单因素方差分析(1)
- 格式:ppt
- 大小:357.50 KB
- 文档页数:9
SPSS作业3:方差分析不同学校专业类别对报名人数的分析(一)单因素方差分析基本操作:(1)选择菜单Analyz e-Compare means―One-Way ANOVA;(2)分别选择“报名人数”“专业类别”和“报名人数”“学校”做分析,结果如下:a.专业类别对报名人数的单因素方差分析结果b.不同学校对报名人数的单因素方差分析结果1分析:提出零假设―选择检验统计量―计算检验统计量的观测值及概率p值―给出显著性水平a,做出决策。
零假设:不同专业类别对报名人数没有显著影响;备择假设:不同专业类别对报名人数有显著影响。
图a是专业类别对报名人数的单因素方差分析结果。
可以看出,报名人数的总离差平方和为2.617E8;如果仅考虑专业类别单个因素的影响,则报名人数总变差中,专业类别可解释的变差为5.866E7,抽样误差引起的变差为2.030E8,他们的方差分别为1.955E7和1450230.159,相除所得的F统计量为13.483,对应的p值近似为0。
如果显著水平为a=0.05,由于p值小于a,则应拒绝原假设,认为不同专业类别对报名人数产生了显著影响,它对报名人数的影响效应应不全为0。
零假设:不同学校对报名人数没有显著影响:备择假设:不同学校对报名人数有显著影响。
图b是不同学校对报名人数的单因素方差分析结果。
可以看出,报名人数的总离差平方和为2.617E8;如果仅考虑学校单个因素的影响,则报名人数总变差中,不同学校可解释的变差为9.265E7,抽样误差引起的变差为1.690E8,他们的方差分别为5450179.739和1341587.302,相除所得的F统计量为4.062,对应的p值近似为0。
如果显著水平为a=0.05,由于p值小于a,则应拒绝原假设,认为不同学校对报名人数产生了显著影响,它对报名人数的影响效应应不全为0。
(二)单因素方差的进一步分析基本操作:在Optio n、Post Hoc、Contrasts框中,选择所需要的计算值,结果如下:不同专业类别对报名人数的基本描述统计量及95%置信区间2分析:在4中不同专业类别中,各有36个样本,其中,经管类的报名人数最多,其次是理工类,然后是艺术类,最少的是文学类。
单因素方差分析定义:单因素方差分析测试某一个控制变量的不同水平是否给观察变量造成了显著差异和变动。
例如,培训是否给学生成绩造成了显著影响;不同地区的考生成绩是否有显著的差异等。
前提:1总体正态分布。
当有证据表明总体分布不是正态分布时,可以将数据做正态转化。
2变异的相互独立性。
3各实验处理内的方差要一致。
进行方差分析时,各实验组内部的方差批次无显著差异,这是最重要的一个假定,为满足这个假定,在做方差分析前要对各组内方差作齐性检验。
一、单因素方差分析1选择分析方法本题要判断控制变量“组别”是否对观察变量“成绩”有显著性影响,而控制变量只有一个,即“组别”,所以本题采用单因素分析法,但需要进行正态检验和方差齐性检验。
2在控制变量为“组别”,3正态检验(P>0.05,服从正态分布)正态检验操作过程:“分析”→“描述统计”→“探索”,出现“探索”窗口,将因变量“成绩”放入“因变量列表”,将自变量“组别”放入“因子列表”,将“人名”放入“标注个案”;点击“绘制”,出现“探索:图”窗口,选中“直方图”和“带检验的正态图”,点击“继续”;点击“探索”窗口的“确定”,输出结果。
因变量是用户所研究的目标变量。
因子变量是影响因变量的因素,例如分组变量。
标注个案是区分每个观测量的变量。
带检验的正态图(Normality plots with test,复选框):选择此项,将进行正态性检验,并生成正态Q-Q概率图和无趋势正态Q-Q概率图。
正态检验结果分析:p值都大于0.05,因而我们不能拒绝零假设,也就是说没有证据表明各组的数据不服从正态分布(检验中的零假设是数据服从正态分布)。
即p值≥0.05,数据服从正态分布。
4单因素方差分析操作过程“分析”→“比较均值”→“单因素ANOVA”,出现“单因素方差分析”窗口,将因变量“成绩”放入“因变量列表”,将自变量“组别”放入“因子”列表;点击“选项”选择“方差同质性检验”和“描述性”,点击“继续”,回到主对话框;点击“两两比较”选择“LSD”和“S-N-K”、“Dunnett’s C”,点击“继续”,回到主对话框;点击“对比”,选择“多项式”,点击“继续”,回到主对话框;点击“单因素方差分析”窗口的“确定”,输出结果。
单因素方差分析步骤:对于只有一种因素影响的资料,例如本例只检测血型这一种变量是否影响肺活量。
我们先确立假设和确立检验标准H0:假设不同血型的人的肺活量是有差异的H1:假设不同血型的人的肺活量是没有差异的。
第一步:选择检验方式第二步:确定比较方式第三布:在选项里选择描述方式第四步:得出结果:由本图可知,p》0.05,可知肺活量的总体方差无差异,方差齐则可做方差分析再有下图可知:p= 0.789是大与0.05的,所以不是小概率事件,不拒绝H0,所以认为不同血型的人的肺活量是没有差异的。
随机区组设计资料的方差分析2.如果对四种饲料对猪体重增加量有无差异进行分析,则可将猪随机分组,本例中以a代表分组,b代表饲料,x代表体重增加量如图:对于这种资料分析,应选用单变量方差分析,主要是影响因素是多样的,主要描述的是体重增加量。
那么我们首先应1、确定假设:对于处理组:H0,假设三种处理方式体重增加量是相等的H1,假设三种处理方式体重增加量是不等的。
对于区组:H0,假设三组之间体重增加量是相等的H1,假设三组之间体重增加量是不等的。
2、确立检验标准a=0.053、计算统计量F F1=MS处理/MS误差F2=MS区组/MS误差4、确定p值,做出推断结论。
第一步:选择分析方式第二步:选择确立因变量,本题描述的是体重增加量,故选用x,确立区间,处理措施。
如图:第三步:确定模型,本题为确定区组a与处理措施b的交互作用,因此选用a,b交互模式。
如图:如需作图比较分组a 与处理措施b 的交互作用对体重影响有无差异可添加对比组,如图:确定观察均值的两两比较,主要针对与各分组的均值比较,及各处理方式的均值比较:在选项里设定输出,描述统计及方差齐性检验,显示分组及处理方式的均值。
最后得出结果:有本图可知F<3,p>0.05,可知各组间方差齐,可做方差检验。
如下图所示,可知p≥0.05,统计无差异,所以可知,三种处理方式对体重增加是无差异的。
单因素⽅差分析(one-wayANOVA)单因素⽅差分析(⼀)单因素⽅差分析概念是⽤来研究⼀个控制变量的不同⽔平是否对观测变量产⽣了显著影响。
这⾥,由于仅研究单个因素对观测变量的影响,因此称为单因素⽅差分析。
例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇⼥的⽣育率,研究学历对⼯资收⼊的影响等。
这些问题都可以通过单因素⽅差分析得到答案。
(⼆)单因素⽅差分析步骤第⼀步是明确观测变量和控制变量。
例如,上述问题中的观测变量分别是农作物产量、妇⼥⽣育率、⼯资收⼊;控制变量分别为施肥量、地区、学历。
第⼆步是剖析观测变量的⽅差。
⽅差分析认为:观测变量值的变动会受控制变量和随机变量两⽅⾯的影响。
据此,单因素⽅差分析将观测变量总的离差平⽅和分解为组间离差平⽅和和组内离差平⽅和两部分,⽤数学形式表述为:SST=SSA+SSE。
第三步是通过⽐较观测变量总离差平⽅和各部分所占的⽐例,推断控制变量是否给观测变量带来了显著影响。
(三)单因素⽅差分析原理总结在观测变量总离差平⽅和中,如果组间离差平⽅和所占⽐例较⼤,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响;反之,如果组间离差平⽅和所占⽐例⼩,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同⽔平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。
(四)单因素⽅差分析基本步骤1、提出原假设:H0——⽆差异;H1——有显著差异2、选择检验统计量:⽅差分析采⽤的检验统计量是F统计量,即F值检验。
3、计算检验统计量的观测值和概率P值:该步骤的⽬的就是计算检验统计量的观测值和相应的概率P值。
4、给定显著性⽔平,并作出决策(五)单因素⽅差分析的进⼀步分析在完成上述单因素⽅差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他⼏个重要分析,主要包括⽅差齐性检验、多重⽐较检验。