2017-2018学年吉林省吉林市龙潭区吉化九中九年级上学期期中数学试卷与解析
- 格式:doc
- 大小:540.00 KB
- 文档页数:24
2016-2017学年吉林省吉林市吉化九中八年级(上)月考数学试卷(9月份)一.选择题1.一个三角形的两边长分别为3和8,第三边长是一个偶数,则第三边的长不能为()A.6 B.8 C.10 D.122.在如图中,正确画出AC边上高的是()A. B.C.D.3.适合条件∠A=∠B=∠C的三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形4.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.3cm C.7cm或3cm D.8cm5.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A.3个B.2个C.1个D.0个6.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若证△ABC≌△A′B′C′还要从下列条件中补选一个,错误的选法是()A.∠B=∠B′B.∠C=∠C′C.BC=B′C′D.AC=A′C′7.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40° B.35° C.30° D.25°8.如图,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD()P点到∠AOB两边距离之和.A.小于 B.大于 C.等于 D.不能确定9.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:510.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对二、填空题11.如图,共有个三角形.12.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.13.如图:将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A= 度.14.如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC= .15.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是.(答案不唯一,只要写一个条件)16.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有对.17.正方形ABCD中,AC,BD交于O,∠EOF=90°,已知AE=3,CF=4.则S△BEF为.18.如图,∠A+∠B+∠C+∠D+∠E的度数是.三、解答题19.尺规作图:已知点M、N和∠AOB.(1)画直线MN;(2)在直线MN上求作点P,使点P到∠AOB的两边的距离相等.20.如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度数.21.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.22.如图、公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试判断三只石凳E,M,F恰好在一直线上吗?为什么?23.已知,如图∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠DAB;(2)猜想AM与DM的位置关系如何,并证明你的结论.24.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.25.(12分)如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF;(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.2016-2017学年吉林省吉林市吉化九中八年级(上)月考数学试卷(9月份)参考答案与试题解析一.选择题1.一个三角形的两边长分别为3和8,第三边长是一个偶数,则第三边的长不能为()A.6 B.8 C.10 D.12【考点】三角形三边关系.【专题】计算题.【分析】第三边应该大于两边的差而小于两边的和,因而可得第三边长x满足的关系式.根据第三边长是偶数,就可以判断第三边长的可能值.【解答】解:第三边长x满足:5<x<11,并且第三边长是偶数,因而不满足条件的只有第4个答案.故选D.【点评】考查了三角形三边关系,已知三角形的两边,则第三边的范围是:大于已知两边的差,而小于两边的和.2.在如图中,正确画出AC边上高的是()A. B.C.D.【考点】三角形的角平分线、中线和高.【分析】作哪一条边上的高,即从所对的顶点向这条边或者条边的延长线作垂线即可.【解答】解:画出AC边上高就是过B作AC的垂线,故选:C.【点评】此题主要考查了三角形的高,关键是掌握高的作法.3.适合条件∠A=∠B=∠C的三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形【考点】三角形内角和定理.【分析】由三角形内角和为180°和∠A=∠B=∠C,可得∠A+∠B+∠C=2∠C=180°,得∠C=90°,故该三角形的形状为直角三角形.【解答】解:∵角形内角和为180°.∴∠A+∠B+∠C=180°.又∵∠A=∠B=∠C的.∴2∠C=180°.解得∠C=90°.故适合条件∠A=∠B=∠C的三角形是直角三角形.故选项A错误,选项B错误,选项C错误,选项D正确.故选D.【点评】本题考查三角形内角和的知识,关键是根据题目中的信息进行转化,来解答本题.4.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.3cm C.7cm或3cm D.8cm【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】已知的边可能是腰,也可能是底边,应分两种情况进行讨论.【解答】解:当腰是3cm时,则另两边是3cm,7cm.而3+3<7,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是5cm,5cm.则该等腰三角形的底边为3cm.故选:B.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.5.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A.3个B.2个C.1个D.0个【考点】全等图形.【专题】常规题型.【分析】根据全等三角形的概念:能够完全重合的图形是全等图形,及全等图形性质:全等图形的对应边、对应角分别相等,分别对每一项进行分析即可得出正确的命题个数.【解答】解:(1)形状相同、大小相等的两个三角形是全等形,而原说法没有指出大小相等这一点,故(1)错误;(2)在两个全等三角形中,对应角相等,对应边相等,而非相等的角是对应角,相等的边是对应边,故(2)错误;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,故(3)正确.综上可得只有(3)正确.故选:C.【点评】本题考查了全等三角形的概念和全等三角形的性质,在解题时要注意灵活应用全等三角形的性质和定义是本题的关键.6.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若证△ABC≌△A′B′C′还要从下列条件中补选一个,错误的选法是()A.∠B=∠B′B.∠C=∠C′C.BC=B′C′D.AC=A′C′【考点】全等三角形的判定.【分析】注意普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.【解答】解:AB=A′B′,∠A=∠A′,∠B=∠B′符合ASA,A正确;∠C=∠C′符合AAS,B正确;AC=A′C′符合SAS,D正确;若BC=B′C′则有“SSA”,不能证明全等,明显是错误的.故选C.【点评】考查三角形全等的判定的应用.做题时要按判定全等的方法逐个验证.7.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40° B.35° C.30° D.25°【考点】全等三角形的性质.【分析】根据三角形的内角和定理列式求出∠BAC,再根据全等三角形对应角相等可得∠DAE=∠BAC,然后根据∠EAC=∠DAE﹣∠DAC代入数据进行计算即可得解.【解答】解:∵∠B=80°,∠C=30°,∴∠BAC=180°﹣80°﹣30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE﹣∠DAC,=70°﹣35°,=35°.故选B.【点评】本题考查了全等三角形对应角相等的性质,熟记性质并准确识图是解题的关键.8.如图,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD()P点到∠AOB两边距离之和.A.小于 B.大于 C.等于 D.不能确定【考点】角平分线的性质;垂线段最短.【分析】过P作PE⊥OA于E,PF⊥OB于F,则∠PED=∠PFD=90°,根据垂线段最短得出PC>PE,PD >PF,即可得出答案.【解答】解:过P作PE⊥OA于E,PF⊥OB于F,则∠PED=∠PFD=90°,所以PC>PE,PD>PF,∴PC+PD>PE+PF,即CD大于P点到∠AOB两边距离之和,故选B.【点评】本题考查了角平分线性质,垂线段最短的应用,解此题的关键是推出PD>PF,PC>PE.9.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5【考点】角平分线的性质.【专题】数形结合.【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【解答】解:利用同高不同底的三角形的面积之比就是底之比可知选C.故选C.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高时相等的,这点式非常重要的.10.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对【考点】角平分线的性质;等腰直角三角形.【专题】计算题.【分析】由∠C=90°,根据垂直定义得到DC与AC垂直,又AD平分∠CAB交BC于D,DE⊥AB,利用角平分线定理得到DC=DE,再利用HL证明三角形ACD与三角形AED全等,根据全等三角形的对应边相等可得AC=AE,又AC=BC,可得BC=AE,然后由三角形BED的三边之和表示出三角形的周长,将其中的DE换为DC,由CD+DB=BC进行变形,再将BC换为AE,由AE+EB=AB,可得出三角形BDE的周长等于AB的长,由AB的长可得出周长.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选A.【点评】此题考查了角平分线定理,垂直的定义,直角三角形证明全等的方法﹣HL,利用了转化及等量代换的思想,熟练掌握角平分线定理是解本题的关键.二、填空题11.如图,共有 6 个三角形.【考点】三角形.【分析】要数三角形的个数,显然只要数出BC上共有多少条线段即可.有BD、BE、BC、DE、DC、CE共6条线段,即和A组成6个三角形.【解答】解:BD、BE、BC、DE、DC、CE共6条线段和A组成6个三角形.【点评】注意数三角形的个数的简便方法.12.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 6 .【考点】多边形内角与外角.【专题】计算题.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.13.如图:将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A= 50 度.【考点】翻折变换(折叠问题).【分析】根据折叠的性质可知∠ADE=∠EDF,∠AED=∠DEF,利用平角是180°,求出∠ADE与∠AED 的和,然后利用三角形内角和定理求出∠A的度数.【解答】解:∵将纸片△ABC沿DE折叠,点A落在点F处,∴∠ADE=∠EDF,∠AED=∠DEF,∴∠1+2∠ADE+∠2+2∠AED=180°+180°,∴∠1+∠2+2(∠ADE+∠AED)=360°,又∵∠1+∠2=100°,∴∠ADE+∠AED=130°,∴∠A=180°﹣(∠ADE+∠AED)=50°.故答案是:50【点评】本题考查了翻折变换(折叠问题).解题时注意挖掘出隐含于题中的已知条件:三角形内角和是180°、平角的度数也是180°.14.如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC= 120°.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等判断出点O是三个角的平分线的交点,再根据三角形的内角和定理和角平分线的定义求出∠OBC+∠OCB,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵点O在△ABC内,且到三边的距离相等,∴点O是三个角的平分线的交点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣60°)=60°,在△BCO中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°.故答案为:120°.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的内角和定理,角平分线的定义,熟记性质并判断出点O是三个角的平分线的交点是解题的关键.15.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是∠ADC=∠AEB .(答案不唯一,只要写一个条件)【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,由于∠A是公共角,AE=AD,题中有一边一角,可以补充一组角相等,则可用ASA判定其全等.【解答】解:补充条件为:∠ADC=∠AEB.∵∠A=∠A,AE=AD,∠ADC=∠AEB,∴△ABE≌△ACD.故填:∠ADC=∠AEB.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有 6 对.【考点】全等三角形的判定.【分析】在如上图形中可知相交的两直线和四边形的边长所组成的三角形全等,然后得到结论,再找其它的三角形由易到难.【解答】解:∵AD∥BC,OE=OF,∴∠FAC=∠BCA,又∠AOF=∠COE,∴△AFO≌△CEO,∴AO=CO,进一步可得△AOD≌△COB,△FOD≌△EOB,△ACB≌△ACD,△ABD≌△DCB,△AOB≌△COD共有6对.故填6【点评】考查全等三角形的判定,做题时要从已知开始思考结合全等的判定方法由易到难找寻,注意顺序别遗漏.17.正方形ABCD中,AC,BD交于O,∠EOF=90°,已知AE=3,CF=4.则S△BEF为 6 .【考点】全等三角形的判定与性质;正方形的性质.【分析】结合正方形的性质可证到△AOE≌△BOF,则有AE=BF=3,即可得到AB=BC=7,从而可求出EB=4,由此可求出△BEF的面积.【解答】解:∵四边形ABCD是正方形,∴AB=BC,OA=OB,∠ABC=∠AOB=90°,∠BAC=∠CBD=45°.∵∠EOF=90°,∴∠AOE=∠BOF=90°﹣∠EOB.在△AOE和△BOF中,,∴△AOE≌△BOF(ASA),∴AE=BF=3,∴BC=BF+FC=3+4=7,∴AB=BC=7,∴BE=AB﹣AE=7﹣3=4,∴S△BEF=BE•BF=×4×3=6.故答案为6.【点评】本题主要考查了正方形的性质、全等三角形的判定与性质等知识,证到△AOE≌△BOF是解决本题的关键.18.如图,∠A+∠B+∠C+∠D+∠E的度数是180°.【考点】三角形内角和定理;三角形的外角性质.【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠4=∠A+∠2,∠2=∠D+∠C,进而利用三角形的内角和定理求解.【解答】解:如图可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠D+∠C,在△BEG中,∵∠B+∠E+∠4=180°,∴∠B+∠E+∠A+∠D+∠C=180°.故答案为:180°.【点评】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.三、解答题19.尺规作图:已知点M、N和∠AOB.(1)画直线MN;(2)在直线MN上求作点P,使点P到∠AOB的两边的距离相等.【考点】作图—基本作图;角平分线的性质.【分析】(1)作直线MN即可;(2)根据角平分线的性质:作∠AOB的平分线,交MN于点P,则点P即为所求.【解答】解:(1)如图所示:直线MN即为所求;(2)作∠AOB的平分线,交MN于点P,则点P即为所求.【点评】本题考查的是基本作图和角平分线的性质,掌握基本作图的一般步骤是解题的关键.20.如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形的内角和定理求出∠C,再根据直角三角形两锐角互余求出∠DAC,然后根据角平分线的定义求出∠DAE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠BAC=80°,∠B=60°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣80°﹣60°=40°,∵AD⊥BC,∴∠DAC=90°﹣∠C=90°﹣40°=50°,∵AE平分∠DAC,∴∠DAE=∠DAC=×50°=25°,∴∠AEC=∠DAE+∠ADE=25°+90°=115°.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的角平分线和高线的定义,准确识图是解题的关键.21.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.【考点】全等三角形的判定.【专题】证明题.【分析】根据AB∥DE,BC∥EF,可证∠A=∠EDF,∠F=∠BCA;根据AD=CF,可证AC=DF.然后利用ASA即可证明△ABC≌△DEF.【解答】证明:∵AB∥DE,BC∥EF∴∠A=∠EDF,∠F=∠BCA又∵AD=CF∴AC=DF∴△ABC≌△DEF.(ASA)【点评】此题主要考查学生对全等三角形的判定的理解和掌握,此题难度不大,属于基础题.22.(2016秋•龙潭区校级月考)如图、公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试判断三只石凳E,M,F恰好在一直线上吗?为什么?【考点】全等三角形的应用.【分析】先根据SAS判定△BEM≌△CFM,从而得出∠BME=∠CMF.通过角之间的转换可得到E,M,F 在一条直线上.【解答】证明:连接ME,MF.∵AB∥CD,(已知)∴∠B=∠C(两线平行内错角相等).在△BEM和△CFM中,,∴△BEM≌△CFM(SAS).∴∠BME=∠CMF,∴∠EMF=∠BME+∠BMF=∠CMF+∠BMF=∠BMC=180°,∴E,M,F在一条直线上.【点评】此题主要考查了全等三角形的应用,关键是掌握判定两个三角形全等的判定方法,注意共线的证明方法.23.已知,如图∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠DAB;(2)猜想AM与DM的位置关系如何,并证明你的结论.【考点】角平分线的性质;等腰三角形的判定与性质.【分析】(1)过M作ME⊥AD于E,根据角平分线性质求出ME=MC=MB,再根据角平分线性质求出即可;(2)根据平行线性质求出∠BAD+∠DC=180°,求出∠MAD+∠MDA=90°,即可求出答案.【解答】(1)证明:过M作ME⊥AD于E,∵DM平分∠ADC,∠C=90°,ME⊥AD,∴MC=ME,∵M为BC的中点,∴BM=MC=ME,∵∠B=90°,ME⊥AD,∴AM平分∠DAB;(2)AM⊥DM,证明:∵AB∥DC,∴∠BAD+∠ADC=180°,∵AM平分∠DAB,DM平分∠ADC,∴∠MAD=∠BAD,∠MDA=∠ADC,∴∠MAD+∠MDA=90°,∴∠AMD=90°,∴AM⊥DM.【点评】本题考查了梯形的性质,平行线的性质,角平分线性质的应用,主要考查学生综合运用性质进行推理的能力,难度适中.24.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【专题】证明题.【分析】由已知条件,根据等腰三角形三线合一这一性质,CE=FE,再证明△ABD≌△ACF,证得BD=CF,从而证得BD=2CE.【解答】证明:∵BE平分∠FBC,BE⊥CF,∴BF=BC,∴CE=EF,∴CF=2CE,∵∠BAC=90°,且AB=AC,∴∠FAC=∠BAC=90°,∠ABC=∠ACB=45°,∴∠FBE=∠CBE=22.5°,∴∠F=∠ADB=67.5°,在△ABD和△ACF中,∵,∴△ABD≌△ACF(AAS),∴BD=CF,∴BD=2CE.【点评】本题考查了等腰三角形的判断与性质,解题的关键是熟练应用等边对等角以及等腰三角形三线合一的性质.25.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF;(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.【考点】全等三角形的判定与性质.【专题】证明题.【分析】通过证明两个直角三角形全等,即Rt△DEC≌Rt△BFA以及垂线的性质得出四边形BEDF是平行四边形.再根据平行四边形的性质得出结论.【解答】解:(1)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵,∴Rt△DEC≌Rt△BFA(HL),∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF;(2)成立.连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵,∴Rt△DEC≌Rt△BFA(HL),∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF.【点评】本题综合考查了直角三角形全等的判定和性质,垂线的性质,平行四边形的判定和性质,但难度不大.。
2016-2017学年吉林省吉林市吉化九中八年级(上)期中数学试卷一、单项选择题(每小题3分,共24分)1.下列计算正确的是()A.(﹣2ab2)3=﹣2a3b6B.b3•b3=b6C.a3÷a=2a D.(a5)2=a72.下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.3.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°4.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.54°B.60°C.66°D.76°5.如图(1),△ABC是等腰直角三角形,∠C=90°,AD为BC边上的中线,沿中线AD 把△ABC折叠,如图(2),则下列判断正确的是()A.S△BDG>S△ACG B.S△BDG=S△ACG C.S△BDG<S△ACG D.无法确定6.在平面直角坐标系内有两点A(﹣a,2),B(6,b),它们关于x轴对称,则a+b的值()A.4 B.﹣4 C.8 D.﹣87.对任意正整数n,按下列程序计算,应输出答案为()A.n2﹣n+1 B.n2﹣1 C.3﹣n D.18.如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2 B.3 C.4 D.5二、填空题(每小题3分,共27分)9.计算:(﹣)2015×(﹣)2016=.10.三角形三边长分别为3,a,8,则a的取值范围是.11.要使四边形木架(用4根木条钉成)不变形,至少要再钉上根木条.12.如图是用七巧板拼成的一艘帆船,其中全等的三角形共有对.13.如图,OP是∠AOB的平分线,PC⊥OA于C,且PC=3cm,则点P到OB的距离等于.14.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是(填SSS,SAS,AAS,ASA中的一种).15.等腰三角形腰上的高等于腰长的一半,则这个等腰三角形的顶角为度.16.如图,在△ABC中,AD垂直平分BC,AC=EC,点B、C、D、E在同一直线上,则AB+BD DE(用“<”,“>”,“=”填空).17.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为.三、解答题18.计算(1)ab2•(﹣6abc)÷9ab2c.(2)(﹣5x3)(﹣2x2)•x4﹣2x4•(﹣0.25x5)19.先化简,再求值:x2(2﹣x)+(x2+1)(x﹣3),其中x=.20.如图所示,在平面直角坐标系中A(﹣3,1),B(﹣2,4),C(2,1).(1)△ABC中的面积是.(2)在图中作出△ABC关于y轴的对称图形△A′B′C′,并写出A′、B′、C′的坐标.(3)△ABC与△A′B′C′重叠部分的图形是三角形.21.如图,已知BE⊥AD,CF⊥AD,且BE=CF.请你判断AD是△ABC的中线还是角平分线?请说明你判断的理由.22.如图,在△ABC中,∠C=36°,∠ABC=110°,且DE⊥AB于E,DF⊥AC 于F,DE=DF.求∠ADB的度数.23.如图(1)尺规作图:画线段AB的垂直平分线DE交AC于点D.(2)若AB=AC,AD=BD=BC,求△ABC各角的度数.24.如图,在Rt△ABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.求证:(1)DE=DF;(2)△DEF为等腰直角三角形.25.如图,四边形ABCD中,∠A=∠B=90°,∠C=60°,CD=2AD.AB=4(1)在AB边上求作点P,使PC+PD最小.(2)求出(1)中PC+PD的最小值.26.在等边△ABC中,点E在AB上,点D在CB延长线上,且ED=EC.(1)当点E为AB中点时,如图①,AE DB(填“>”“<”或“=”)(2)当点E为AB上任意一点时,如图②,AE DB(填“>”“<”或“=”),并说明理由.(提示:过E作EF∥BC,交AC于点F)2016-2017学年吉林省吉林市吉化九中八年级(上)期中数学试卷参考答案与试题解析一、单项选择题(每小题3分,共24分)1.下列计算正确的是()A.(﹣2ab2)3=﹣2a3b6B.b3•b3=b6C.a3÷a=2a D.(a5)2=a7【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】结合同底数幂的除法、同底数幂的乘法、幂的乘方与积的乘方的概念和运算法则进行求解即可.【解答】解:A、(﹣2ab2)3=﹣8a3b6≠﹣2a3b6,本选项错误;B、b3•b3=b6,本选项正确;C、a3÷a=a2≠2a,本选项错误;D、(a5)2=a10≠a7,本选项错误.故选B.2.下列四个腾讯软件图标中,属于轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°【考点】三角形内角和定理;平行线的性质.【分析】本题主要利用平行线的性质和三角形的有关性质进行做题.【解答】解:∵a∥b,∴∠DBC=∠BCb=70°(内错角相等),∴∠ABD=180°﹣70°=110°(补角定义),∴∠A=180°﹣31°﹣110°=39°(三角形内角和性质).故选C.4.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.54°B.60°C.66°D.76°【考点】全等三角形的性质.【分析】根据三角形内角和定理计算出∠2的度数,然后再根据全等三角形的对应角相等可得∠1=∠2=70°【解答】解:根据三角形内角和可得∠2=180°﹣55°﹣60°=66°,因为两个全等三角形,所以∠1=∠2=66°,故选C.5.如图(1),△ABC 是等腰直角三角形,∠C=90°,AD 为BC 边上的中线,沿中线AD 把△ABC 折叠,如图(2),则下列判断正确的是( )A .S △BDG >S △ACGB .S △BDG =S △ACGC .S △BDG <S △ACGD .无法确定【考点】翻折变换(折叠问题);三角形的面积;等腰直角三角形.【分析】根据等底同高的两三角形面积相等可知:S △ADB =△ADC ,然后依据等式的性质即可得出△AGC 和△BGD 的面积相等.【解答】解:∵AD 是△ABC 一边BC 上的中线,∴BD=DC .∴S △ADB =S △ADC .∴S △ADB ﹣S △ADG =S △ADC ﹣S △ADG .∴S △AGC =S △BGD .故选B .6.在平面直角坐标系内有两点A (﹣a ,2),B (6,b ),它们关于x 轴对称,则a +b 的值( )A .4B .﹣4C .8D .﹣8【考点】关于x 轴、y 轴对称的点的坐标.【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得﹣a=6,b=﹣2,进而可得答案.【解答】解:∵两点A (﹣a ,2),B (6,b )关于x 轴对称,∴﹣a=6,b=﹣2,∴a=﹣6,∴a +b=﹣8,故选:D .7.对任意正整数n,按下列程序计算,应输出答案为()A.n2﹣n+1 B.n2﹣1 C.3﹣n D.1【考点】整式的混合运算.【分析】根据运算程序求出应输出答案,此题得解.【解答】解:∵(n2+n)÷n﹣n=n+1﹣n=1,∴输出1.故选D.8.如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2 B.3 C.4 D.5【考点】等腰三角形的判定;坐标与图形性质.【分析】根据题意,结合图形,分两种情况讨论:①OA为等腰三角形底边;②OA为等腰三角形一条腰.【解答】解:如上图:①OA为等腰三角形底边,符合符合条件的动点P有一个;②OA为等腰三角形一条腰,符合符合条件的动点P有三个.综上所述,符合条件的点P的个数共4个.故选C.二、填空题(每小题3分,共27分)9.计算:(﹣)2015×(﹣)2016=﹣.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘法公式即可求出答案.【解答】解:原式=(﹣)2015×(﹣)2015×(﹣)=(×)2015×(﹣)=﹣,故答案为:﹣10.三角形三边长分别为3,a,8,则a的取值范围是5<a<11.【考点】三角形三边关系.【分析】根据三角形中的两边之和大于第三边和两边之差小于第三边进行计算即可解答本题.【解答】解:∵三角形三边长分别为3,a,8,∴8﹣3<a<8+3,∴5<a<11.故答案为:5<a<11.11.要使四边形木架(用4根木条钉成)不变形,至少要再钉上1根木条.【考点】三角形的稳定性.【分析】当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,而四边形不具有稳定性.【解答】解:根据三角形具有稳定性,在四边形的对角线上添加一根木条即可.故答案为:1.12.如图是用七巧板拼成的一艘帆船,其中全等的三角形共有2对.【考点】全等三角形的判定;七巧板.【分析】根据三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.【解答】解:根据给出的七巧板拼成的一艘帆船,可知图形中有5个等腰直角三角形,1个平行四边形,1个正方形.通过观察可知两个最大的等腰直角三角形和两个最小的等腰直角三角形分别全等,因此全等的三角形共有2对.13.如图,OP是∠AOB的平分线,PC⊥OA于C,且PC=3cm,则点P到OB的距离等于3.【考点】角平分线的性质.【分析】过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,从而得解.【解答】解:如图,过点P作PD⊥OB于D,∵点P是∠AOB的角平分线上一点,PC⊥OA,∴PC=PD=3,即点P到OB的距离等于3.故答案为:3.14.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是SSS(填SSS,SAS,AAS,ASA中的一种).【考点】全等三角形的判定;作图—基本作图.【分析】利用全等三角形的判定方法判断即可.【解答】解:用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是SSS,故答案为:SSS.15.等腰三角形腰上的高等于腰长的一半,则这个等腰三角形的顶角为30或150度.【考点】含30度角的直角三角形;等腰三角形的性质.【分析】分为两种情况:①高BD在△ABC内时,根据含30度角的直角三角形性质求出即可;②高CD在△ABC外时,求出∠DAC,根据平角的定义求出∠BAC 即可.【解答】解:①如图,∵BD是△ABC的高,AB=AC,BD=AB,∴∠A=30°,②如图,∵CD是△ABC边BA 上的高,DC=AC,∴∠DAC=30°,∴∠BAC=180°﹣30°=150°,故答案为:30或150.16.如图,在△ABC中,AD垂直平分BC,AC=EC,点B、C、D、E在同一直线上,则AB+BD=DE(用“<”,“>”,“=”填空).【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质可得AB=AC,BD=CD,然后可得AB=CE,利用等量代换可得AB+BD=DC+CE=DE.【解答】解:∵AD垂直平分BC,∴AB=AC,BD=CD,∵AC=EC,∴AB=CE,∴AB+BD=DC+CE=DE,故答案为:=.17.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为12.【考点】平移的性质.【分析】根据平移性质,判定△A′B′C为等边三角形,然后求解.【解答】解:由题意,得BB′=2,∴B′C=BC﹣BB′=4.由平移性质,可知A′B′=AB=4,∠A′B′C=∠ABC=60°,∴A′B′=B′C,且∠A′B′C=60°,∴△A′B′C为等边三角形,∴△A′B′C的周长=3A′B′=12.故答案为:12.三、解答题18.计算(1)ab2•(﹣6abc)÷9ab2c.(2)(﹣5x3)(﹣2x2)•x4﹣2x4•(﹣0.25x5)【考点】整式的除法;单项式乘单项式.【分析】(1)根据单项式的乘除法法则计算;(2)根据单项式乘单项式的法则计算,再合并同类项即可.【解答】解:(1)ab2•(﹣6abc)÷9ab2c=﹣×6×a1+1﹣1b2+1﹣2c1﹣1=ab;(2)(﹣5x3)(﹣2x2)•x4﹣2x4•(﹣0.25x5)=5×2×x3+2+4+2×x4+5=x9+x9=3x9.19.先化简,再求值:x2(2﹣x)+(x2+1)(x﹣3),其中x=.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:x2(2﹣x)+(x2+1)(x﹣3)=2x2﹣x3+x3﹣3x2+x﹣3=﹣x2+x﹣3,当x=时,原式=﹣()2+﹣3=﹣2.20.如图所示,在平面直角坐标系中A(﹣3,1),B(﹣2,4),C(2,1).(1)△ABC中的面积是.(2)在图中作出△ABC关于y轴的对称图形△A′B′C′,并写出A′、B′、C′的坐标.(3)△ABC与△A′B′C′重叠部分的图形是等腰三角形.【考点】作图-轴对称变换.【分析】(1)直接根据三角形的面积公式即可得出结论;(2)分别作出各点关于y轴的对称点,再顺次连接,并写出各点坐标即可;(3)根据轴对称的性质即可得出结论.【解答】解:(1)由图可知,S△ABC=×5×3=.故答案为:;(2)如图,△A′B′C即为所求,A′(3,1)、B′(2,4)、C′(﹣2,1);(3)由轴对称的性质可知,△ABC与△A′B′C′重叠部分的图形是等腰三角形.故答案为:等腰.21.如图,已知BE⊥AD,CF⊥AD,且BE=CF.请你判断AD是△ABC的中线还是角平分线?请说明你判断的理由.【考点】直角三角形全等的判定;全等三角形的性质.【分析】我们可以通过证明△BDE和△CDF全等来确定其为中线.【解答】解:AD是△ABC的中线.理由如下:∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,∴△BDE≌△CDF(AAS),∴BD=CD.∴AD是△ABC的中线.22.如图,在△ABC中,∠C=36°,∠ABC=110°,且DE⊥AB于E,DF⊥AC 于F,DE=DF.求∠ADB的度数.【考点】角平分线的性质.【分析】利用三角形内角和定理可得∠BAC的度数,然后再根据角平分线的判定可得AD平分∠BAC,进而可得∠BAD的度数,然后可得∠ADB的度数.【解答】解:∵∠C=36°,∠ABC=110°,∴∠BAC=180°﹣36°﹣110°=34°,∵DE⊥AB于E,DF⊥AC 于F,DE=DF,∴AD平分∠BAC,∴∠BAD=17°,∴∠ADB=180°﹣110°﹣17°=53°.23.如图(1)尺规作图:画线段AB的垂直平分线DE交AC于点D.(2)若AB=AC,AD=BD=BC,求△ABC各角的度数.【考点】作图—基本作图;线段垂直平分线的性质.【分析】(1)作出线段AB的垂直平分线即可;(2)设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.【解答】解:(1)如图,直线DE即为所求;(2)设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°,∠ABC=∠ACB=72°.24.如图,在Rt△ABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.求证:(1)DE=DF;(2)△DEF为等腰直角三角形.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)连接AD,证明△BFD≌△AED即可得出DE=DF;(2)根据三线合一性质可知AD⊥BC,由△BFD≌△AED可知∠BDF=∠ADE,根据等量代换可知∠EDF=90°,可证△DEF为等腰直角三角形.【解答】证明:(1)连接AD,∵Rt△ABC中,∠BAC=90°,AB=AC,∴∠B=∠C=45°.∵AB=AC,DB=CD,∴∠DAE=∠BAD=45°.∴∠BAD=∠B=45°.∴AD=BD,∠ADB=90°.在△DAE和△DBF中,,∴△DAE≌△DBF(SAS).∴DE=DF;(2)∵△DAE≌△DBF∴∠ADE=∠BDF,DE=DF,∵∠BDF+∠ADF=∠ADB=90°,∴∠ADE+∠ADF=90°.∴△DEF为等腰直角三角形.25.如图,四边形ABCD中,∠A=∠B=90°,∠C=60°,CD=2AD.AB=4(1)在AB边上求作点P,使PC+PD最小.(2)求出(1)中PC+PD的最小值.【考点】轴对称-最短路线问题.【分析】(1)作D点关于AB的对称点D′,连接CD′交AB于P,P即为所求;(2)作D′E⊥BC于E,则EB=D′A=AD,先根据等边对等角得出∠DCD′=∠DD′C,然后根据平行线的性质得出∠D′CE=∠DD′C,从而求得∠D′CE=∠DCD′,得出∠D′CE=30°,根据30°角的直角三角形的性质求得D′C=2D′E=2AB,即可求得PC+PD 的最小值.【解答】解:(1)作D点关于AB的对称点D′,连接CD′交AB于P,P即为所求,此时PC+PD=PC+PD′=CD′,根据两点之间线段最短可知此时PC+PD最小.(2)作D′E⊥BC于E,则EB=D′A=AD,∵CD=2AD,∴DD′=CD,∴∠DCD′=∠DD′C,∵∠A=∠B=90°,∴四边形ABED′是矩形,∴DD′∥EC,D′E=AB=4,∴∠D′CE=∠DD′C,∴∠D′CE=∠DCD′,∵∠C=60°,∴∠D′CE=30°,∴D′C=2D′E=2AB=2×4=8;∴PC+PD的最小值为8.26.在等边△ABC中,点E在AB上,点D在CB延长线上,且ED=EC.(1)当点E为AB中点时,如图①,AE=DB(填“>”“<”或“=”)(2)当点E为AB上任意一点时,如图②,AE=DB(填“>”“<”或“=”),并说明理由.(提示:过E作EF∥BC,交AC于点F)【考点】等边三角形的性质.【分析】(1)先证AE=BE,再证∠D=∠DEB,得出DB=BE,即可得出DB=AE;(2)过点E作EF∥BC,交AC于F,先证明△AEF是等边三角形,得出AE=EF,再证明△DBE≌△EFC,得出DB=EF,即可证出AE=DB.【解答】解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠ABC=60°,AE=BE,∠ECB=30°,∵ED=EC,∴∠D=∠ECB=30°,∵∠ABC=∠D+∠DEB,∴∠DEB=30°,∴∠D=∠DEB,∴DB=BE,∴DB=AE;故答案为:=;(2)DB=AE成立;理由如下:过点E作EF∥BC,交AC于F,如图2所示:则∠AEF=∠ABC,∠AFE=∠ACB,∠CEF=∠ECD,∵∠A=∠ABC=∠ACB=60°,∴∠A=∠AEF=∠AFE=60°,∠DBE=120°,∴△AEF是等边三角形,∴AE=EF,∠EFC=120°,∴BE=CF,∠DBE=∠EFC,∵ED=EC,∴∠D=∠ECD,∴∠D=∠CEF,在△DBE和△EFC中,,∴△DBE≌△EFC(AAS),∴DB=EF,∴AE=DB;故答案为:=.2017年2月19日。
2017-2018学年吉林省名校调研系列卷九年级上学期数学期中试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列二次根式中,与是同类二次根式地是()A.B.C. D.2.(3分)下列事件是随机事件地是()A.太阳从东方升起 B.买一张彩票没中奖C.一岁地婴儿身高4米D.跑出去地石头会下落3.(3分)方程x(x+3)=0地根是()A.x=0 B.x=﹣3 C.x1=0,x2=3 D.x1=0,x2=﹣34.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,D、E分别是AC、BC 地中点,则DE地长是()A.2 B.C.D.0.55.(3分)如图,△ABC地顶点都在正方形网格地格点上,则tanC地值为()A.B.C.D.6.(3分)小芳掷一枚硬币10次,有7次正面向上,当她掷第11次时,正面向上地概率为()A.B.C.D.17.(3分)把一个五边形改成和它相似地五边形,如果面积扩大到原来地49倍,那么对应地边扩大到原来地()A.49倍B.7倍 C.50倍D.8倍8.(3分)如图,在△ABC中,∠C=90°,AC=8cm,AB地垂直平分线MN交AC 于D,连接BD,若cos∠BDC=,则BC地长是()A.4cm B.6cm C.8cm D.10cm二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB地值是.10.(3分)若关于x地一元二次方程ax2﹣bx+2=0(a≠0)地一个解是x=1,则3﹣a+b地值是.11.(3分)如图,已知AB∥CD∥EF,AD:AF=3:5,BE=12,那么CE地长等于.12.(3分)在一只不透明地袋子中装有红球和白球共20个,这些球除了颜色外都相同.将袋子中地球摇匀,从中任意摸出一个球,记下颜色后放回,通过多次试验后发现,摸到红球地频率稳定在30%,由此估计袋中有个红球.13.(3分)如图,为了测量油桶内油面地高度,将一根细木棒自油桶小孔插入桶内,测得木棒插入部分AB地长为100cm,木棒上沾油部分DB地长为60cm,桶高AC为80cm,那么桶内油面CE地高度是cm.14.(3分)如图,从位于O处地某海防哨所发现在它地北偏东60°地方向,相距600m地A处有一艘快艇正在向正南方向航行,经过若干时间快艇要到达哨所B,B在O地正东南方向,则A,B间地距离是m.三、解答题(本大题共10小题,共78分)15.(6分)计算:(1)﹣+(+1)(﹣1).(2)(3﹣2+)÷2.16.(6分)已知关于x地一元二次方程kx2+2x﹣1=0有实数根,(1)求k地取值范围;(2)当k=2时,请用配方法解此方程.17.(6分)已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似地三角形,并求出DE地长.18.(7分)分别把带有指针地圆形转盘A、B分成4等份、3等份地扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域地数字之积为奇数,则欢欢胜;若指针所指两区域地数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图地方法,求欢欢获胜地概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.19.(7分)如图,在宽20米,长32米地矩形土地上,修筑横向、纵向道路各一条,且它们互相垂直,若纵向道路地宽是横向道路地宽地2倍,要使剩余土地地面积为504平方米,求横向道路地宽为多少米?20.(7分)如图,在△ABC中,∠ACB=90°,sinA=,BC=8,D是AB地中点,过点B作直线CD地垂线,垂足为E.(1)求线段CD地长;(2)求cos∠ABE地值.21.(8分)如图,在平面直角坐标系中,△ABC地三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,3).(1)画出△ABC关于y轴对称地△A1B1C1,并写出A1点地坐标及sin∠B1A1C1地值;(2)以原点O为位似中心,位似比为1:2,在y轴地左侧,画出将△ABC放大后地△A2B2C2,并写出A2点地坐标;(3)若点D(a,b)在线段AB上,直接写出经过(2)地变化后点D地对应点D2地坐标.22.(9分)如图是小强洗漱时地侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他地头部E恰好在洗漱盆AB地中点O地正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.17,≈1.41,结果精确到0.1)23.(10分)感知:如图①,∠C=∠ABD=∠E=90°,可知△ACB∽△BED.(不要求证明)拓展:如图②,∠C=∠ABD=∠E.求证:△ACB∽△BED.应用:如图③,∠C=∠ABD=∠E=60°,AC=4,BC=1,则△ABD与△BDE地面积比为.24.(12分)如图,在△MNQ中,MN=11,NQ=,,矩形ABCD,BC=4,CD=3,点A与M重合,AD与MN重合.矩形ABCD沿着MQ方向平移,且平移速度为每秒5个单位,当点A与Q重合时停止运动.(1)MQ地长度是;(2)运动秒,BC与MN重合;(3)设矩形ABCD与△MNQ重叠部分地面积为S,运动时间为t,求出S与t之间地函数关系式.2017-2018学年吉林省名校调研系列卷九年级上学期数学期中试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列二次根式中,与是同类二次根式地是()A.B.C. D.【解答】解:=与是同类二次根式,故A符合题意;B、=2,故B不符合题意;C、=2,故C不符合题意;D、=2故D不符合题意;故选:A.2.(3分)下列事件是随机事件地是()A.太阳从东方升起 B.买一张彩票没中奖C.一岁地婴儿身高4米D.跑出去地石头会下落【解答】解:A、太阳从东方升是必然事件;B、买一张彩票没中奖是随机事件;C、一岁地婴儿身高4米是不可能事件;D、跑出去地石头会下落是必然事件,故选:B.3.(3分)方程x(x+3)=0地根是()A.x=0 B.x=﹣3 C.x1=0,x2=3 D.x1=0,x2=﹣3【解答】解:∵x(x+3)=0,∴x=0,或x+3=0,解得x=0或x=﹣3.故选:D.4.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,D、E分别是AC、BC 地中点,则DE地长是()A.2 B.C.D.0.5【解答】解:∠C=90°,AC=3,BC=4,∴AB==5,∵D、E分别是AC、BC地中点,∴DE=AB=,故选:B.5.(3分)如图,△ABC地顶点都在正方形网格地格点上,则tanC地值为()A.B.C.D.【解答】解:AD=2,CD=4,则tanC===.故选:A.6.(3分)小芳掷一枚硬币10次,有7次正面向上,当她掷第11次时,正面向上地概率为()A.B.C.D.1【解答】解:∵掷一枚质地均匀地硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,∴她第11次掷这枚硬币时,正面向上地概率是:.故选:B.7.(3分)把一个五边形改成和它相似地五边形,如果面积扩大到原来地49倍,那么对应地边扩大到原来地()A.49倍B.7倍 C.50倍D.8倍【解答】解:五边形改成与它相似地五边形,如果面积扩大为原来地49倍,即得到地五边形与原来地五边形地面积地比是49:1,相似形面积地比等于相似比地平方,因而相似比是7:1,相似形对应边地比等于相似比,因而对应地边扩大为原来地7倍.故选:B.8.(3分)如图,在△ABC中,∠C=90°,AC=8cm,AB地垂直平分线MN交AC 于D,连接BD,若cos∠BDC=,则BC地长是()A.4cm B.6cm C.8cm D.10cm【解答】解:∵∠C=90°,AC=8cm,AB地垂直平分线MN交AC于D,∴BD=AD,∴CD+BD=8,∵cos∠BDC==,∴=,解得:CD=3,BD=5,∴BC=4.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB地值是.【解答】解:在Rt△ABC中,BC=3,AB=5,∴cosB=,故答案为:10.(3分)若关于x地一元二次方程ax2﹣bx+2=0(a≠0)地一个解是x=1,则3﹣a+b地值是5.【解答】解:∵关于x地一元二次方程ax2﹣bx+2=0(a≠0)地一个解是x=1,∴a﹣b+2=0,∴a﹣b=﹣2,∴3﹣a+b=3﹣(a﹣b)=3+2=5.故答案是:5.11.(3分)如图,已知AB∥CD∥EF,AD:AF=3:5,BE=12,那么CE地长等于.【解答】解:∵AB∥CD∥EF,∴=,即=,∴BC=,∴CE=BE﹣BC=12﹣=.故答案为:.12.(3分)在一只不透明地袋子中装有红球和白球共20个,这些球除了颜色外都相同.将袋子中地球摇匀,从中任意摸出一个球,记下颜色后放回,通过多次试验后发现,摸到红球地频率稳定在30%,由此估计袋中有6个红球.【解答】解:设袋中有x个红球.由题意可得:=30%,解得:x=6,故答案为:6.13.(3分)如图,为了测量油桶内油面地高度,将一根细木棒自油桶小孔插入桶内,测得木棒插入部分AB地长为100cm,木棒上沾油部分DB地长为60cm,桶高AC为80cm,那么桶内油面CE地高度是48cm.【解答】解:∵AC⊥BC,∴DE∥BC,∴△ADE∽△ABC,∴=,=,解得EA=32.∴CE=80﹣32=48,故答案为:48.14.(3分)如图,从位于O处地某海防哨所发现在它地北偏东60°地方向,相距600m地A处有一艘快艇正在向正南方向航行,经过若干时间快艇要到达哨所B,B在O地正东南方向,则A,B间地距离是300+300m.【解答】解:∵在直角△AOC中,∠AOC=30°,OA=600,∴AC=OA•sin30°=300,OC=OA•cos30°=300.∵直角△OBC是等腰直角三角形,∴BC=OC=300,∴AB=300+300(m).三、解答题(本大题共10小题,共78分)15.(6分)计算:(1)﹣+(+1)(﹣1).(2)(3﹣2+)÷2.【解答】解:(1)﹣+(+1)(﹣1)=3﹣2+3﹣1=+2(2)(3﹣2+)÷2=(6﹣+4)÷2=3﹣+2=16.(6分)已知关于x地一元二次方程kx2+2x﹣1=0有实数根,(1)求k地取值范围;(2)当k=2时,请用配方法解此方程.【解答】解:(1)∵一元二次方程kx2+2x﹣1=0有实数根,∴22+4k≥0,k≠0,解得,k≥﹣1且k≠0;(2)当k=2时,原方程变形为2x2+2x﹣1=0,2(x2+x)=1,2(x2+x+)=1+,2(x+)2=,(x+)2=x+=±,x1=,x2=.17.(6分)已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似地三角形,并求出DE地长.【解答】(1)证明:∵AB=2,BC=4,BD=1,∴==,=,∴=,∵∠ABD=∠CBA,∴△ABD∽△CBA;(2)解:∵DE∥AB,∴△CDE∽△CBA,∴△ABD∽△CDE,∴DE=1.5.18.(7分)分别把带有指针地圆形转盘A、B分成4等份、3等份地扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域地数字之积为奇数,则欢欢胜;若指针所指两区域地数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图地方法,求欢欢获胜地概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.【解答】解:根据题意画图如下:(1)共有12种情况,积为奇数地情况有6种,所以欢欢胜地概率是=;(2)由(1)得乐乐胜地概率为1﹣=,两人获胜地概率相同,所以游戏公平.19.(7分)如图,在宽20米,长32米地矩形土地上,修筑横向、纵向道路各一条,且它们互相垂直,若纵向道路地宽是横向道路地宽地2倍,要使剩余土地地面积为504平方米,求横向道路地宽为多少米?【解答】解:设横向道路地宽为x米,则纵向道路地宽为2x米,剩余土地地长为(32﹣2x)米、宽为(20﹣x)米,根据题意得:(32﹣2x)(20﹣x)=504,整理得:x2﹣36x+68=0,解得:x1=2,x2=34.∵32﹣2x>0,∴x<16,∴x=2.答:横向道路地宽为2米.20.(7分)如图,在△ABC中,∠ACB=90°,sinA=,BC=8,D是AB地中点,过点B作直线CD地垂线,垂足为E.(1)求线段CD地长;(2)求cos∠ABE地值.【解答】解:(1)在△ABC中,∵∠ACB=90°,∴sinA==,而BC=8,∴AB=10,∵D是AB中点,∴CD=AB=5;(2)在Rt△ABC中,∵AB=10,BC=8,∴AC==6,∵D是AB中点,∴BD=5,S△BDC =S△ADC,∴S△BDC =S△ABC,即CD•BE=•AC•BC,∴BE==,在Rt△BDE中,cos∠DBE===,即cos∠ABE地值为.21.(8分)如图,在平面直角坐标系中,△ABC地三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,3).(1)画出△ABC关于y轴对称地△A1B1C1,并写出A1点地坐标及sin∠B1A1C1地值;(2)以原点O为位似中心,位似比为1:2,在y轴地左侧,画出将△ABC放大后地△A2B2C2,并写出A2点地坐标;(3)若点D(a,b)在线段AB上,直接写出经过(2)地变化后点D地对应点D2地坐标.【解答】解:(1)如图,△A1B1C1,即为所求,A1(2,1),∵=B1C+A1C,A1C1=B1C1,∴△A1B1C1是等腰直角三角形,∴sin∠B1A1C1=sin45°=;(2)如图,△A2B2C2,即为所求,A2(﹣4,2);(3)∵点D(a,b)在线段AB上,位似比为1:2,∴D2(2a,2b).22.(9分)如图是小强洗漱时地侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他地头部E恰好在洗漱盆AB地中点O地正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.17,≈1.41,结果精确到0.1)【解答】解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100•sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66•cos45°=33≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66•sin45°≈46.53,∴PH≈46.53,∵GN=100•cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.23.(10分)感知:如图①,∠C=∠ABD=∠E=90°,可知△ACB∽△BED.(不要求证明)拓展:如图②,∠C=∠ABD=∠E.求证:△ACB∽△BED.应用:如图③,∠C=∠ABD=∠E=60°,AC=4,BC=1,则△ABD与△BDE地面积比为 13:3 .【解答】拓展:证明:∵∠ABE=∠C +∠CAB ,∠ABE=∠ABD +∠DBE ,∠C=∠ABD , ∴∠CAB=∠DBE ,∵∠C=∠E , ∴△ACB ∽△BED ;应用:解:∵∠ABE=∠C +∠CAB ,∠ABE=∠ABD +∠DBE ,∠C=∠ABD ,∴∠CAB=∠DBE ,∵∠C=∠E=60°,∴△ACB ∽△BED ,△ACE 是等边三角形,∴AE=AC=4,∴BE=CE ﹣BC=3,∴△ACB 与△BED 地相似比为:4:3,∴S △ABC :S △BED =16:9,S △ABC :S △ABE =1:3=16:48,设S △ABC =16x ,则S △ABE =48x ,S △BDE =9x∴S △ABD =S △ABE ﹣S △BED =48x ﹣9x=39x ,∴S △ABD :S △BDE =39:9=13:3.故答案为:13:3.24.(12分)如图,在△MNQ 中,MN=11,NQ=,,矩形ABCD ,BC=4,CD=3,点A 与M 重合,AD 与MN 重合.矩形ABCD 沿着MQ 方向平移,且平移速度为每秒5个单位,当点A 与Q 重合时停止运动.(1)MQ 地长度是 10 ;(2)运动 1 秒,BC 与MN 重合;(3)设矩形ABCD 与△MNQ 重叠部分地面积为S ,运动时间为t ,求出S 与t 之间地函数关系式.【解答】解:(1)如图1,过Q作QH⊥MN于H,∵QN=3,cosN==,∴NH=3,∴MH=11﹣3=8,在Rt△NHQ中,由勾股定理得:QH==6,在Rt△QMH中,由勾股定理得:MQ==10,故答案为:10.(2)连接BD,如图1,∵tan∠ABD==,tan∠QMN===,∴QM∥BD,当BC和MN重合时,B正好到D点,由勾股定理得:BD=5,5÷5=1,即运动1秒时,BC和MN重合,故答案为:1.(3)分为四种情况:①当BC运动到MN上时,此时0<t≤1,如图2,∵sinM==,∴=,∴AK=3t,∵AD=4,第21页(共25页)②当D到QN上时,此时1<t≤,如图3,∵△QAD∽△QMN,∴=,∴=,∴QR=,∵AD∥MN,∴△QAR∽△QMH,∴=,∴=,∴t=,即此时1<t≤,S=3×4=12;③当C到QN上时,此时<t≤,如图4,∵AD∥MN,∴∠AFQ=∠N=∠DFC,∵∠D=∠QHN=90°,∴△DFC∽△HNQ,∴=,∴=,∴DF=1.5,AF=4﹣1.5=2.5,∵AD∥MN,∴△QAF∽△QMN,∴=,∴t=,即当C到QN上时,t=,∵=,∴=,∴AF=11﹣5.5t,S=(AF+BC)×CD=(11﹣5.5t+4)•3,S=﹣8.25t+22.5;④当<t≤2时,如图5,∵AD∥MN,∴△QAF∽△QMN,∴=,∴=,∴AF=11﹣5.5t,过K作KP⊥AD于P,则△KPF∽△QHN,∴=,∴=,∴PF=1.5,∴BK=AP=AF+PF=11﹣5.5t+1.5=12.5﹣5.5t,∴S=(AF+BK)•CD=[11﹣5.5t+12.5﹣5.5t]×3,S=﹣t+35.25.第23页(共25页)第25页(共25页)。
2017-2018学年吉林省吉林市龙潭区吉化九中九年级(上)期中物理试卷一、选择题(每题2分,共12分)1.(2分)下列现象中,不能用分子热运动解释的是()A.走进花园闻到花香B.放入水中的糖使水变甜C.看到烟雾在空中弥漫D.鸭蛋腌制一段时间变咸了2.(2分)下列事例中,利用热传递改变内能的是()A.冷天搓手取暖B.压缩空气内能增大C.烧水时水温升高 D.下滑时臀部发热3.(2分)以下四个电路图,与其它三个连接方式不同的是()A. B.C.D.4.(2分)如图,关于电路图说法错误的是()A.闭合开关,L1和L2串联B.闭合开关电压表测量L2两端电压C.断开开关,电压表无示数D.不论开关断开还是闭合电压表都有示数5.(2分)如图所示的电路中,电源电压保持不变,闭合开关S后,当滑动变阻器的滑片P向左移动时,下列判断正确的是()A.电流表示数变大,电压表示数变小,灯泡变暗B.电流表示数变大,电压表示数变大,灯泡变亮C.电流表示数变小,电压表示数变小,灯泡变亮D.电流表示数变小,电压表示数变大,灯泡变暗6.(2分)小华学完电流、电压、电阻的有关知识后,在笔记本上记录了班上同学们关于电流、电压和电阻的一些说法,你认为正确的是()A.有电流通过的电阻两端,一定有电压存在B.没有电流通过的导体,没有电阻C.导体两端电压为零时,电阻也为零D.电路两端有电压时,电路中一定有电流二、填空题(每空1分,共18分)7.(2分)给汽车加油时,能闻到汽油味,这是现象;汽车发动机用水作冷却剂,这是利用了水的大的性质。
8.(3分)行驶中的汽车在紧急刹车时,刹车片会发烫,这个过程中能转化为能,这是通过的方式增加物体内能的。
9.(2分)一节干电池的电压是V;我国家庭电路的电压是V。
10.(1分)如图所示为通过A和B的两个电路元件中的电流与两端电压的关系的图象,由此可知元件是定值电阻,它的阻值为Ω。
11.(2分)一个10Ω的电阻,当它两端电压为6V,通过它的电流为A;当它两端电压为12V时,它的阻值为Ω。
吉林省吉林省吉化九中2016届九年级数学上学期期中试题一.选择题(每题3分,共30分)1.二次函数y=﹣2(x﹣3)2+1的顶点坐标为( )A.(﹣3,1)B.(3,﹣1)C.(﹣3,﹣1)D.(3,1)2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是( )A.CM=DM B.C.∠ACD=∠ADC D.OM=BM3.将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A.y=(x﹣2)2B.y=(x﹣2)2+6 C.y=x2+6 D.y=x24.如图,AC是⊙O的直径,弦AB∥CD,若∠BAC=32°,则∠AOD等于( )A.64° B.48° C.32° D.76°5.如图,AB是⊙O的直径,AT为⊙O的切线,∠ABT=45°,则下列结论中正确的有( )①∠T=45°;②AT=BA;③∠TAB=90°;④点C为BT中点.A.①② B.①②③C.①②③④ D.①②④6.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,则圆心坐标是( )A.点(1,0)B.点(2,0)C.点(2.5,0) D.点(2.5,1)7.抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法错误的是( )A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4 D.c=﹣38.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x …﹣3 ﹣2 ﹣1 0 1 …y …﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的顶点坐标为( )A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)9.一同学掷铅球,时间x(秒)与高度y(米)之间的关系为y=ax2+bx(a≠0).若铅球在第7秒与第14秒时的高度相等,则在哪一时刻铅球最高( )A.第7秒B.第8秒C.第10.5秒D.第21秒10.函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c﹣4=0的根的情况是( )A.有两个不相等的实数根 B.有两个异号的实数根C.有两个相等的实数根D.没有实数根二.填空题(每题3分,共24分)11.如图,⊙O的弦AB=8,OD⊥AB于点D,OD=3,则⊙O的半径等于__________.12.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是__________.13.如图,锐角△ABC的顶点A,B,C都在⊙O上,∠OAB=25°,则∠C的度数为__________度.14.如图,AB是⊙O的直径,点D在⊙O上,∠ABD=40°,动点P在弦BD上,则∠PAB可能为__________度.(写出一个符合条件的度数即可)15.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0)、(0,8).以点A为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为__________.16.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=30°,过点C作⊙O的切线交AB 的延长线于点E,则∠E等于__________.17.如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=于点B、C,则BC的长为__________.18.在平面直角坐标系中,点A是抛物线y=a(x﹣4)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为__________.三.解答题(第19,20题每小题8分,第21,22,23,24,25题每题10分,共66分)19.如图,在平面直角坐标系中,以(6,1)为圆心,以2个单位长度为半径的⊙A交x轴于点B和C,解答下列问题:(1)将⊙A向左平移与y轴首次相切,得到⊙P,此时P的坐标为__________,阴影部分的面积为__________.(2)求BC的长.20.如图,一条赛道的急转弯处是一段圆弧,点O是这段弧所在圆的圆心,AC=10m,B是上一点,OB⊥AC,垂足为D,BD=1m,求这段弯路的半径.21.如图,⊙O的直径AB=10m,C为直径AB下方半圆上一点,∠ACB的平分线交⊙O于点D,连接AD、BD.(1)判断△ABD的形状,并说明理由;(2)若弦AC=6cm,求BC的长.22.如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN 于E.(1)求证:DE是⊙O的切线;(2)若∠EDA=30°,AD=6cm,求⊙O的半径.23.如图,把抛物线y=x2平移得到抛物线m,且抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q.(1)求平移后的抛物线m的解析式和顶点P的坐标;(2)请直接写出图中阴影部分的面积为__________.24.已知抛物线L:y=ax2+bx+c(b2﹣4ac>0c≠0)分别交x轴于点A、B,交y轴于点C,则称△ABC为抛物线L的内接三角形,抛物线L称为△ABC的外接抛物线.(1)如图①,抛物线y=﹣x2﹣3x+4的内接△ABC,求△ABC的面积.(2)若抛物L的内接△ABC的面积为10,且A(﹣4,0),B(1,0),C(0,c),求抛物线L的解析式.(3)如图②,若抛物L:y=﹣2x2﹣4x+c(c>0)上有一点P(点P可以和点C 重合),且S△PAB=mS△ABC,请直接写出当c,m满足什么关系时,使得这样的点P的个数为2个.25.如图,在平面直角坐标系中,直线y=﹣2x+42交x轴与点A,交直线y=x于点B,抛物线y=ax2﹣2x+c分别交线段AB、OB于点C、D,点C和点D的横坐标分别为16和4,点P在这条抛物线上.(1)求点C、D的纵坐标.(2)求a、c的值.(3)若Q为线段OB上一点,且P、Q两点的纵坐标都为5,求线段PQ的长.(4)若Q为线段OB或线段AB上的一点,PQ⊥x轴,设P、Q两点之间的距离为d(d>0),点Q的横坐标为m,直接写出d随m的增大而减小时m的取值范围.2015-2016学年吉林省吉林省吉化九中九年级(上)期中数学试卷一.选择题(每题3分,共30分)1.二次函数y=﹣2(x﹣3)2+1的顶点坐标为( )A.(﹣3,1)B.(3,﹣1)C.(﹣3,﹣1)D.(3,1)【考点】二次函数的性质.【分析】根据顶点式y=a(x﹣h)2+k,其顶点坐标是(h,k),对照求二次函数y=﹣2(x﹣3)2+1的顶点坐标.【解答】解:∵二次函数y=﹣2(x﹣3)2+1是顶点式,∴顶点坐标为(3,1).故选:D.【点评】此题主要考查了顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),考查了学生的应用能力,是中考中考查重点注意必须熟练掌握其性质.2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是( )A.CM=DM B.C.∠ACD=∠ADC D.OM=BM【考点】垂径定理;圆周角定理.【专题】计算题.【分析】先根据垂径定理得CM=DM,=,=,再根据圆周角定理得到∠ACD=∠ADC,而OM与BM的关系不能判断.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,=,=,∴∠ACD=∠ADC.故选D.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.3.将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A.y=(x﹣2)2B.y=(x﹣2)2+6 C.y=x2+6 D.y=x2【考点】二次函数图象与几何变换.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物线y=(x﹣1)2+3向左平移1个单位所得直线解析式为:y=(x﹣1+1)2+3,即y=x2+3;再向下平移3个单位为:y=x2+3﹣3,即y=x2.故选D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.4.如图,AC是⊙O的直径,弦AB∥CD,若∠BAC=32°,则∠AOD等于( )A.64° B.48° C.32° D.76°【考点】圆周角定理;平行线的性质.【分析】由AB∥CD,∠BAC=32°,根据平行线的性质,即可求得∠ACD的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠AOD的度数.【解答】解:∵AB∥CD,∠BAC=32°,∴∠ACD=∠BAC=32°,∴∠AOD=2∠ACD=2×32°=64°.故选A.【点评】此题考查了圆周角定理与平行线的性质.此题比较简单,解题的关键是注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.5.如图,AB是⊙O的直径,AT为⊙O的切线,∠ABT=45°,则下列结论中正确的有( )①∠T=45°;②AT=BA;③∠TAB=90°;④点C为BT中点.A.①② B.①②③C.①②③④ D.①②④【考点】切线的性质.【分析】由切线的性质可知AB⊥AT,所以∠TAB=90°,再结合已知条件可求出∠T=45°;因为∠T=∠B,所以可得AT=BA,连接AC,由等腰直角三角形的性质可得点C为BT中点,问题得解.【解答】解:连接AC,∵AB是⊙O的直径,AT为⊙O的切线,∴AB⊥AT,∴∠TAB=90°,故③正确;∵∠ABT=45°,∴∠T=45°,故①正确;∵∠T=∠B,∴AT=BA,故②正确;∵AB是⊙O的直径,∴∠ACB=90°,∴AC⊥BT,又∵AT=AB,∴BC=TC,即点C为BT中点,故④正确.故选C.【点评】此题主要考查了切线的性质定理,是中考中常见问题,解题的关键是连接AC,利用等腰三角形的“三线合一”性质得到点C是BT中点.6.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,则圆心坐标是( )A.点(1,0)B.点(2,0)C.点(2.5,0) D.点(2.5,1)【考点】垂径定理的应用;坐标与图形性质.【专题】探究型.【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0).故选B..【点评】本题考查垂径定理的应用,解答此题的关键是熟知垂径定理,即“垂直于弦的直径平分线”.7.抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法错误的是( )A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4 D.c=﹣3【考点】二次函数图象上点的坐标特征.【分析】先把(0,﹣3)代入y=x2﹣2x+c中求出c的值,再把解析式配成顶点式,然后根据二次函数的性质对各选项进行判断.【解答】解:把(0,﹣3)代入y=x2﹣2x+c得c=﹣3,则y=x2﹣2x﹣3=(x﹣1)2﹣4,所以抛物线开口向上,对称轴为直线x=1,当x=1时,y有最小值﹣4.故选C.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.本题的关键是确定抛物线的顶点式.8.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x …﹣3 ﹣2 ﹣1 0 1 …y …﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的顶点坐标为( )A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)【考点】二次函数的性质.【专题】压轴题.【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.9.一同学掷铅球,时间x(秒)与高度y(米)之间的关系为y=ax2+bx(a≠0).若铅球在第7秒与第14秒时的高度相等,则在哪一时刻铅球最高( )A.第7秒B.第8秒C.第10.5秒D.第21秒【考点】二次函数的应用.【分析】根据题中已知条件求出函数y=ax2+bx的对称轴t=10.5,进而得出铅球位于最高时的时间.【解答】解:由题意可知:h(7)=h(14),即49a+7b=196a+14b,解得b=﹣a,函数y=ax2+bx的对称轴x=﹣=10.5,故在x=10.5s时,铅球的高度最高,故选C.【点评】本题主要考查了二次函数的实际应用,得出二次函数的对称轴是解决问题的关键.10.函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c﹣4=0的根的情况是( )A.有两个不相等的实数根 B.有两个异号的实数根C.有两个相等的实数根D.没有实数根【考点】抛物线与x轴的交点.【分析】由图可知ax2+bx+c﹣2=0的根的情况即图中图象和x轴交点的横坐标,为两个不相等的正数,再根据y=ax2+bx+c﹣4,相当于函数y=ax2+bx+c的图象向下平移4个单位,由此可得出结论.【解答】解:∵函数的顶点的纵坐标为3,∴直线y=3与函数图象只有一个交点,∴y=ax2+bx+c﹣4,相当于函数y=ax2+bx+c的图象向下平移4个单位,∴方程ax2+bx+c﹣4=0没有实数根.故选:D.【点评】本题考查了二次函数与一元二次方程的知识,解题的关键是通过看图象直线y=3与抛物线的交点个数.二.填空题(每题3分,共24分)11.如图,⊙O的弦AB=8,OD⊥AB于点D,OD=3,则⊙O的半径等于5.【考点】垂径定理;勾股定理.【专题】计算题.【分析】连接OA,由OD垂直于AB,利用垂径定理得到D为AB的中点,由AB的长求出AD 的长,在直角三角形AOD中,由AD与OD的长,利用勾股定理求出OA的长,即为圆O的半径.【解答】解:连接OA,∵OD⊥AB,∴D为AB的中点,即AD=BD=AB=4,在Rt△AOD中,OD=3,AD=4,根据勾股定理得:OA==5,则圆O的半径为5.故答案为:5【点评】此题考查了垂径定理,以及勾股定理,熟练掌握垂径定理是解本题的关键.12.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是85°.【考点】圆周角定理.【专题】探究型.【分析】先根据圆周角定理求出∠ABC及∠ADB的度数,由BD是∠ABC的平分线可求出∠ABD 的度数,再根据三角形内角和定理即可得出结论.【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∵∠C=50°,∠ADB与∠C是同弧所对的圆周角,∴∠ADB=50°,∵BD是∠ABC的平分线,∴∠ABD=∠ABC=×90°=45°,在△ABD中,∵∠ABD=45°,∠ADB=50°,∴∠BAD=180°﹣45°﹣50°=85°.故答案为:85°.【点评】本题考查的是圆周角定理,在解答此类题目时往往用到三角形的内角和是180°这一隐藏条件.13.如图,锐角△ABC的顶点A,B,C都在⊙O上,∠OAB=25°,则∠C的度数为65度.【考点】圆周角定理.【分析】由OA=OB,∠OAB=25°,根据等腰三角形的性质,可求得∠OBA的度数,继而求得∠AOB的度数,然后由圆周角定理,求得∠C的度数.【解答】解:∵OA=OB,∠OAB=25°,∴∠OBA=∠OAB=25°,∴∠AOB=180°﹣∠OAB﹣∠OBA=130°,∴∠C=∠AOB=65°.故答案为:65.【点评】此题考查了圆周角定理以及等腰三角形的性质.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.如图,AB是⊙O的直径,点D在⊙O上,∠ABD=40°,动点P在弦BD上,则∠PAB可能为此题答案不唯一,如40°度.(写出一个符合条件的度数即可)【考点】圆周角定理.【专题】开放型.【分析】首先连接AD,由AB是⊙O的直径,根据直径所对的圆周角是直角,可求得∠D的度数,继而求得∠DAB的度数,则可得∠PAB的取值范围.【解答】解:连接AD,∵AB是⊙O的直径,∴∠D=90°,∵∠ABD=40°,∴∠DAB=90°﹣∠ABD=50°,∵动点P在弦BD上,∴∠PAB≤∠DAB,∴∠PAB≤50°.故答案为:此题答案不唯一,如40°.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.15.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0)、(0,8).以点A为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为(4,0).【考点】勾股定理;坐标与图形性质.【分析】首先利用勾股定理求出AB的长,进而得到AC的长,因为OC=AC﹣AO,所以OC求出,继而求出点C的坐标.【解答】解:∵点A,B的坐标分别为(﹣6,0)、(0,8),∴AO=6,BO=8,∴AB==10,∵以点A为圆心,以AB长为半径画弧,∴AB=AC=10,∴OC=AC﹣AO=4,∵交x正半轴于点C,∴点C的坐标为(4,0),故答案为:(4,0).【点评】本题考查了勾股定理的运用、圆的半径处处相等的性质以及坐标与图形性质,解题的关键是利用勾股定理求出AB的长.16.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=30°,过点C作⊙O的切线交AB 的延长线于点E,则∠E等于30°.【考点】切线的性质.【分析】连接OC,求出∠OCE=90°,求出∠A=∠ACO=30°,根据三角形外角性质求出∠COE=60°,即可求出答案.【解答】解:连接OC,∵EC切⊙O于C,∴∠OCE=90°,∵∠CDB=30°,∴∠A=∠CDB=30°,∵OA=OC,∴∠ACO=∠A=30°,∴∠COE=30°+30°=60°,∴∠E=180°﹣90°﹣60°=30°,故答案为:30°.【点评】本题考查了切线性质,三角形的外角性质,圆周角定理,等腰三角形的性质的应用,此题比较好,综合性比较强.17.如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=于点B、C,则BC的长为6.【考点】二次函数图象上点的坐标特征.【专题】压轴题.【分析】先由y轴上点的横坐标为0求出A点坐标为(0,3),再将y=3代入y=,求出x的值,得出B、C两点的坐标,进而求出BC的长度.【解答】解:∵抛物线y=ax2+3与y轴交于点A,∴A点坐标为(0,3).当y=3时,=3,解得x=±3,∴B点坐标为(﹣3,3),C点坐标为(3,3),∴BC=3﹣(﹣3)=6.故答案为6.【点评】本题考查了二次函数图象上点的坐标特征,两函数交点坐标的求法,平行于x轴上的两点之间的距离,比较简单.18.在平面直角坐标系中,点A是抛物线y=a(x﹣4)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为24.【考点】二次函数图象上点的坐标特征;等边三角形的性质.【分析】根据抛物线的解析式即可确定对称轴,则AB的长度即可求解.【解答】解:抛物线y=a(x﹣4)2+b的对称轴是x=4,作CD⊥AB于点D,则AD=4,则AB=2AD=8,则AB为边的等边△ABC的周长为3×8=24.故答案是:24.【点评】本题考查了二次函数的性质,根据抛物线的解析式确定对称轴,从而求得AB的长是关键.三.解答题(第19,20题每小题8分,第21,22,23,24,25题每题10分,共66分)19.如图,在平面直角坐标系中,以(6,1)为圆心,以2个单位长度为半径的⊙A交x轴于点B和C,解答下列问题:(1)将⊙A向左平移与y轴首次相切,得到⊙P,此时P的坐标为(2,1),阴影部分的面积为8.(2)求BC的长.【考点】切线的性质;坐标与图形性质.【分析】(1)根据直线和圆相切,则圆心到直线的距离等于圆的半径,知点P的坐标是(2,1),从而求得移动的距离;阴影部分的面积即为底4、高2的平行四边形的面积;(2)连接AC,过点A作AD⊥BC于点D.根据垂径定理和勾股定理进行计算.【解答】解:(1)根据直线和圆相切的位置关系与数量之间的联系,得点P的坐标是(2,1);则移动的距离是6﹣2=4;根据平移变换的性质,则阴影部分的面积即为图中平行四边形的面积=2×4=8;(2)如图,连接AC,过点A作AD⊥BC于点D,则BC=2DC.由A(6,1)可得AD=1.又∵半径AC=2,∴在Rt△ADC中,DC===,∴BC=2.故答案为:(2,1),8.【点评】本题考查了直线与圆的位置关系,坐标与图形性质,平移变换、垂径定理和勾股定理,正确的识别图形是解题的关键.20.如图,一条赛道的急转弯处是一段圆弧,点O是这段弧所在圆的圆心,AC=10m,B 是上一点,OB⊥AC,垂足为D,BD=1m,求这段弯路的半径.【考点】垂径定理的应用;勾股定理.【分析】先根据垂径定理求出AD的长,再设OA=r,则OD=r﹣BD=r﹣1,在Rt△AOD中利用勾股定理即可求出r的值即可.【解答】解:∵OB⊥AC,∴AD=AC=5m,设OA=r,则OD=r﹣BD=r﹣1,在Rt△AOD中,∵AD2+OD2=OA2,即52+(r﹣1)2=r2,解得:r=13m,即OA=13m.答:这段弯路的半径是13m.【点评】本题考查的是垂径定理及勾股定理;根据垂径定理得出AD的长,再由勾股定理得出方程是解答此题的关键.21.如图,⊙O的直径AB=10m,C为直径AB下方半圆上一点,∠ACB的平分线交⊙O于点D,连接AD、BD.(1)判断△ABD的形状,并说明理由;(2)若弦AC=6cm,求BC的长.【考点】圆周角定理;勾股定理;等腰直角三角形.【分析】(1)根据圆周角定理得到∠ADB=90°,根据圆心角、弧、弦之间的关系得到AD=BD,可以判断△ABD的形状;(2)根据圆周角定理得到∠ACB=90°,运用勾股定理计算即可.【解答】解:(1)△ABD是等腰直角三角形,∵AB为⊙O的直径,∴∠ADB=90°,∵CD是∠ACB的平分线,∴=,∴AD=BD,∴△ABD是等腰直角三角形;(2)∵AB为⊙O的直径,∴∠ACB=90°,∴BC==8cm.【点评】本题考查的是圆周角定理的应用、等腰直角三角形的判定,掌握直径所对的圆周角是直角、理解等腰直角三角形的判定定理是解题的关键.22.如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN 于E.(1)求证:DE是⊙O的切线;(2)若∠EDA=30°,AD=6cm,求⊙O的半径.【考点】切线的判定.【分析】(1)连结OD,如图,由AD平分∠CAM得∠1=∠2,加上∠2=∠3,则∠1=∠3,于是可判断OD∥MN,由于DE⊥MN,所以OD⊥DE,则可根据切线的判定定理得到DE是⊙O的切线.(2)依题意得到△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.【解答】证明:(1)连结OD,如图,∵AD平分∠CAM,∴∠1=∠2,∵OA=OD,∴∠2=∠3,∴∠1=∠3,∴OD∥MN,∵DE⊥MN,∴OD⊥DE,∴DE是⊙O的切线.(2)∵∠EDA=30°,AD=6cm,∴AE=AD=3cm.连接CD.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴=,即=,则AC=12(cm).∴⊙O的半径是6cm.【点评】本题考查常见的几何题型,包括切线的判定,线段等量关系的证明及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.23.如图,把抛物线y=x2平移得到抛物线m,且抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q.(1)求平移后的抛物线m的解析式和顶点P的坐标;(2)请直接写出图中阴影部分的面积为.【考点】二次函数图象与几何变换.【分析】(1)抛物线C1与抛物线y=x2的二次项系数相同,利用待定系数法即可求得函数的解析式,进而即可求得顶点P的坐标;(2)图中阴影部分的面积与△POQ的面积相同,利用三角形面积公式即可求解;【解答】解:(1)∵把抛物线y=x2平移得到抛物线m,且抛物线m经过点A(﹣6,0)和原点O(0,0),∴抛物线m的解析式为y=(x﹣0)(x+6)=x2+3x=(x+3)2﹣;∴P(﹣3,﹣);(2)把x=﹣3代入=x2得y=,∴Q(﹣3,),∵图中阴影部分的面积与△POQ的面积相同,S△POQ=×9×3=.∴阴影部分的面积为.故答案为.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.24.已知抛物线L:y=ax2+bx+c(b2﹣4ac>0c≠0)分别交x轴于点A、B,交y轴于点C,则称△ABC为抛物线L的内接三角形,抛物线L称为△ABC的外接抛物线.(1)如图①,抛物线y=﹣x2﹣3x+4的内接△ABC,求△ABC的面积.(2)若抛物L的内接△ABC的面积为10,且A(﹣4,0),B(1,0),C(0,c),求抛物线L的解析式.(3)如图②,若抛物L:y=﹣2x2﹣4x+c(c>0)上有一点P(点P可以和点C 重合),且S△PAB=mS△ABC,请直接写出当c,m满足什么关系时,使得这样的点P的个数为2个.【考点】二次函数综合题.【分析】(1)令y=0可求得x1=﹣4,x2=1,故此可知AB=5,令x=0,得y=4从而得到点C的坐标为(0,4),故此可知OC=4,最后由三角形的面积公式可求得△ABC的面积;(2)由题意可知;BA=5,由三角形的面积公式可知OC=4,当c=4时,抛物线的解析式为y=﹣x2﹣3x+4,当c=﹣4可求得抛物线的解析式为y=x2+3x﹣4;(3)由抛物线的解析式可求得抛物线的对称轴方程为x=﹣1,将x=﹣1代入得y=2+c,从而得到抛物线的顶点坐标为(﹣1,2+c),在x轴的下方必然存在2个点P使得S△PAB=mS△ABC,故此再x轴的上S△PAB<mS△ABC,从而得到PD<mOC,故此可求得m与c的函数关系式.【解答】解:(1)∵令y=0得:﹣x2﹣3x+4=0,解得:x1=﹣4,x2=1,∴AB=5.∵令x=0,得y=4,∴点C的坐标为(0,4).∴OC=4.由三角形的面积公式可知:△ABC的面积=﹣=10.(2)∵A(﹣4,0),B(1,0),C(0,c),∴AB=5,OC=|c|.∵△ABC的面积为10,∴=10,即.解得:|c|=4.∴c=4或c=﹣4.当c=4时,由(1)可知抛物线的解析式为y=﹣x2﹣3x+4.当c=﹣4时,设抛物线的解析式为y=a(x+4)(x﹣1),∵将点(0,﹣4)代入得;a=1.∴抛物线的解析式为y=x2+3x﹣4.∴抛物线的解析式为y=﹣x2﹣3x+4或y=x2+3x﹣4.(3)如图所示:当点P为与抛物线的顶点时,过点P作PD⊥x轴,垂足为D.由x=﹣可知抛物线的对称轴方程为x==﹣1.∵将x=﹣1代入抛物线的解析式得y=2+c.∴PD=2+c.∴抛物线的顶点坐标为(﹣1,2+c).令x=0得,y=c.∴OC=c.∵使得S△PAB=mS△ABC的点P的个数为2个,∴当点P为抛物线的顶点时,S△PAB<mS△ABC.∴PD<mOC,即2+c<mc.整理得:c(m﹣1)>2.∴c,m的关系式为c(m﹣1)>2.【点评】本题主要考查的是二次函数的综合应用,应用了待定系数法求二次函数的解析式、二次函数的图象和性质、三角形的面积公式,明确当点P为抛物线的顶点且S△PAB<mS△ABC时抛物线上存在2个点P使得S△PAB=mS△ABC是解题的关键.25.如图,在平面直角坐标系中,直线y=﹣2x+42交x轴与点A,交直线y=x于点B,抛物线y=ax2﹣2x+c分别交线段AB、OB于点C、D,点C和点D的横坐标分别为16和4,点P在这条抛物线上.(1)求点C、D的纵坐标.(2)求a、c的值.(3)若Q为线段OB上一点,且P、Q两点的纵坐标都为5,求线段PQ的长.(4)若Q为线段OB或线段AB上的一点,PQ⊥x轴,设P、Q两点之间的距离为d(d>0),点Q的横坐标为m,直接写出d随m的增大而减小时m的取值范围.【考点】二次函数综合题.【专题】压轴题.【分析】(1)点C在直线AB:y=﹣2x+42上,将C点的横坐标代入即可求出C点的纵坐标,同理可知:D点在直线OB:y=x上,将D点的横坐标代入解析式即可求出D点的纵坐标;(2)抛物线y=ax2﹣2x+c经过C、D两点,列出关于a和c二元一次方程组,解出a和c即可;(3)根据Q为线段OB上一点,P、Q两点的纵坐标都为5,则可以求出Q点的坐标,又知P 点在抛物线上,求出P点的坐标,P、Q两点的横坐标的差的绝对值即为线段PQ的长;(4)根据PQ⊥x轴,可知P和Q两点的横坐标相同,都为m,用含m的代数式分别表示P、Q两点的坐标,求出B点的坐标,分两种情况讨论:①Q是线段OB上的一点;②Q是线段AB 上的一点.分别求出d与m之间的函数解析式,根据二次函数的性质,即可求出d随m的增大而减小时m的取值范围.【解答】解:(1)∵点C在直线AB:y=﹣2x+42上,且C点的横坐标为16,∴y=﹣2×16+42=10,即点C的纵坐标为10;∵D点在直线OB:y=x上,且D点的横坐标为4,∴点D的纵坐标为4;(2)由(1)知点C的坐标为(16,10),点D的坐标为(4,4),∵抛物线y=ax2﹣2x+c经过C、D两点,∴,解得:.∴抛物线的解析式为y=x2﹣2x+10;(3)∵Q为线段OB上一点,纵坐标为5,∴Q点的横坐标也为5,∵点P在抛物线上,纵坐标为5,∴x2﹣2x+10=5,解得x1=8+2,x2=8﹣2.当点P的坐标为(8+2,5),点Q的坐标为(5,5),线段PQ的长为2+3;当点P的坐标为(8﹣2,5),点Q的坐标为(5,5),线段PQ的长为2﹣3.所以线段PQ的长为2+3或2﹣3;(4)∵PQ⊥x轴,∴P、Q两点的横坐标相同,都为m,∴P(m,m2﹣2m+10),Q(m,m)(此时Q在线段OB上)或Q(m,﹣2m+42)(此时Q在线段AB上).由,解得.∴点B的坐标为(14,14).①当点Q为线段OB上时,如图所示,在OD段,即当0≤m<4时,d=(m2﹣2m+10)﹣m=m2﹣3m+10=(m﹣12)2﹣8,d随m的增大而减小;在BD段,即当4≤m≤14时,d=m﹣(m2﹣2m+10)=﹣m2+3m﹣10=﹣(m﹣12)2+8,在对称轴右侧,d随m的增大而减小,即当12<m≤14时,d随m的增大而减小.则当0≤m<4或12≤m≤14时,d随m的增大而减小;②当点Q为线段AB上时,如图所示,在BC段,即当14≤m<16时,d=(﹣2m+42)﹣(m2﹣2m+10)=﹣m2+32,在对称轴右侧,d随m的增大而减小,即当14≤m<16时,d随m的增大而减小;在CA段,即当16≤m≤21时,d=(m2﹣2m+10)﹣(﹣2m+42)=m2﹣32,在对称轴左侧,d随m的增大而减小,m不满足条件.综上所述,当0≤m<4或12≤m<16时,d随m的增大而减小.【点评】本题考查了二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数的解析式,函数图象上点的坐标特征,平行于坐标轴上的两点之间的距离,二次函数的增减性,难度中等,解题关键是运用数形结合及分类讨论的思想.。
第3题图BA21BA吉林省吉林市吉化第九中学校2016届九年级数学3月月考试题(满分120分,考试时间120分) 一、选择题(每题2分,共12分)1.在数轴上到原点距离等于的点表示的数是 ( ) A . B . C . D .不能确定 2.下列运算正确的是( )A .325()a a = B .236x x x ⋅= C .633x x x ÷= D .22264a a -=- 3.如图,把两点之间弯曲的公路改成直道,可以缩短路程,以下依据正确的是 ( ) A .两点确定一条直线 B .垂线段最短C.两点之间线段最短 D .三角形两边之和大于第三边 4.如图,在⊙中,是直径,是弦,点是上任意一点.若,,则的长不可能为A .B .C .D . 6.如图,在平面直角坐标系中,点(1)A m -,在直线23y x =+上.连结OA ,将线段OA 绕点O 顺时针旋转90︒,点A 的对应点B 恰好落在直线y x b =-+上,则b 的值为 ( ) A. 2- B. 1 C. 32D. 2二、填空题(每题3分,共24分)7.在吉林市“暖房子工程”中,某施工队共做了平方米的外墙保暖,这个数用科学记数法表示为 .8.因式分解:322a a a ++= .9.不等式组⎩⎨⎧>->+02101x x 的解集是____________.10.某工程队承接了米的修路任务,在修好米后,引进了新设备,工作效率是原来的倍,一共用第4题图第6题图第5题图F E B C DA NM DC B A 天完成了任务.设引进新设备前每天修路米,可列方程得:_____________. 11.如图,在△中,按以下步骤作图: ①分别以为圆心,以大于12BC 的长为半径作弧,两弧相交于两点; ②作直线交于点,连接,若,∠°,则∠的度数为_________.12. 如图,方格纸中个小正方形的边长均为,则图中阴影部分三个小扇形的面积和为 _______(结果保留π).(第11题图) (第12题图) (第13题图) (第14题图)13.如图,中,,将△沿着射线的方向平移个单位后,得到三角形,连接,则△的周长为____________ .14. 在平面直角坐标系中,点A 在抛物线上运动,过点A 作AC x ⊥轴于点C ,以AC 为对角线作矩形ABCD ,连结BD ,则对角线BD 的最小值为 . 三、解答题:(每小题5分,共20分)15.先化简,再求值:()()(2)a b a b b b +-+-,其中1a =-,1b =.16.某超市出售“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元,李叔叔购买这两种水果共30千克,共花了708元,请问李叔叔购买这两种水果各多少千克?17.如图,有四张不透明的卡片,除正面写有不同的数字外,其它均相同.将这四张卡片背面向上洗匀,从中随机抽取一张,记录数字后放回,重新洗匀后再从中随机抽取一张,记录数字. 试用列表或画树状图的方法,求抽出的两张卡片上的数字都是正数的概率. 18. 如图,在Rt OAB △中,90OAB ∠= ,且点B 的坐标为(4,2).画出OAB △绕点O 逆时针旋转90 后的111O A B △,并背面正面53-3求点B旋转到点B1所经过的路线长(结果保留π).四、解答题(每题7分,共28分)19.已知,如图,在平行四边形中,延长到点,延长到点,使得,连接,分别交于点,连接.(1)求证:△;(2)求证:四边形是平行四边形.20.某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为_________人,被调查学生的课外阅读时间的中位数是_________小时,众数是_________小时;(2)请你补全条形统计图;(3)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是____________;(4)若全校九年级共有学生700人,估计九年级一周课外阅读时间为6小时的学生有多少人?21.如图,为测量某建筑物的高度AB,在离该建筑物底部24米的点处,目测建筑物顶端处,视线与水平线夹角∠为39°,且高为1.5米,求建筑物的高度.(结果精确到0.1米)(参考数据:A1.5m24mCsin39°=0.63,cos39°=0.78,tan39°=0.81)22. 如图,的直径,是弦,22.5DAB ∠= ,延长AB 到点C 45ACD ∠= .(1)求证:是⊙O 的切线; (2)若AB =BC 的长.五、解答题:(每题8分,共16分)23. 如图,点1,3)是反比例函数x ky =(x>0)图象上的一点,连接,以为直角顶点作等腰直角三角形,点在第一象限. 反比例函数xmy =的图像过点.(1)请直接写出和的值;(2)过点作平行轴,交反比例函数xmy =的图像于,连接的面积.24.在一条直线上依次有三个港口,甲、乙两船同时分别从港口出发,沿直线匀速驶向港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数(第24题)甲 乙关系如图所示.(1)填空:A 、B 两港口间的距离为 ,A 、C 两港口间的距离为 , a ; (2)求图中点P 的坐标;(3)当两船都在两港之间时,直接写出为何值时两船相距.六.解答题:(每题10分,共20分) 25.如图,在中,∠=90°,m ,,点分别为中点,连接点从点出发,沿向终点匀速运动,点Q 从点A 出发,沿折线向终点匀速运动,两点同时出发,速度均为1,其中一点到达终点,另一点也停止运动,过点作交于点,以为顶点作平行四边形,设平行四边形与四边形重合部分图形的面积为,点的运动时间为.(这里规定线段是面积为0的几何图形) (1)当点 (2)N MQ P FE DCBA EDFABC26.如图,边长为8的正方形OABC 的两边在坐标轴上,以C 为顶点的抛物线经过点A ,点P 是抛物线上点A 、C 间的一个动点(含端点),点P 的横坐标为m ,过点P 做PF ⊥BC 于点F ,点D 、E 的坐标分别为(0,6),(4,0),连接PD 、PE 、DE. (1)求抛物线的解析式;(2)填表:mPF(3)利用上面的结论可得△PDE周长的最小值为______,此时点P的坐标为____ ;(4)设△PDE的面积为S,求S与m的函数关系式,若将“使△PDE的面积为整数”的点P叫作“关键点”,直接写出“关键点”的个数.。
2016-2017学年吉林省吉林市吉化九中九年级(上)月考数学试卷(11月份)一、选择题(每题3分,共30分)1.已知函数y=的图象过点(1,﹣2),则该函数的图象必在( ) A .第二、三象限 B .第二、四象限 C .第一、三象限 D .第三、四象限2.从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是( ) A .标号小于6B .标号大于6C .标号是奇数D .标号是33.一个矩形的长为x ,宽为y ,其面积为2,则y 与x 之间的关系用图象表示大致为( )A .B .C .D .4.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A .B .C .D .5.如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不一定成立的是( )A .∠COE=∠DOEB .CE=DEC .OE=BED .6.在反比例函数的每一条曲线上,y 都随着x 的增大而减小,则k 的值可以是( ) A .﹣1 B .1C .2D .37.如图,点A 在双曲线y=上,点B 在双曲线y=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为( )A.1 B.2 C.3 D.48.如图所示,正比例函数y1=k1x(k1≠0)的图象与反比例函数y2=(k2≠0)的图象相交于A、B两点,其中A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>29.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.410.下列图形中阴影部分面积相等的是()A.①② B.②③ C.①④ D.③④二、填空题(每题3分,共30分)11.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为.12.抛物线y=x2﹣2x+3的顶点坐标是.13.已知弦AB把圆周分成1:5的两部分,则弦AB所对的圆心角的度数为.14.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是.15.在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为,那么口袋中小球共有个.16.已知点A(x1,y1)和点B(x2,y2)是双曲线y=图象上关于原点成中心对称的两点,则3x1y2﹣8x2y1= .17.如图,PA,PB是⊙O的两条切线,切点分别是A、B,PA=10,CD是⊙O的切线,交PA 于点C,交PB于点D,则△PCD的周长是.18.如图,A、B是反比例函数y=图象上关于原点O对称的两点,BC⊥x轴,垂足为C,连线AC过点D(0,﹣1.5).若△ABC的面积为7,则点B的坐标为.19.如图所示,DE是△ABC的中位线,BD与CE相交于点O,则的值是.20.如图,△P1OA1,△P2A1A2,△P3A2A3,…,△P n A n﹣1A n都是等腰直角三角形,点P1,P2,P3,…,P n在函数y=(x>0)的图象上,斜边OA1,A1A2,A2A3,…,A n﹣1A n都在x轴上,则点A1的坐标是,点A2016的坐标是.三、解答题(每题10分,共60分)21.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D 作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.(1)求证:DF是⊙O的切线;(2)若CF=1,DF=,求图中阴影部分的面积.23.在一次数学文化课题活动中,把一副数学文化创意扑克牌中的4张扑克牌(如图所示)洗匀后正面向下放在桌面上,从中随机抽取2张牌,请用这两张扑克牌上的数字组成一个两位数,请你用列表或画树状图的方法求:(1)组成的两位数是偶数的概率.(2)组成的两位数是6的倍数的概率.24.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x ≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?25.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.2016-2017学年吉林省吉林市吉化九中九年级(上)月考数学试卷(11月份)参考答案与试题解析一、选择题(每题3分,共30分)1.已知函数y=的图象过点(1,﹣2),则该函数的图象必在()A.第二、三象限 B.第二、四象限 C.第一、三象限 D.第三、四象限【考点】反比例函数的性质.【分析】先将点(1,﹣2)代入函数解析式y=,求出k的取值,从而确定函数的图象所在象限.【解答】解:∵函数y=的图象过点(1,﹣2),∴﹣2=,k=﹣2,∴函数解析式为y=﹣,∴函数的图象在第二、四象限.故选:B.2.从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是()A.标号小于6 B.标号大于6 C.标号是奇数D.标号是3【考点】随机事件.【分析】必然事件就是一定发生的事件,根据定义即可判断.【解答】解:A、是一定发生的事件,是必然事件,故选项正确;B、是不可能发生的事件,故选项错误;C、是随机事件,故选项错误;D、是随机事件,故选项错误.故选A.3.一个矩形的长为x,宽为y,其面积为2,则y与x之间的关系用图象表示大致为()A.B.C.D.【考点】矩形的性质;函数的图象.【分析】先根据矩形的面积公式得到y与x之间的函数关系式,再根据反比例函数的性质判断其图象即可.【解答】解:∵矩形的面积为2,长为y,宽x,∴2=xy,即y=,∵此函数是反比例函数,其图象是双曲线,∴A、D错误;∵x>0,∴其图象在第一象限,故选C.4.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.【考点】概率公式.【分析】直接得出偶数的个数,再利用概率公式求出答案.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为: =.故选:C.5.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立的是()A.∠COE=∠DOE B.CE=DE C.OE=BE D.【考点】垂径定理;圆心角、弧、弦的关系.【分析】根据垂径定理及圆心角、弧之间的关系定理解答.【解答】解:由垂径定理可知B、D均成立;由圆心角、弧之间的关系可得A也成立.不一定成立的是OE=BE.故选C.6.在反比例函数的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A.﹣1 B.1 C.2 D.3【考点】反比例函数的性质.【分析】利用反比例函数的增减性,y随x的增大而减小,则求解不等式1﹣k>0即可.【解答】解:∵反比例函数图象的每一条曲线上,y随x的增大而减小,∴1﹣k>0,解得k<1.故选A.7.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.1 B.2 C.3 D.4【考点】反比例函数系数k的几何意义.【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3﹣1=2.故选:B.8.如图所示,正比例函数y1=k1x(k1≠0)的图象与反比例函数y2=(k2≠0)的图象相交于A、B两点,其中A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【考点】反比例函数与一次函数的交点问题.【分析】由正、反比例的对称性结合点A的横坐标即可得出点B的横坐标,根据函数图象的上下位置关系结合交点的横坐标,即可得出不等式y1>y2的解集.【解答】解:∵正比例函数与反比例函数的图象均关于原点对称,点A的横坐标为2,∴点B的横坐标为﹣2.观察函数图象,发现:当﹣2<x<0或x>2时,正比例函数图象在反比例函数图象的上方,∴当y1>y2时,x的取值范围是﹣2<x<0或x>2.故选D.9.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由x=1时的函数值判断a+b+c>0,然后根据对称轴推出2a+b与0的关系,根据图象判断﹣1<x<3时,y的符号.【解答】解:①图象开口向下,能得到a<0;②对称轴在y轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y>0,则a+b+c>0;④由图可知,当﹣1<x<3时,y>0.故选C.10.下列图形中阴影部分面积相等的是()A.①② B.②③ C.①④ D.③④【考点】一次函数的性质;反比例函数的性质;二次函数的性质.【分析】根据二次函数、一次函数、反比例函数、正比例函数的性质,求出4个阴影部分的面积,然后进行比较即可得出结论.【解答】解:①中直线y=x+2与坐标轴的交点为(0,2)、(2,0).∴三角形的底边长和高都为2则三角形的面积为×2×2=2;②中三角形的底边长为1,当x=1时,y=3∴三角形的高为3则面积为×1×3=;③中三角形的高为1,底边长正好为抛物线与x轴两交点之间的距离∴底边长=|x1﹣x2|==2则面积为×2×1=1;④设A的坐标是(x,y),代入解析式得:xy=2,则面积为×2=1∴阴影部分面积相等的是③④.故选D.二、填空题(每题3分,共30分)11.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为 6 .【考点】反比例函数图象上点的坐标特征.【分析】设反比例函数解析式为y=,根据反比例函数图象上点的坐标特征得到k=3×(﹣4)=﹣2m,然后解关于m的方程即可.【解答】解:设反比例函数解析式为y=,根据题意得k=3×(﹣4)=﹣2m,解得m=6.故答案为6.12.抛物线y=x2﹣2x+3的顶点坐标是(1,2).【考点】二次函数的性质.【分析】已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).故答案为:(1,2).13.已知弦AB把圆周分成1:5的两部分,则弦AB所对的圆心角的度数为60°.【考点】圆心角、弧、弦的关系.【分析】由于弦AB把圆周分成1:5的两部分,根据圆心角、弧、弦的关系得到弦AB所对的圆心角为周角的.【解答】解:∵弦AB把圆周分成1:5的两部分,∴弦AB所对的圆心角的度数=×360°=60°.故答案为60°.14.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是65π.【考点】圆锥的计算;扇形面积的计算.【分析】运用公式s=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】解:由已知得,母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故答案为65π.15.在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为,那么口袋中小球共有15 个.【考点】概率公式.【分析】设口袋中小球共有x个,根据概率公式得到=,然后利用比例性质求出x即可.【解答】解:设口袋中小球共有x个,根据题意得=,解得x=15,所以口袋中小球共有15个.故答案为15.16.已知点A(x1,y1)和点B(x2,y2)是双曲线y=图象上关于原点成中心对称的两点,则3x1y2﹣8x2y1= ﹣10 .【考点】反比例函数图象上点的坐标特征.【分析】由已知得到x1=﹣x2,y1=﹣y2,x1•y1=x2y2=﹣2,于是得到结论.【解答】解:∵点A(x1,y1)和点B(x2,y2)是双曲线y=图象上关于原点成中心对称的两点,∴x1=﹣x2,y1=﹣y2,x1•y1=x2y2=﹣2,∴﹣3x1y1+8x2y2=6﹣16=﹣10,故答案为:﹣10.17.如图,PA,PB是⊙O的两条切线,切点分别是A、B,PA=10,CD是⊙O的切线,交PA 于点C,交PB于点D,则△PCD的周长是20 .【考点】切线长定理.【分析】根据切线长定理得出PA=PB=10,CA=CE,DE=DB,求出△PCD的周长是PC+CD+PD=PA+PB,代入求出即可.【解答】解:∵PA、PB切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=10,CA=CE,DE=DB,∴△PCD的周长是PC+CD+PD=PC+AC+DB+PD=PA+PB=10+10=20.故答案为:20.18.如图,A、B是反比例函数y=图象上关于原点O对称的两点,BC⊥x轴,垂足为C,连线AC过点D(0,﹣1.5).若△ABC的面积为7,则点B的坐标为(,3).【考点】反比例函数与一次函数的交点问题.【分析】设B的坐标是(m,n),则A的坐标是(﹣m,﹣n),因为S△OBC=OC•BC=mn,S△=OC•|﹣n|=mn,S△AOD=OD•|﹣m|=m,S△DOC=OD•OC=m,AOC根据S△AOC=S△AOD+S△DOC=m+m=m,得出mn=m,从而求得n的值,然后根据S△OBC+S△AOC= mn+mn=7得出mn=7,即可求得m的值.【解答】解:设B的坐标是(m,n),则A的坐标是(﹣m,﹣n),∵S△OBC=OC•BC=mn,S△AOC=OC•|﹣n|=mn,S△AOD=OD•|﹣m|=m,S△DOC=OD•OC=m∴S△AOC=S△AOD+S△DOC=m+m=m,∴mn=m,∴n=3,∵△ABC的面积为7,∴S△OBC+S△AOC=mn+mn=7,即mn=7,∴m=,∴B(,3);故答案为(,3).19.如图所示,DE是△ABC的中位线,BD与CE相交于点O,则的值是 2 .【考点】三角形中位线定理.【分析】根据DE是△ABC的中位线可得出DE∥BC,DE=BC,根据相似三角形的判定定理得出△ODE∽△OBC,由相似三角形的对应边成比例即可得出结论.【解答】解:∵DE是△ABC的中位线,∴DE∥BC,DE=BC,∴∠ODE=∠OBC,∠OED=∠OCB,∴△ODE∽△OBC,∴==2.故答案为:2.20.如图,△P1OA1,△P2A1A2,△P3A2A3,…,△P n A n﹣1A n都是等腰直角三角形,点P1,P2,P3,…,P n在函数y=(x>0)的图象上,斜边OA1,A1A2,A2A3,…,A n﹣1A n都在x轴上,则点A1的坐标是(2,0),点A2016的坐标是(24,0).【考点】反比例函数图象上点的坐标特征;等腰直角三角形.【分析】分别作出点P1,P2,P3与x轴的垂线段,根据等腰直角三角形三线合一的性质可知,这此垂线段又是斜边上的中线,则等于斜边的一半;设未知数,根据反比例函数关系式列等量关系,求出未知数的值,并取舍,找出规律,并化简.【解答】解:过点P1作P1B⊥x轴于B,∵△P1OA1是等腰直角三角形,∴OB=P1B,则OB•P1B=1,∴OB=1,OA1=2,∴A1(2,0);过点P2作P2D⊥x轴于D,设A1D=x,则OD=2+x,同理得:A1D=P2D=x,则OD•P2D=1,x(2+x)=1,解得:x1=﹣1+,x2=﹣1﹣(舍),∴A2(2,0)过点P3作P3E⊥x轴于E,设P3E=y,则OE=2+y,则OE•P3E=1,y(2+y)=1,解得:y1=﹣,y2=﹣(舍),∴A2A3=2﹣2,∴OA3=2﹣2+2=2,∴A3(2,0),所以可以得出:A2016的坐标(2,0),即(24,0),故答案为:(2,0),(24,0).三、解答题(每题10分,共60分)21.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.【考点】概率公式;随机事件.【分析】(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;(2)利用概率公式列出方程,求得m的值即可.【解答】解:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件;当摸出2个或3个时,摸到黑球为随机事件,故答案为:4;2,3.(2)根据题意得: =,解得:m=2,所以m的值为2.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D 作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.(1)求证:DF是⊙O的切线;(2)若CF=1,DF=,求图中阴影部分的面积.【考点】切线的判定;等腰三角形的性质;扇形面积的计算.【分析】(1)连接AD、OD,由AB为直径可得出点D为BC的中点,由此得出OD为△BAC的中位线,再根据中位线的性质即可得出OD⊥DF,从而证出DF是⊙O的切线;(2)CF=1,DF=,通过解直角三角形得出CD=2、∠C=60°,从而得出△ABC为等边三角形,再利用分割图形求面积法即可得出阴影部分的面积.【解答】(1)证明:连接AD、OD,如图所示.∵AB为直径,∴∠ADB=90°,∴AD⊥BC,∵AC=AB,∴点D为线段BC的中点.∵点O为AB的中点,∴OD为△BAC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线.(2)解:在Rt△CFD中,CF=1,DF=,∴tan∠C==,CD=2,∴∠C=60°,∵AC=AB,∴△ABC为等边三角形,∴AB=4.∵OD∥AC,∴∠DOG=∠BAC=60°,∴DG=OD•tan∠DOG=2,∴S阴影=S△ODG﹣S扇形OBD=DG•OD﹣πOB2=2﹣π.23.在一次数学文化课题活动中,把一副数学文化创意扑克牌中的4张扑克牌(如图所示)洗匀后正面向下放在桌面上,从中随机抽取2张牌,请用这两张扑克牌上的数字组成一个两位数,请你用列表或画树状图的方法求:(1)组成的两位数是偶数的概率.(2)组成的两位数是6的倍数的概率.【考点】列表法与树状图法.【分析】(1)列出得出所有等可能的情况数,找出抽取2张牌的数字组成的两位数是偶数情况数,即可求出所求的概率;(2)由(1)可知所有等可能的情况数,找出抽取2张牌组成的两位数是6的倍数的情况数,即可求出所求的概率.【解答】解:(1)列表如下:所有等可能的情况数有12种,抽取2张牌的数字组成的两位数是偶数的有6种,所以组成的两位数是偶数的概率==;(2)由(1)可知所有等可能的情况数有12种,抽取2张牌组成的两位数是6的倍数的情况数有2种,所以组成的两位数是6的倍数的概率==.24.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x ≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【考点】反比例函数的应用;一次函数的应用.【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)利用y=4分别得出x的值,进而得出答案.【解答】解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,8)代入得:8=4k,解得:k=2,故直线解析式为:y=2x,当4≤x≤10时,设反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).(2)当y=4,则4=2x,解得:x=2,当y=4,则4=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.25.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把A、B两点的坐标代入,利用待定系数法可求得抛物线的解析式;(2)当S△ABE=S△ABC时,可知E点和C点的纵坐标相同,可求得E点坐标;(3)在△CAE中,过E作ED⊥AC于点D,可求得ED和AD的长度,设出点P坐标,过P作PQ⊥x轴于点Q,由条件可知△EDA∽△PQA,利用相似三角形的对应边可得到关于P点坐标的方程,可求得P点坐标.【解答】解:(1)把A、B两点坐标代入解析式可得,解得,∴抛物线解析式为y=x2+x﹣5;(2)在y=x2+x﹣5中,令x=0可得y=﹣5,∴C(0,﹣5),∵S△ABE=S△ABC,且E点在x轴下方,∴E点纵坐标和C点纵坐标相同,当y=﹣5时,代入可得x2+x=﹣5,解得x=﹣2或x=0(舍去),∴E点坐标为(﹣2,﹣5);(3)假设存在满足条件的P点,其坐标为(m, m2+m﹣5),如图,连接AP、CE、AE,过E作ED⊥AC于点D,过P作PQ⊥x轴于点Q,则AQ=AO+OQ=5+m,PQ=|m2+m﹣5|,在Rt△AOC中,OA=OC=5,则AC=5,∠ACO=∠DCE=45°,由(2)可得EC=2,在Rt△EDC中,可得DE=DC=,∴AD=AC﹣DC=5﹣=4,当∠BAP=∠CAE时,则△EDA∽△PQA,∴=,即=,∴m2+m﹣5=(5+m)或m2+m﹣5=﹣(5+m),当m2+m﹣5=(5+m)时,整理可得4m2+5m﹣75=0,解得m=或m=﹣5(与A点重合,舍去),当m2+m﹣5=﹣(5+m)时,整理可得4m2+11m﹣45=0,解得m=或m=﹣5(与A点重合,舍去),∴存在满足条件的点P,其横坐标为或.。
2017-2018学年上学期期中考试九年级数学试卷(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色签字笔完成;一、选择题 (本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑。
1、在﹣5,0,﹣2,1这四个数中,最小的数是( )A .﹣5B .﹣2C .0D .12、下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3、下列计算正确的是( )A .532x x x =+B .2x ·63x x =C .()532x x =D .235x x x =÷4、下列调査中,适合采用全面调査(普査)方式的是 ( )A .对嘉陵江水质情况的调査B .对端午节期间市场上粽子质量情况的调査C .对某班50名同学体重情况的调査D .对某类烟花爆竹燃放安全情况的调査5、对于二次函数2(1)2y x =-+的图象,下列说法正确的是( ).A .开口向下B .对称轴是1x =-C .顶点坐标是(1,2)D .与x 轴有两个交点 6、若m 是关于x 的一元二次方程02=++m nx x 的根,且m ≠0,则n m +的值为( )A.1-B.1C.21-D.21 7、将抛物线y =(x -4)2+2向右平移1个单位,再向下平移3个单位,则平移后抛物线的 表达式为( )A .y =(x -3)2+5B .y =(x -3)2-1C .y =(x -5)2+5D .y =(x -5)2-18、共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .21000(1)1000440x +=+B .21000(1)440x +=C .2440(1)1000x +=D .1000(12)1000440x +=+9、在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是( )A B C D10、下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为( )A .50B .60C .64D .7211、如图,在Rt △ABC 中,∠ABC =90°,AB =BC =2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连结BM ,则BM 的长是( )A.4B. 13+C. 23+D. 712、在﹣2、﹣1、0、1、2、3这六个数中,随机取出一个数,记为a ,若数 a 使关于x 的分式方程3233ax x x+=---的解是正实数,且使得二次函数y =﹣x 2+(2 a ﹣1)x +1的图象,在x >2时,y 随x 的增大而减小,则满足条件的所有a 之和是( )A .﹣2B .﹣1C .1D .2二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13、据报道,西部地区最大的客运枢纽系统﹣﹣重庆西站,一期工程已经完成90%,预计在年内建成投入使用。
九年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列图形中是中心对称图形但不是轴对称图形的是()A.B. C.D.2.(3分)若关于x的一元二次方程ax2+bx+6=0(a≠0)的一个根是x=﹣1,则2017﹣a+b的值为()A.2011 B.2023 C.2013 D.20183.(3分)关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠04.(3分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A的度数为()A.35°B.45°C.55°D.65°5.(3分)下列函数解析式中,一定为二次函数的是()A.s=2t2﹣2t+1 B.y=ax2+bx+c C.y=3x﹣1 D.y=6.(3分)抛物线y=﹣2(x﹣3)2+4的顶点坐标是()A.(2,4) B.(3,﹣4)C.(3,4) D.(﹣2,4)7.(3分)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=,且经过点(﹣3,y1)、(﹣1,y2),则y1和y2的大小为()A.y1>y2B.y1<y2C.y1=y2D.y1≥y28.(3分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=55°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.100°B.90°C.80°D.55°9.(3分)已知正六边形的边心距为,则它的半径为()A.2 B.4 C.2 D.410.(3分)已知一次函数y=ax+b的图象经过第一、三、四象限,则在平面直角系中二次函数y=ax2+bx的图象大致是()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)将一元二次方程2(x+2)2+(x+3)(x﹣2)=﹣11化为一般形式为.12.(3分)已知点P(3,1﹣b)关于原点的对称点Q的坐标是(a,﹣1),则a b的值是.13.(3分)若二次函数y=mx2+(m+1)x+m的图象都在x轴的下方,则m的取值范围是.14.(3分)把抛物线y=(x+2)2﹣3向上平移2个单位长度,再向左平移4个单位长度,所得抛物线的解析式为.15.(3分)一个扇形的弧长是10πm,面积是60πcm2,则此扇形的圆心角的度数是.三、解答题(本题8个小题,满分75分)16.(8分)解下列方程:(1)x2+8x+15=0;(2)3x2+x﹣5=0.17.(9分)如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.18.(9分)如图,在平面直角坐标系中,△OAB的顶点A、B的坐标分别为A(6,﹣3)、B(0,﹣5).(1)画出△OAB绕原点O顺时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)猜想:∠OAB的度数为多少?不必说明理由.19.(9分)如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A 按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.20.(9分)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD 于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB=寸,CD=寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.21.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).22.(10分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为每个40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(个)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)该公司当地物价部门规定,商品售价不得高于成本的1.9倍,当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?23.(11分)如图,抛物线y=x2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;=32,求此时P点的坐标.(3)点P为y轴右侧抛物线上一个动点,若S△PAB参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列图形中是中心对称图形但不是轴对称图形的是()A.B. C.D.【解答】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选:D.2.(3分)若关于x的一元二次方程ax2+bx+6=0(a≠0)的一个根是x=﹣1,则2017﹣a+b的值为()A.2011 B.2023 C.2013 D.2018【解答】解:把x=﹣1代入方程得:a﹣b+6=0,即a﹣b=﹣6,则原式=2017﹣(﹣6)=2023,故选:B.3.(3分)关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠0【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,解得k>﹣1且k≠0.故选:C.4.(3分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A的度数为()A.35°B.45°C.55°D.65°【解答】解:∵△ABC绕点C按顺时针方向旋转35°得到△A′B′C,∴∠ACA′=35°,∠A=∠A′,∵∠A′DC=90°,∴∠A′=90°﹣35°=55°,∴∠A=55°.故选:C.5.(3分)下列函数解析式中,一定为二次函数的是()A.s=2t2﹣2t+1 B.y=ax2+bx+c C.y=3x﹣1 D.y=【解答】解:A、s=2t2﹣2t+1是二次函数,故A正确;B、y=ax2+bx+c (a≠0)是二次函数,故B错误;C、y=3x﹣1是一次函数,故C错误;D、y=x2+不是二次函数,故D错误;故选:A.6.(3分)抛物线y=﹣2(x﹣3)2+4的顶点坐标是()A.(2,4) B.(3,﹣4)C.(3,4) D.(﹣2,4)【解答】解:抛物线y=﹣2(x﹣3)2+4的顶点坐标是(3,4),故选:C.7.(3分)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=,且经过点(﹣3,y1)、(﹣1,y2),则y1和y2的大小为()A.y1>y2B.y1<y2C.y1=y2D.y1≥y2【解答】解:∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=,∴抛物线开口向上,在对称轴的左侧,y随x的增大而减小,又∵﹣3<﹣1<,∴y1>y2.故选:A.8.(3分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=55°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.100°B.90°C.80°D.55°【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∵BD是∠ABC的平分线,∴∠ABD=45°,∵∠D=∠C=55°,∴∠BAD=180°﹣∠ABD﹣∠D=80°.故选:C.9.(3分)已知正六边形的边心距为,则它的半径为()A.2 B.4 C.2 D.4【解答】解:如图,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos 30°=÷=2;故选:A.10.(3分)已知一次函数y=ax+b的图象经过第一、三、四象限,则在平面直角系中二次函数y=ax2+bx的图象大致是()A.B.C.D.【解答】解:∵一次函数y=ax+b的图象经过第一、三、四象限,∴a>0,b<0,∴二次函数y=ax2+bx的图象的开口向上,对称轴在y轴的右侧,且过原点.故选:C.二、填空题(每小题3分,共15分)11.(3分)将一元二次方程2(x+2)2+(x+3)(x﹣2)=﹣11化为一般形式为3x2+9x+13=0.【解答】解:一元二次方程2(x+2)2+(x+3)(x﹣2)=﹣11化为一般形式为3x2+9x+13=0;故答案为:3x2+9x+13=0.12.(3分)已知点P(3,1﹣b)关于原点的对称点Q的坐标是(a,﹣1),则a b的值是1.【解答】解:∵点P(3,1﹣b)关于原点的对称点Q的坐标是(a,﹣1),∴a=﹣3,1﹣b=1,解得b=0,所以,a b=(﹣3)0=1.故答案为:1.13.(3分)若二次函数y=mx2+(m+1)x+m的图象都在x轴的下方,则m的取值范围是m<﹣.【解答】解:由题意可得出:,解得:m<﹣.故答案为:m<﹣.14.(3分)把抛物线y=(x+2)2﹣3向上平移2个单位长度,再向左平移4个单位长度,所得抛物线的解析式为y=(x+6)2﹣1.【解答】解:抛物线y=(x+2)2﹣3的顶点坐标为(﹣2,﹣3),∵向上平移2个单位长度,再向左平移4个单位长度,∴﹣2﹣4=﹣6,﹣3+2=﹣1,∴平移后的抛物线的顶点坐标为(6,﹣1),∴所得抛物线的解析式为y=(x+6)2﹣1.故答案为:y=(x+6)2﹣1.15.(3分)一个扇形的弧长是10πm,面积是60πcm2,则此扇形的圆心角的度数是150°.【解答】解:∵一个扇形的弧长是10πcm,面积是60πcm2,∴S=Rl,即60π=×R×10π,解得:R=12,∴S=60π=,解得:n=150°,故答案为:150°.三、解答题(本题8个小题,满分75分)16.(8分)解下列方程:(1)x2+8x+15=0;(2)3x2+x﹣5=0.【解答】解:(1)∵(x+3)(x+5)=0,∴x+3=0或x+5=0,解得:x=﹣3或x=﹣5;(2)∵a=3、b=1、c=﹣5,∴△=1﹣4×3×(﹣5)=61>0,则x=,即x1=、x2=.17.(9分)如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.【解答】解:(1)设条纹的宽度为x米.依题意得2x×5+2x×4﹣4x2=×5×4,解得:x1=(不符合,舍去),x2=.答:配色条纹宽度为米.(2)条纹造价:×5×4×200=850(元)其余部分造价:(1﹣)×4×5×100=1575(元)∴总造价为:850+1575=2425(元)答:地毯的总造价是2425元.18.(9分)如图,在平面直角坐标系中,△OAB的顶点A、B的坐标分别为A(6,﹣3)、B(0,﹣5).(1)画出△OAB绕原点O顺时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)猜想:∠OAB的度数为多少?不必说明理由.【解答】解:(1)△OA1B1如图所示;(2)△OA2B2如图所示;(3)∠OAB=45°.理由如下:设直线AB的解析式为y=kx+b(k≠0),∵A(6,﹣3),B(0,﹣5),∴,解得,∴y=x﹣5,当x=﹣3时,y=×(﹣3)﹣5=﹣6,∴点A1在直线AB上,∵OA=OA1,∠AOA1=90°,∴△AOA1是等腰直角三角形,∴∠OAB=45°.19.(9分)如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A 按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.【解答】(1)证明:如图,∵△AEF是由△ABC绕点A按逆时针方向旋转得到的,∴AE=AF=AB=AC=2,∠EAF=∠BAC=45°,∴∠BAC+∠3=∠EAF+∠3,即∠BAE=∠CAF,在△ABE和△ACF中,∴△ABE≌△ACF,∴BE=CF;(2)解:如图,∵四边形ABDF为菱形,∴DF=AF=2,DF∥AB,∴∠1=∠BAC=45°,∴△ACF为等腰直角三角形,∴CF=AF=2,∴CD=CF﹣DF=2﹣2.20.(9分)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD 于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB=1寸,CD=10寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.【解答】解:根据题意得:AB=1寸,CD=10寸;故答案为:1,10;(2)连接CO,如图所示:∵BO⊥CD,∴.设CO=OB=x寸,则AO=(x﹣1)寸,在Rt△CAO中,∠CAO=90°,∴AO2+CA2=CO2.∴(x﹣1)2+52=x2.解得:x=13,∴⊙O的直径为26寸.21.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).【解答】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴∠CBA+∠CAB=90°,∵∠EAC=∠B,∴∠CAE+∠BAC=90°,即BA⊥AE.∴AE是⊙O的切线.(2)连接CO,∵AB=6,∴AO=3,∵∠D=60°,∴∠AOC=120°,∴==2π.22.(10分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为每个40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(个)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)该公司当地物价部门规定,商品售价不得高于成本的1.9倍,当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?【解答】解:(1)由题意可得:S=(x﹣40)(﹣10x+1200)=﹣10x2+1600x﹣48000;(2)S=﹣10x2+1600x﹣48000=﹣10(x﹣80)2+16000依题意:x≤40×1.9,即x≤76,对于二次函数S=﹣10(x﹣80)2+16000,当x≤80时,s随x的增大而增大,故当x最大为76时,s最大为15840元.23.(11分)如图,抛物线y=x2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;=32,求此时P点的坐标.(3)点P为y轴右侧抛物线上一个动点,若S△PAB【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣2,0),B(6,0)两点,∴方程x2+bx+c=0的两根为x=﹣2或x=6,∴﹣2+6=﹣b,﹣2×6=c,∴b=﹣4,c=﹣12,∴二次函数解析式是y=x2﹣4x﹣12.(2)∵y=x2﹣4x﹣12=(x﹣2)2﹣16,∴抛物线的对称轴x=2,顶点坐标(2,﹣16).(3)设P的纵坐标为|y P|,=32,∵S△PAB∴•AB•|y P|=32,∵AB=6+2=8,∴|y P|=8,∴y P=±8,把y P=8代入解析式得,8=x2﹣4x﹣12,解得,x=2±2,把y P=﹣8代入解析式得,﹣8=x2﹣4x﹣12,解得x=2±2,又知点P为y轴右侧抛物线上一个动点,即x=2±2(负值舍去)或x=2±2(负值舍去),综上点P的坐标为(2+2,8)或(2+2,﹣8).。
2017-2018学年吉林省吉林市龙潭区吉化九中九年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.(3分)方程2x2=3x的解为()A.0 B.C.D.0,2.(3分)抛物线y=x2+bx+c的图象向右平移2个单位长度再向下平移3个单位长度,所得图象的解析式为y=x2﹣2x﹣3,则b、c的值为()A.b=2,c=2 B.b=2,c=0 C.b=﹣2,c=﹣1 D.b=﹣3,c=23.(3分)如图,AB为⊙O的直径,弦CD⊥AB垂足为E,下列结论中,错误的是()A.CE=DE B.C.∠BAC=∠BAD D.AC>AD4.(3分)如图,点A、B、C都在⊙O上,若∠C=34°,则∠AOB的度数为()A.34°B.56°C.60°D.68°5.(3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个6.(3分)关于x的一元二次方程:x2﹣4x﹣m2=0有两个实数根x1、x2,则m2()=()A.B.C.4 D.﹣47.(3分)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A.B.C.D.8.(3分)如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.45°B.60°C.70°D.90°二、填空题(每小题3分,共24分)9.(3分)已知关于x的方程x2+x+2a﹣1=0的一个根是0,则a=.10.(3分)如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是.11.(3分)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为.12.(3分)在等边三角形、平行四边形、矩形、圆中是轴对称图形,但不是中心对称图形的是.13.(3分)⊙O的一条弦长为4cm,半径为4cm,则弦所对的圆周角是.14.(3分)如图,在平面直角坐标系xOy中,A(﹣3,0),B(0,1),形状相同的抛物线C n(n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,那么这些抛物线称为“美丽抛物线”.若这些“美丽抛物线”与抛物线y=﹣x2+1形状相同,则抛物线C n的解析式为.15.(3分)如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为.16.(3分)如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P 的坐标为.三、解答题(共28分)17.(6分)解下列方程:(1)x2+3x+1=0(2)3(x﹣5)2=2(5﹣x)(3)(3x+1)(x﹣1)=8(9﹣x)﹣1.18.(8分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?19.(7分)如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.20.(7分)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD的长.四、解答题(32分)21.(8分)如图,∠AOB=90°,C、D是的三等分点,连接AB分别交OC,OD 于点E,F.求证:AE=BF=CD.22.(8分)如图,已知CD是⊙O的直径,∠EOD=78°,AE交⊙O于B,且AB=OC.求∠A的度数.23.(8分)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.24.(4分)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是.25.(4分)如图是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分的面积为4.五、解答题(12分)26.(12分)在直角坐标平面中,O为坐标原点,二次函数y=﹣x2+(k﹣1)x+4=6.的图象与y轴交于点A,与x轴的负半轴交于点B,且S△OAB(1)求点A与点B的坐标;(2)求此二次函数的解析式;(3)如果点P在x轴上,且△ABP是等腰三角形,求点P的坐标.2017-2018学年吉林省吉林市龙潭区吉化九中九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)方程2x2=3x的解为()A.0 B.C.D.0,【解答】解:方程整理得:2x2﹣3x=0,分解因式得:x(2x﹣3)=0,解得:x=0或x=,故选:D.2.(3分)抛物线y=x2+bx+c的图象向右平移2个单位长度再向下平移3个单位长度,所得图象的解析式为y=x2﹣2x﹣3,则b、c的值为()A.b=2,c=2 B.b=2,c=0 C.b=﹣2,c=﹣1 D.b=﹣3,c=2【解答】解:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线y=x2﹣2x﹣3=(x﹣1)2﹣4顶点坐标为(1,﹣4),∴抛物线y=x2﹣2x﹣3的图象向左平移2个单位再向上平移3个单位,所得抛物线的顶点坐标为(﹣1,﹣1),∴所得抛物线的解析式为y=(x+1)2﹣1=x2+2x.∴b=2,c=0,故选:B.3.(3分)如图,AB为⊙O的直径,弦CD⊥AB垂足为E,下列结论中,错误的是()A.CE=DE B.C.∠BAC=∠BAD D.AC>AD【解答】解:AB为⊙O的直径,弦CD⊥AB垂足为E,则AB是垂直于弦CD的直径,就满足垂径定理.因而CE=DE,,∠BAC=∠BAD都是正确的.根据条件可以得到AB是CD的垂直平分线,因而AC=AD.所以D是错误的.故选:D.4.(3分)如图,点A、B、C都在⊙O上,若∠C=34°,则∠AOB的度数为()A.34°B.56°C.60°D.68°【解答】解:∵∠C=34°,∴∠AOB=2∠C=68°.故选:D.5.(3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个【解答】解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0∴①正确;∵x=1时,y<0,∴a+b+c<0,∴②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣,b<0,∴b=3a,又∵a<0,b<0,∴a>b,∴③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,∴④正确;综上,可得正确结论有3个:①③④.故选:C.6.(3分)关于x的一元二次方程:x2﹣4x﹣m2=0有两个实数根x1、x2,则m2()=()A.B.C.4 D.﹣4【解答】解:∵x2﹣4x﹣m2=0有两个实数根x1、x2,∴,∴则m2()===﹣4.故选:D.7.(3分)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A.B.C.D.【解答】解:A、最小旋转角度==120°;B、最小旋转角度==90°;C、最小旋转角度==180°;D、最小旋转角度==72°;综上可得:顺时针旋转120°后,能与原图形完全重合的是A.故选:A.8.(3分)如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.45°B.60°C.70°D.90°【解答】解:∵将△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,∴∠BAB′=∠CAC′=120°,AB=AB′,∴∠AB′B=(180°﹣120°)=30°,∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,∴∠CAB′=∠CAC′﹣∠C′AB′=120°﹣30°=90°.故选:D.二、填空题(每小题3分,共24分)9.(3分)已知关于x的方程x2+x+2a﹣1=0的一个根是0,则a=.【解答】解:根据题意得:0+0+2a﹣1=0解得a=.故答案为:.10.(3分)如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是k>﹣且k≠0.【解答】解:∵关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,解得:k>﹣且k≠0.故答案为:k>﹣且k≠0.11.(3分)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为(100﹣x)(80﹣x)=7644.【解答】解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故答案为:(100﹣x)(80﹣x)=7644.12.(3分)在等边三角形、平行四边形、矩形、圆中是轴对称图形,但不是中心对称图形的是等边三角形.【解答】解:等边三角形、是轴对称图形,但不是中心对称图形,平行四边形、不是轴对称图形,是中心对称图形,矩形、是轴对称图形,也是中心对称图形,圆,是轴对称图形,也是中心对称图形,综上所述,是轴对称图形,但不是中心对称图形是等边三角形.故答案为:等边三角形.13.(3分)⊙O的一条弦长为4cm,半径为4cm,则弦所对的圆周角是30°或150°.【解答】解:如图所示,首先在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,∵OA=OB=4cm,AB=4cm,∴OA=AB=OB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=30°,∴∠D=180°﹣∠C=150°,∴所对的圆周角的度数为:30°或150°;故答案为:30°或150°.14.(3分)如图,在平面直角坐标系xOy中,A(﹣3,0),B(0,1),形状相同的抛物线C n(n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,那么这些抛物线称为“美丽抛物线”.若这些“美丽抛物线”与抛物线y=﹣x2+1形状相同,则抛物线C n的解析式为y=﹣(x﹣)2+.【解答】解:设直线AB的解析式为:y=kx+b把A(﹣3,0),B(0,1)代入得:解得∴直线AB的解析式为:y=x+1∵抛物线c1的顶点的横坐标为2,且顶点在直线AB上,∴抛物线c1的顶点坐标为(2,)同理可得:抛物线c2的顶点坐标为(3,2)抛物线c3的顶点坐标为(5,)抛物线c4的顶点坐标为(8,)…其中,C n(n=1,2,3,4,…)的横坐标分别为:2,3,5,8,12,…,则第n个抛物线的顶点的横坐标为:∴将X n=代入一次函数y=x+1得y n=∴抛物线C n顶点坐标为(,),所以抛物线解析式为y=﹣(x﹣)2+,故答案为:y=﹣(x﹣)2+.15.(3分)如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为4.【解答】解:∵∠AOB=∠COD , ∴S 阴影=S △AOB .∵四边形ABCD 是平行四边形,∴OA=AC=×4=2. ∵AB ⊥AC ,∴S 阴影=S △AOB =OA•AB=×2×4=4. 故答案为:4.16.(3分)如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,⊙P 与x 轴交于O ,A 两点,点A 的坐标为(6,0),⊙P 的半径为,则点P的坐标为 (3,2) .【解答】解:过点P 作PD ⊥x 轴于点D ,连接OP , ∵A (6,0),PD ⊥OA , ∴OD=OA=3, 在Rt △OPD 中,∵OP=,OD=3,∴PD===2,∴P (3,2). 故答案为:(3,2).三、解答题(共28分)17.(6分)解下列方程:(1)x2+3x+1=0(2)3(x﹣5)2=2(5﹣x)(3)(3x+1)(x﹣1)=8(9﹣x)﹣1.【解答】解:(1)x2+3x+1=0,b2﹣4ac=32﹣4×1×1=5,x=,x1=,x2=;(2)3(x﹣5)2=2(5﹣x),3(x﹣5)2+2(x﹣5)=0,(x﹣5)[3(x﹣5)+2]=0,x﹣5=0,3(x﹣5)+2=0,x1=5,x2=;(3)(3x+1)(x﹣1)=8(9﹣x)﹣1,整理得:x2+2x﹣36=0,b2﹣4ac=22﹣4×1×(﹣36)=148,x=,x1=﹣1+,x2=﹣1﹣.18.(8分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?【解答】解:设每件童装应降价x元,根据题意列方程得,(40﹣x)(20+2x)=1200,解得x1=20,x2=10(因为尽快减少库存,不合题意,舍去),答:每件童装降价20元;19.(7分)如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.【解答】解:(1)∵抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,∴令y=0,可得x=或x=,∴A(,0),B(,0);令x=0,则y=,∴C点坐标为(0,),设直线BC的解析式为:y=kx+b,则有,,解得:,∴直线BC的解析式为:y=x;(2)设点D的横坐标为m,则坐标为(m,),∴E点的坐标为(m,m),设DE的长度为d,∵点D是直线BC下方抛物线上一点,则d=m+﹣(m2﹣3m+),整理得,d=﹣m2+m,∵a=﹣1<0,===,∴当m=﹣=时,d最大∴D点的坐标为(,﹣).20.(7分)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD的长.【解答】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=.四、解答题(32分)21.(8分)如图,∠AOB=90°,C、D是的三等分点,连接AB分别交OC,OD 于点E,F.求证:AE=BF=CD.【解答】证明:连接AC,BD,∵在⊙O中,半径OA⊥OB,C、D为弧AB的三等分点,∴∠AOC=∠AOB=×90°=30°.∵OA=OB,∴∠OAB=∠OBA=45°,∵∠AOC=∠BOD=30°,∴∠AEC=∠OAB+∠AOC=45°+30°=75°,∵OA=OC,∠AOC=30°,∴∠ACE=75°,∴∠ACE=∠AEC,∴AC=AE,同理BF=BD,∵C,D是的三等分点,∴AC=CD=BD,∴AE=BF=CD.22.(8分)如图,已知CD是⊙O的直径,∠EOD=78°,AE交⊙O于B,且AB=OC.求∠A的度数.【解答】解:连接OB,∵AB=OC,∴AB=OB,∴∠BOC=∠A,∴∠OBE=∠BOC+∠A=2∠A,∵OB=OE,∴∠OBE=∠E,∴∠EOD=3∠A=78°,解得,∠A=26°.23.(8分)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.【解答】(1)解:∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°;(2)证明:∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠BDC=∠CBD,∴∠1=∠2.24.(4分)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是②.【解答】解:如图,把标有序号②的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形.故答案为:②.25.(4分)如图是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分的面积为4.【解答】解:如图所示;答案不唯一.五、解答题(12分)26.(12分)在直角坐标平面中,O为坐标原点,二次函数y=﹣x2+(k﹣1)x+4=6.的图象与y轴交于点A,与x轴的负半轴交于点B,且S△OAB(1)求点A与点B的坐标;(2)求此二次函数的解析式;(3)如果点P在x轴上,且△ABP是等腰三角形,求点P的坐标.【解答】解:(1)由解析式可知,点A的坐标为(0,4).(1分)=×BO×4=6∵S△OABBO=3.所以B(3,0)或(﹣3,0),∵二次函数与x轴的负半轴交于点B,∴点B的坐标为(﹣3,0);(2分)(2)把点B的坐标(﹣3,0)代入y=﹣x2+(k﹣1)x+4,得﹣(﹣3)2+(k﹣1)×(﹣3)+4=0.解得k﹣1=﹣.(4分)∴所求二次函数的解析式为y=﹣x2﹣x+4.(5分)(3)因为△ABP是等腰三角形,所以:①如图1,当AB=AP时,点P的坐标为(3,0)(6分)②如图2,当AB=BP时,点P的坐标为(2,0)或(﹣8,0)(8分)③如图,3,当AP=BP时,设点P的坐标为(x,0)根据题意,得=|x+3|.解得x=.∴点P的坐标为(,0)(10分)综上所述,点P的坐标为(3,0),(2,0),(﹣8,0),(,0).。