD -中,11==AD AA ,底边AB 上有且 只有一点M 使得平面⊥DM D 1平面MC D 1. (1)求异面直线C C 1与M D 1的距离; (2)求二面角D C D M --1的大小.20.(本小题满分14分)如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点. (1)证明AD ⊥D 1F; (2)求AE 与D 1F 所成的角; (3)证明面AED ⊥面A 1FD 1;(4)111112ED A F V ED A F AA --=的体积,求三棱锥设.空间角和距离一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线m 与平面α间距离为d ,那么到m 与α距离都等于2d 的点的集合是 ( )A .一个平面B .一条直线C .两条直线D .空集2.异面直线a 、b 所成的角为θ,a 、b 与平面α都平行,b ⊥平面β,则直线a 与平面β所成的角 ( ) A .与θ相等 B .与θ互余 C .与θ互补 D .与θ不能相等.3.在正方体ABCD —A 'B 'C 'D '中,BC '与截面BB 'D 'D 所成的角为 ( )A .3π B .4π C .6πD .arctan24.在正方形SG 1G 2G 3中,E ,F 分别是G 1G 2及G 2G 3的中点,D 是EF 的中点,现在沿SE ,SF 及EF 把这个正方形折成一个四面体,使G 1,G 2,G 3三点重合,重合后的点记为G ,那么,在四面体S -EFG 中必有 ( ) A .SG ⊥△EFG 所在平面 B .SD ⊥△EFG 所在平面C .GF ⊥△SEF 所在平面D .GD ⊥△SEF 所在平面5.有一山坡,它的倾斜角为30°,山坡上有一条小路与斜坡底线成45°角,某人沿这条小路向上走了200米,则他升高了 ( ) A .1002米B .502米C .256米D .506米6.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小为 ( )A .arccos 33B .arccos 31 C .2π D .32π7.正四面体A —BCD 中E 、F 分别是棱BC 和AD 之中点,则EF 和AB 所成的角 ( )A .45︒B .60︒C .90︒D .30︒8.把∠A =60°,边长为a 的菱形ABCD 沿对角线BD 折成60°的二面角,则AC 与BD 的距离为 ( )A .43a B .43 a C .23 a D .46a 9.若正三棱锥的侧面均为直角三角形,侧面与底面所成的角为α,则下列各等式中成立的是 ( )A .0<α<6π B .6π<α<4π C .4π<α<3π D .3π<α<2π10.已知A (1,1,1),B (-1,0 ,4),C (2 ,-2,3),则〈AB ,CA 〉的大小为( )A .6πB .65πC .3πD .32π二、填空题(本大题共4小题,每小题6分,共24分)11.从平面α外一点P 引斜线段PA 和PB ,它们与α分别成45︒和30︒角,则∠APB 的最大值是______最小值是_______12.∆ABC 中∠ACB=90︒,PA ⊥平面ABC ,PA=2,AC=2 3 ,则平面PBC 与平面PAC ,平面ABC 所成的二角的大小分别是______、_________. 13.在三棱锥P-ABC中,90=∠ABC ,30=∠BAC ,BC=5,又PA=PB=PC=AC,则点P到平面ABC的距离是 .14.球的半径为8,经过球面上一点作一个平面,使它与经过这点的半径成45°角,则这个平面截球的截面面积为 . 三、解答题(共计76分)15.(本小题满分12分)已知SA ⊥平面ABC ,SA=AB ,AB ⊥BC ,SB=BC ,E 是SC 的中点,DE ⊥SC 交AC 于D .(1) 求证:SC ⊥面BDE ;(2)求二面角E —BD —C 的大小. 16.(本小题满分12分)如图,点P 为斜三棱柱111C B A ABC -的侧棱1BB 上一点,1BB PM ⊥交1AA 于点M , 1BB PN ⊥交1CC 于点N .(1) 求证:MN CC ⊥1; (2) 在任意DEF ∆中有余弦定理:DFE EF DF EF DF DE ∠⋅-+=cos 2222.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明. 17.(本小题满分12分)如图,四棱锥S —ABCD 的底面是边长为1的正方形, SD 垂直于底面ABCD ,SB=3. (1)求证BC ⊥SC ;(2)求面ASD 与面BSC 所成二面角的大小;(3)设棱SA 的中点为M ,求异面直线DM 与SB 所成角的大小.1AB=a,(如图一)将△ADC 18.(本小题满分12分)在直角梯形ABCD中,∠D=∠BAD=90︒,AD=DC=2沿AC折起,使D到D'.记面AC D'为α,面ABC为β.面BC D'为γ.(1)若二面角α-AC-β为直二面角(如图二),求二面角β-BC-γ的大小;(2)若二面角α-AC-β为60︒(如图三),求三棱锥D'-ABC的体积.19.(本小题满分14分)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.(1)求证AM//平面BDE;(2)求二面角A-DF-B的大小;(3)试在线段AC上确定一点P,使得PF与BC所成的角是60︒.20.(本题满分14分)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==)20(<<a .(1)求MN 的长;(2)当a 为何值时,MN 的长最小;(3)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小.二 面 角二面角问题因其需要充分运用立体几何第一章的线线、线面、面面关系,具有综合性强,灵活性大的特点,因此,一直成为高考、会考的热点。
高二年级数学知识考点归纳高二年级数学知识点一、直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。
当直线与轴重合或平行时,规定倾斜角为0;2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,⑵斜截式:直线在轴上的截距为和斜率,则直线方程为4、直线与直线的位置关系:(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=05、点到直线的距离公式;两条平行线与的距离是6、圆的标准方程:.⑵圆的一般方程:注意能将标准方程化为一般方程7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长二、圆锥曲线方程:1、椭圆:①方程(a b 0)注意还有一个;②定义:|PF1|+|PF2|=2a ③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;2、双曲线:①方程(a,b 0)注意还有一个;②定义:||PF1|-|PF2||=2a③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b23、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d 焦点F(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;4、直线被圆锥曲线截得的弦长公式:5、注意解析几何与向量结合问题:1、,.(1);(2).2、数量积的定义:已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b,即3、模的计算:|a|=.算模可以先算向量的平方4、向量的运算过程中完全平方公式等照样适用:三、直线、平面、简单几何体:1、学会三视图的分析:2、斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴Ox、Oy。
2024年苏教版高二数学下册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共9题,共18分)1、已知命题p:命题q:则是成立的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2、【题文】如图;长方形的面积为2,将100颗豆子随机地撒在长方形内,其中恰好有60颗豆子落在阴影部分内,则用随机模拟的方法可以估计图中阴影部分的面积为。
A.B.C.D.3、【题文】在△ABC中,已知a= b=2,B=45°,则角A=( ).A. 30°或150°B. 60°或120°4、【题文】设为等差数列的前项和,若公差则()A. 8B. 7C. 6D. 55、【题文】平面向量与的夹角为则()A.B.C.D.6、【题文】复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7、公差不为零的等差数列{a n}的前n项和为S n,若a3是a2与a6的等比中项,则=()A.B.C. 1D. 28、设O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若=﹣4则点A的坐标是()A. (2,±2)B. (1,±2)C. (1,2)D. (2,2)9、某单位有职工200名,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组.若第5组抽出的号码为22,则第10组抽出的号码应是()A. 45D. 48评卷人得分二、填空题(共8题,共16分)10、复数的值为 .11、函数(a>0,)在内恒有f(x)>0,则f(x)的单调增区间为____.12、直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则b的值为 ____.13、已知椭圆的中心在原点,焦点在y轴上,若其离心率为焦距为8,则该椭圆的方程是____.14、下列四个条件中,能确定一个平面的只有____.(填序号)①空间中的三点②空间中两条直线③一条直线和一个点④两条平行直线15、设函数该曲线以点处的切线平行于直线则该曲线的切线方程.16、从4件正品,1件次品中随机取出2件,则取出的2件产品中恰好是1件正品、1件次品的概率是 ______ .17、为了保证信息安全传输;有一种称为秘密密钥密码系统,其加密;解密原理如下图:现在加密密钥为y=a(x+2)如下所示:明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得明文“6”,问“接受方接到密文”4“,则解密后得到明文为 ______ .评卷人得分三、作图题(共6题,共12分)18、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?19、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)20、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)21、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)22、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)23、分别画一个三棱锥和一个四棱台.评卷人得分四、解答题(共1题,共8分)24、已知抛物线点过的直线交抛物线于两点.(1)若抛物线的焦点与中点的连线垂直于轴,求直线的方程;(2)设为小于零的常数,点关于轴的对称点为求证:直线过定点评卷人得分五、计算题(共4题,共40分)25、已知等式在实数范围内成立,那么x的值为____.26、1. (本小题满分12分)已知数列满足且()。
高 二 数 学(第15周) 主讲教师:徐 瑢主审教师:陈云楼【教学内容】1、直线和平面的位置关系2、直线和平面平行的判定和性质【教学目标】1、领会并叙述直线与平面的三种位置关系.2、学会用“线线平行”得“线面平行”定理的应用.3、学会由“线面平行”得“线线平行”定理的应用.【知识讲解】1、直线与平面的位置关系:直线在平面内——有无数个公共点即 a ⊂α相交——只有一个公共点即a ∩α=A直线不在平面内平行——没有公共点,记为a ‖α2、画图时要注意如下几点:(1)线在面内.直线不要超出表示平面的平行四边形的各条边.(2)线面相交.交点到水平线这一段是不可见的,注意画成虚线或不画.(3)线面平行.直线要与表示平面的平行四边形的一组对边平行.3、直线和平面平行的判定方法:⑴根据定义:证明直线与平面没有公共点。
通常用反证法,先假设直线a 与平面α不平行,则a ⊂α或a ∩α=A ,然后一一否定。
⑵利用判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
即 a ⊄αb ⊂α⇒ a ‖α,可简记为:“线线平行,则线面平行”,“线a ‖b线”指平面α外直线a ,平面α内直线b,“线面”指直线a 与平面α。
利用判定定理时,首先要检查是否符合这三个条件,在证明过程中也因明确写出这三个条件。
判定定理的实质是:在平面内找出一条直线和已知直线平行,就可断定这条已知直线必和这个平面平行.4、直线和平面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
即 a ‖αa ⊂β ⇒a ‖bα∩β=b这个定理可简记为“线面平行,则线线平行”,“线面”是指平面α及平面α外直线a,“线线”指直线a ,平面α和β的交线b 。
性质定理的实质是:如果线面平行,则过已知直线作一平面和已知平面相交,其交线必和已知直线平行.值得注意的是:由线面平行 线线平行,并不意味着平面内的任意一条直线都与已知直线平行.正确的结论是:a ∥α,若b α,则b 与a 的关系是:盐中网校版权所有不得转录异面或平行.即平面a内直线分成两大类,一类是与a平行,有无数条;另一类是与a异面,也D不对,忽略了m在平面α内的情况。
苏教版高中数学教材内容平面的基本性质第7 章概率数学 1 (高一下6)空间两条直线的位置关系第1 章集合7.1 随机事件及其概率直线与平面的位置关系(高一上1)7.2 古典概型平面与平面的位置关系1.1 集合的含义及其表示7.3 几何概型1.2 子集、全集、补集第4 章平面解析几何初步7.4 互斥事件及其发生的概率1.3 交集、并集(高二上1)数学 44.1 直线与方程第8 章三角函数第2 章函数概念与基本初等函数(高一上3)直线的斜率(高一上2)8.1 任意角、弧度直线的方程2.1 函数的概念和图象8.2 任意角的三角函数两条直线的平行与垂直函数的概念和图象两条直线的交点8.3 三角函数的图象和性质函数的表示方法平面上两点间的距离函数的简单性质点到直线的距离第9 章平面向量映射的概念4.2 圆与方程(高一上4)2.2 指数函数9.1 向量的概念及表示圆的方程分数指数幂直线与圆的位置关系9.2 向量的线性运算指数函数圆与圆的位置关系9.3 向量的坐标表示2.3 对数函数 4.3 空间直角坐标系9.4 向量的数量积对数空间直角坐标系9.5 向量的应用对数函数空间两点间的距离2.4 幂函数第10 章三角恒等变换2.5 函数与方程数学 3 (高一上5)二次函数与一元二次方程第5 章算法初步10.1 两角和与差的三角函数(高一下4)10.2 二倍角的三角函数用二分法求方程的近似解2.6 函数模型及其应用 5.1 算法的意义10.3 几个三角恒等式5.2 流程图数学2 5.3 基本算法语句数学 5第3 章立体几何初步 5.4 算法案例第11 章解三角形3.1 空间几何体(高一下1)棱柱、棱锥和棱台第6 章统计11.1 正弦定理(高一下5)11.2 余弦定理圆柱、圆锥、圆台和球中心投影和平行投影6.1 抽样方法11.3 正弦定理、余弦定理的应用直观图画法6.2 总体分布的估计空间图形的展开图6.3 总体特征数的估计第12 章数列柱、锥、台、球的体积6.4 线性回归方程(高一下2)3.2 点、线、面之间的位置关系12.1 等差数列112.2 等比数列1.2 独立性检验第1 章导数及其应用12.3 数列的进一步认识1.3 线性回归分析1.1 导数的概念1.4 聚类分析1.2 导数的运算第13 章不等式第2 章推理与证明1.3 导数在研究函数中的应用(高一下3)(高二上5)1.4 导数在实际生活中的应用13.1 不等关系2.1 合情推理与演绎推理1.5 定积分13.2 一元二次不等式2.2 直接证明与间接证明13.3 二元一次不等式组与简单的2.3 公理化思想第2 章推理与证明线性规划问题2.1 合情推理与演绎推理13.4 基本不等式第 3 章数系的扩充与复数的引2.2 直接证明与间接证明入2.3 数学归纳法选修系列 1 (高二上6)2.4 公理化思想1-1 3.1 数系的扩充第1 章常用逻辑用语3.2 复数的四则运算第3 章数系的扩充与复数的引入(高二上2)3.3 复数的几何意义6.1 数系的扩充1.1 命题及其关系3.2 复数的四则运算1.2 简单的逻辑联结词第4 章框图3.3 复数的几何意义1.3 全称量词与存在量词4.1 流程图5.2 结构图2-3第2 章圆锥曲线与方程第1 章计数原理(高二上3)选修系列 2 1.1 两个基本原理2.1 圆锥曲线2-1 1.2 排列2.2 椭圆第1 章常用逻辑用语1.3 组合2.3 双曲线1.1 命题及其关系1.4 计数应用题2.4 抛物线1.2 简单的逻辑连接词1.5 二项式定理2.5 圆锥曲线与方程1.3 全称量词与存在量词第2 章概率第2 章圆锥曲线与方程2.1 随机变量及其概率分布第3 章导数及其应用2.1 圆锥曲线2.2 超几何分布(高二上4)2.2 椭圆2.3 独立性3.1 导数的概念2.3 双曲线2.4 二项分布3.2 导数的运算2.4 抛物线2.5 离散型随机变量的均值与方差3.3 导数在研究函数中的应用2.5 圆锥曲线的统一定义2.6 正态分布3.4 导数在实际生活中的应用2.6 曲线与方程第3 章统计案例第3 章空间向量与立体几何3.1 假设检验1-2 3.1 空间向量及其运算3.2 独立性检验第1 章统计案例3.2 空间向量的应用3.3 线性回归分析1.1 假设检验2-2 4.4 聚类分析。
高二数学几何知识点一、引言在高中数学的学习中,几何是一个重要的分支,它不仅培养了学生的空间想象能力,还锻炼了逻辑推理和解决问题的能力。
高二数学几何部分主要包括平面几何和立体几何两大块内容,涉及众多的定理、公式和解题技巧。
本文将对高二数学几何的重要知识点进行梳理和总结,帮助学生更好地理解和掌握这部分内容。
二、平面几何1. 平面几何基础平面几何的基础是点、线、面的概念及其相互关系。
点是最基本的元素,线是由点组成的,面是由线围成的。
学生需要理解点、线、面的基本概念,掌握它们之间的关系,如平行、垂直、相交等。
2. 三角形的性质三角形是平面几何中最基本的多边形,其性质和定理是学习的重点。
包括三角形的内角和定理、外角定理、三角形的中位线定理、三角形的重心、内心、外心等。
此外,特殊三角形如等腰三角形、等边三角形、直角三角形的性质也需要熟练掌握。
3. 圆的性质圆是平面几何中的重要图形,涉及到的知识点包括圆的基本性质、圆的切线、圆的弦、圆周角、圆心角、圆的面积和周长等。
掌握圆的性质对于解决与圆相关的几何问题至关重要。
4. 相似与全等全等和相似是判断图形关系的两个重要概念。
全等意味着两个图形在形状和大小上完全相同,而相似则意味着两个图形在形状上相同,但大小可能不同。
掌握全等三角形和相似三角形的判定条件及性质,对于解决几何证明题非常有帮助。
三、立体几何1. 立体图形的基本概念立体几何涉及的是三维空间中的图形,包括多面体和旋转体等。
学生需要理解立体图形的基本元素,如顶点、棱、面,以及它们之间的关系。
2. 多面体的性质多面体是立体几何中的基础图形,包括棱柱、棱锥、正多面体等。
学习多面体的性质,如体积、表面积的计算公式,以及欧拉公式等,对于理解空间图形的结构和性质非常重要。
3. 旋转体的性质旋转体是由平面图形绕直线旋转而形成的立体图形,如圆柱、圆锥、球等。
掌握旋转体的体积和表面积的计算公式,以及它们的对称性质,对于解决立体几何问题非常关键。
同步:平面的基本性质(★) 教学目标 1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理。
2.理解空间直线、平面位置关系的定义,并掌握公理体系,掌握平面基本性质,解决两条异面直线所成的角,直线异面、共面等相关问题。
知识梳理10min.(1)四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
符号语言:,,,A l B l A B l ααα∈∈∈∈ ⇒ ∈且。
公理2:过不在一条直线上的三点,有且只有一个平面。
三个推论:①经过一条直线和这条直线外的一点有且只有一个平面 ②两条相交直线确定一个平面③两条平行直线确定一个平面它给出了确定一个平面的依据。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。
符号语言:,,P P l P l αβαβ∈∈⇒=∈且。
公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。
符号语言://,////a l b l a b ⇒且。
2.空间中两条直线的位置关系(1)共面直线1.相交直线:有且仅有一个公共点2.平行直线:在同一个平面内,没有公共点(2)异面直线:不同在任何一个平面内,没有公共点3.空间中直线与平面之间的位置关系直线与平面的位置关系有三种: 1.23//l l A l ααα⊂⎧⎪=⎧⎨⎨⎪⎩⎩直线在平面内:.直线与平面相交:直线在平面外.直线与平面平行:4.空间中平面与平面之间的位置关系平面与平面之间的位置关系有两种: 1.//2.l αβαβ⎧⎨=⎩两个平面平行:两个平面相交: 典例精讲20min.【边讲边练】★★例1、有两条不同的直线m ,n 与两个不同的平面α,β,下列命题正确的是( ).A .m ∥α,n ∥β,且α∥β,则m ∥nB .m ⊥α,n ⊥β,且α⊥β,则m ∥nC .m ∥α,n ⊥β,且α⊥β,则m ∥nD .m ⊥α,n ∥β,且α∥β,则m ⊥n 解析 A 中,除m ∥n 外,还有相交、异面,A 不正确;B 中,只含m ⊥n ,B 不正确;C 中除m ∥n 外,还有相交或异面,C 不正确;故选D.答案 D★★例2. (2010年高考山东卷理科3)在空间,下列命题正确的是(A )平行直线的平行投影重合(B )平行于同一直线的两个平面平行(C )垂直于同一平面的两个平面平行(D )垂直于同一平面的两条直线平行【答案】D【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以很容易得出答案。
2016高二数学全册知识点汇总2016高二数学全册知识点汇总高二是高三的过渡期,高二学习成绩好的话,高三复习的压力就相对小一点。
所以高二数学的学习十分重要。
下面小编为大家提供高二数学知识点总结,供大家参考。
一、集合、简易逻辑(14时,8个)1集合;2子集;3补集;4交集;并集;6逻辑连结词;7四种命题;8充要条二、函数(30时,12个)1映射;2函数;3函数的单调性;4反函数;互为反函数的函数图象间的关系;6指数概念的扩充;7有理指数幂的运算;8指数函数;9对数;10对数的运算性质;11对数函数12函数的应用举例三、数列(12时,个)1数列;2等差数列及其通项公式;3等差数列前n项和公式;4等比数列及其通顶公式;等比数列前n项和公式四、三角函数(46时17个)1角的概念的推广;2弧度制;3任意角的三角函数;4,单位圆中的三角函数线;同角三角函数的基本关系式;6正弦、余弦的诱导公式’7两角和与差的正弦、余弦、正切;8二倍角的正弦、余弦、正切;9正弦函数、余弦函数的图象和性质;10周期函数;11函数的奇偶性;12函数的图象;13正切函数的图象和性质;14已知三角函数值求角;1正弦定理;16余弦定理;17斜三角形解法举例五、平面向量(12时,8个)1向量2向量的加法与减法3实数与向量的积;4平面向量的坐标表示;线段的定比分点;6平面向量的数量积;7平面两点间的距离;8平移六、不等式(22时,个)1不等式;2不等式的基本性质;3不等式的证明;4不等式的解法;含绝对值的不等式七、直线和圆的方程(22时,12个)1直线的倾斜角和斜率;2直线方程的点斜式和两点式;3直线方程的一般式;4两条直线平行与垂直的条;两条直线的交角;6点到直线的距离;7用二元一次不等式表示平面区域;8简单线性规划问题9曲线与方程的概念;10由已知条列出曲线方程;11圆的标准方程和一般方程;12圆的参数方程八、圆锥曲线(18时,7个)1椭圆及其标准方程;2椭圆的简单几何性质;3椭圆的参数方程;4双曲线及其标准方程;双曲线的简单几何性质;6抛物线及其标准方程;7抛物线的简单几何性质九、(B)直线、平面、简单何体(36时,28个)1平面及基本性质;2平面图形直观图的画法;3平面直线;4直线和平面平行的判定与性质;,直线和平面垂直的判与性质;6三垂线定理及其逆定理;7两个平面的位置关系;8空间向量及其加法、减法与数乘;9空间向量的坐标表示;10空间向量的数量积;11直线的方向向量;12异面直线所成的角;13异面直线的公垂线;14异面直线的距离;1直线和平面垂直的性质;16平面的法向量;17点到平面的距离;18直线和平面所成的角;19向量在平面内的射影;20平面与平面平行的性质;21平行平面间的距离;22二面角及其平面角;23两个平面垂直的判定和性质;24多面体;2棱柱;26棱锥;27正多面体;28球十、排列、组合、二项式定理(18时,8个)1分类计数原理与分步计数原理2排列;3排列数公式’4组合;组合数公式;6组合数的两个性质;7二项式定理;8二项展开式的性质十一、概率(12时,个)1随机事的概率;2等可能事的概率;3互斥事有一个发生的概率;4相互独立事同时发生的概率;独立重复试验选修Ⅱ(24个)十二、概率与统计(14时,6个)1离散型随机变量的分布列;2离散型随机变量的期望值和方差;3抽样方法;4总体分布的估计;正态分布;6线性回归十三、极限(12时,6个)1数学归纳法;2数学归纳法应用举例;3数列的极限;4函数的极限;极限的四则运算;6函数的连续性十四、导数(18时,8个)1导数的概念;2导数的几何意义;3几种常见函数的导数;4两个函数的和、差、积、商的导数;复合函数的导数;6基本导数公式;7利用导数研究函数的单调性和极值;8函数的最大值和最小值十五、复数(4时,4个)1复数的概念;2复数的加法和减法;3复数的乘法和除法答案补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查现在的我们学数学比前人幸福啊!!相信对你的学习会有帮助的,祝你成功!答案补充一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。