电磁场与电磁波发展史
- 格式:docx
- 大小:19.13 KB
- 文档页数:7
电磁场与电磁波的发展历史电磁场是指电荷在空间中所产生的电场和磁场,它们的相互作用就像是一种能量场,对于物理学的发展和应用都有着非常重要的作用。
电磁波是指电磁场在空间中传播的波动,包括无线电波、光波等,它们的应用更是广泛,如无线通信、电子技术、光学等领域。
电磁场和电磁波的发展历史可以追溯到19世纪初。
当时的科学家们仍然相信,光是由于在介质中传播的一种粒子,称为以太。
然而,英国科学家Faraday通过实验发现了电磁感应现象,即磁场产生电势差,而电场产生磁场。
这启示了Maxwell,一个苏格兰科学家,去研究以太,并对电磁场做出了创新性的贡献。
他发现了电磁场的基本方程式,并成功预言了电磁波的存在,他认为电磁波就是以太中的一种波动。
在Maxwell的理论支持下,德国物理学家Hertz于1886年发现了电磁波的存在,并对其进行了系统的研究。
他通过实验证实了Maxwell的理论,并发现了电磁波的传播速度与光速相等,进一步证明了电磁波的本质就是一种光波。
20世纪初,电磁波的应用开始广泛地开展。
无线电通讯成为了一个新领域,Marconi通过无线电波实现了远距离通信。
随后,电子技术也得到了迅猛发展,农用无线电、航空通信等应用也得到了广泛应用。
同时,由于电磁波的各种特性,研究人员在天文学、气象学、地震学等领域也进行了重要的研究和应用。
另一方面,对于电磁场的研究也在不断深入。
20世纪后期,电磁场的理论和实验研究获得了长足的进展,引出了许多新的领域。
比如,与电磁场相关的物理学和数学,包括电磁理论的深入研究、量子场论等等。
此外,电磁场在新材料、生物科学等领域应用现象的研究也正在逐步展开,为电磁场和电磁波的应用开拓了新的方向。
在这个信息化的时代,电磁场与电磁波的重要性日益凸显。
比如,电磁波在通信和信息密集型应用领域扮演着至关重要的角色,而电磁场在新型材料和纳米器件中的应用也将推动科学技术的进一步发展。
随着技术的不断进步,我们可以期待着科学和技术在电磁场和电磁波研究领域的更多新突破。
电磁场与电磁波学科发展历程一.早期的电磁学研究早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下: 1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。
1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。
1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。
他还总结出静电相互作用的基本特征,同性排斥,异性相吸。
1745年,荷兰莱顿大学的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。
1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。
1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤。
1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。
欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。
父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。
16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。
欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。
欧姆对导线中的电流进行了研究。
他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。
因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。
电磁场与电磁波理论的发展与应用论文电磁理论如今已经拥有十分完备的体系,并且广泛应用于我们的生活中,大大提高了我们的生活质量。
这并不是某一位科学家的功劳,而是靠着一代代科学家前赴后继,后人站在前人的肩膀上不断探索发现,不断发展的结果。
公元前6,7世纪,人们发现了磁石吸铁,磁石指南以及摩擦生电现象,从此人们对“磁"有了概念,但是也仅仅停留于经验阶段,并没有理论研究。
并且,19世纪以前,人们还是认为,“电"与“磁"是两个不相关的概念。
18实际末期,德国科学家谢林认为,宇宙是由活力的,而不是僵死的。
他认为电就是宇宙的活力,是宇宙的灵魂,磁、光、热是相互联系的。
1777年,法国物理学家库仑发明了能够以非常高的精度测出非常小的力的扭秤,利用扭秤可以算出磁力或者静电力的大小。
1785年,库仑利用自己的扭秤建立了库仑定理,即两个电荷之间的力与两电荷的乘积成正比,与他们之间的距离平方成反比。
库伦定理是电学史上第一个定量规律,他使电学研究从定性阶段进入到了定量阶段,在电学史上是一块重要的里程碑。
1789年,生物学家迦伐尼发现了动物电。
1800年,迦伐尼的好朋友伏打用锌片与铜片夹以盐水浸湿的纸片叠成电堆产生了电流,这个装置后来称为伏打电堆,他还把锌片和铜片放在盛有盐水或稀酸的杯中,放多这样的小杯子中联起来,组成电池。
他指出这种电池"具有取之不尽,用之不完的电”,“不预先充电也能给出电击"。
伏打电堆(电池)的发明,提供了产生恒定电流的电源――化学电源,使人们有可能从各个方面研究电流的各种效应。
从此,电学进入了一个飞速发展的时期――电流和电磁效应的新时期。
直到现在,我们用的干电池就是经过改时后的伏打电池。
干电池中用氯化铵的糊状物代替了盐水,用石墨棒代替了铜板作为电池的正极,而外壳仍然用锌皮作为电池的负极。
人们为了纪念他们的功绩,就把这种电池称为伽伐尼电池或伏打电池,并把电压的单位用"伏特"来命名。
电磁场与电磁波的历史与发展一、历史的前奏静磁现象和静电现象:公元前6、7世纪发现了磁石吸铁、磁石指南以及摩擦生电等现象。
1600年英国医生吉尔伯特发表了《论磁、磁体和地球作为一个巨大的磁体》的论文。
使磁学从经验转变为科学。
书中他也记载了电学方面的研究。
静电现象的研究要困难得多,因为一直没有找到恰当的方式来产生稳定的静电和对静电进行测量。
只有等到发明了摩擦起电机,才有可能对电现象进行系统的研究,这时人类才开始对电有初步认识。
1785年库仑公布了用扭秤实验得到电力的平方反比定律,使电学和磁学进入了定量研究的阶段。
1780年,伽伐尼发现动物电,1800年伏打发明电堆,使稳恒电流的产生有了可能,电学由静电走向动电,导致1820年奥斯特发现电流的磁效应。
于是,电学与磁学彼此隔绝的情况有了突破,开始了电磁学的新阶段。
19世纪二、三十年代成了电磁学大发展的时期。
首先对电磁作用力进行研究的是法国科学家安培,他在得知奥斯特发现之后,重复了奥斯特的实验,提出了右手定则,并用电流绕地球内部流动解释地磁的起因。
接着他研究了载流导线之间的相互作用,建立了电流元之间的相互作用规律——安培定律。
与此同时,比奥 沙伐定律也得到发现。
英国物理学家法拉第对电磁学的贡献尤为突出。
1831年发现电磁感应现象,进一步证实了电现象与磁现象的统一性。
法拉第坚信电磁的近距作用,认为物质之间的电力和磁力都需要由媒介传递,媒介就是电场和磁场。
电流磁效应的发现,使电流的测量成为可能。
1826年欧姆(Georg Simon Ohm,1784—1854)因而确定了电路的基本规律——欧姆定律。
及至1865年,麦克斯韦把法拉第的电磁近距作用思想和安培开创的电动力学规律结合在一起,用一套方程组概括电磁规律,建立了电磁场理论,预测了光的电磁性质,终于实现了物理学史上第二次理论大综合。
爱因斯坦在纪念麦克斯韦100周年的文集中写道:“自从牛顿奠定理论物理学的基础以来,物理学的公理基础的最伟大的变革,是由法拉第和麦克斯韦在电磁现象方面的工作所引起的”。
电磁场理论发展的历史回顾第一部分概述人类对电磁现象的认识经历了相当长的时间。
静电现象与磁现象很早就引起了人们的注意,公元前六七百年就发现了磁石吸铁,磁石指南和摩擦生电现象。
真正对电磁现象进行研究是从英国御医吉尔伯特开始,1600年他发表了《论磁,磁体和地球作为一个巨大的磁体》,开创了电磁现象研究的新纪元。
关于电和磁现象的系统研究,始于18世纪。
1750年米切尔提出磁极间的作用力服从平方反比定律。
1785年公布了用扭秤实验得到了电力的平方反比定律,即著名的库伦定律,使电磁学进入了定量研究的阶段。
1780年伽伐尼研究电对动物机体的作用,做了有名的伽伐尼实验,1800年伏打发明电堆,获得产生稳定电流的手段,这导致1820年奥斯特发现了电流的磁效应,使电磁学的研究从电磁分离跃至电磁相互联系的研究阶段,开始了电磁学的新纪元。
此后,19世纪二三十年代成了电磁学大发展的时期。
1831年法拉第发现了电磁感应现象,证实了电与磁的统一性,而麦克斯韦从理论上总结了法拉第的物理观念,用一套方程组概括实验上发现的电磁规律,建立了电磁场理论,并将光与电磁现象统一起来,为利用电和磁开辟了广阔前景,实现了物理学史上第三次大综合。
第二部分电磁场的早期研究1. 中国古代的电磁学a) 对磁现象的认识。
公元前4世纪左右成书的《管子》中有“上有磁石者,其下有黄金”,这是关于磁的最早记载。
《吕氏春秋》中也曾写道“磁石召铁,或引之也”。
磁石可以指南的性质是我国人民的重大的发现。
北宋时期的政治家和科学家沈括,在《梦溪笔谈》中记有“方家以磁石磨针锋,则能指南”,此外,他还发现了地磁偏角。
b) 对于电现象的认识从雷电和摩擦起电现象开始的。
早在3000多年前的殷商时期,甲骨文中就有了“雷”及“电”的形声字。
王充在《论衡,雷虚篇》中写道:“云雨至则雷电击”,明确地提出云与雷电之间的关系。
《淮南子,坠行训》中提到:“阴阳相薄为雷,激扬为电”,即雷电是阴阳两气对立的产物。
电磁学发展历程电磁学是研究电场和磁场现象以及它们相互作用的物理学科,其发展历程可以追溯到古代。
以下是电磁学发展的重要里程碑。
古代希腊时期,一些学者发现当琥珀摩擦后能够吸引轻物体。
这一现象被认为是电磁学的起源,被称为静电现象。
16世纪末,英国物理学家吉尔伯特首次系统地研究了磁铁性质,并引入了“电”这个词。
他还发现了地球本身具有磁性,这为后来的航海提供了重要的帮助。
18世纪,法国物理学家居里发现了电流通过一条导线时,会在导线周围产生一个环状的磁场。
这一发现打开了电磁学的新篇章。
19世纪初,丹麦物理学家奥斯特和法国物理学家安培独立发现了法拉第电磁感应现象。
他们发现当一个导体在磁场中移动时,会在导体两端产生电流。
这一现象被称为电磁感应,成为后来电动机和发电机的基础。
1831年,法拉第进一步研究了电磁感应现象,并提出了著名的法拉第电磁感应定律。
根据该定律,导体中的感应电动势与磁场的变化率成正比。
1833年,英国物理学家Фарадей发现在导体中的感应电流产生磁场。
他提出了法拉第电磁旋涡理论,认为磁场线是由电流形成的闭合回路。
19世纪中叶,英国物理学家麦克斯韦提出了电磁场理论,将电场和磁场统一起来。
他发现电磁波是一种通过空间传播的电磁辐射。
这一理论奠定了电磁学的基础,并对后来的无线电通信产生了重大影响。
20世纪初,德国物理学家浦里和卢瑟福发现了电子,并提出了电子运动的动力学方程。
这为电子在电场和磁场中的行为提供了理论基础,对电磁学的发展起到了重要作用。
20世纪后半叶,人们进一步研究电磁场的量子性质,发展了量子电动力学。
这一理论成功解释了电磁相互作用的微观机制,并为现代粒子物理学做出了重要贡献。
近年来,电磁学的应用也得到了广泛发展。
无线电通信、雷达、卫星导航和医疗成像等技术都是基于电磁学原理的。
此外,磁共振成像技术的发展也为医学诊断提供了重要工具。
总的来说,电磁学的发展经历了数百年的演变,从古代的静电现象到现代的量子电动力学,电磁学的理论框架不断完善,应用领域也不断拓展。
电磁场理论的发展及其应用范围电磁场理论是现代物理学的基石之一,其研究范围涵盖电场、磁场和辐射等多个方面,被广泛应用于电子、通信、能源等领域。
本文将探讨电磁场理论的发展历程及其应用范围。
一、电磁场理论的发展历程电磁场理论的发展可以追溯到十九世纪初,当时欧姆、法拉第、安培等人分别提出了电流和磁场之间的关系,但当时这些发现还没有被统一起来。
直到1865年,麦克斯韦在其《电磁场方程组》一书中成功地将电磁场的基本规律归纳为四个方程式,从此电磁场理论被确立。
在麦克斯韦电磁场方程式的基础上,人们开始了解电磁波的存在和传播。
1895年,居里夫人通过对铀矿石的实验发现了放射性物质,这一发现启示了人们对电磁辐射的研究。
之后,人们开始发现电磁波可以在空气、水、金属等中传播,并且电磁波的波长和频率与辐射的能量有关。
二、电磁场理论的应用范围1.电子技术在电子技术中,我们广泛应用电磁场理论,例如放射线成像技术、雷达通信技术等。
在放射线成像技术中,我们使用X射线或伽马射线照射人体或物体,利用X射线或伽马射线穿过物体后被捕获的图像进行分析。
在雷达通信技术中,我们利用电磁波传递信息,可以实现无线通信、雷达探测等应用。
2.通信技术电磁场理论的应用还涵盖通信技术。
在通信技术中,我们利用电磁波传递声音、图像等信息。
例如,手机、电视和计算机网络都是依靠电磁波进行信息的传播。
此外,无线电通信系统也是电磁场理论的重要应用领域。
3. 能源技术电磁场理论在能源技术中也得到了广泛应用。
例如,利用电磁场理论研究发电机和转子,有助于提高能源转换效率。
此外,太阳能光伏技术和风能技术也是电磁场理论的应用领域。
4. 光学技术光学技术是电磁场理论的另一个重要应用领域。
光学技术利用电磁波的波动性质,研究光与物质的相互作用,包括反射、折射、干涉、衍射等现象。
利用电磁波的波动性质,可以制作出折射角较大的透镜和反射镜等光学器件。
结语电磁场理论是现代物理学的基石之一,其研究范围涵盖电场、磁场和辐射等多个方面,被广泛应用于电子、通信、能源、光学等领域。
电磁场与电磁波发展史电磁场与电磁波发展史这学期,我们学习了《电磁场与电磁波》这门课程,课程虽已结束,但在学习过程中获得的知识却会让我们每个人受益终身。
每一门学科都有一个发展完善的过程,我将用自己查阅到的资料与自己的理解简单介绍一下电磁场与电磁波的发展史。
电磁学是研究电磁现象的规律的学科,其中,在电磁学里,电磁场(elect- -romagnetic field)是一种由带电物体产生的一种物理场;电磁波(electromagnetic wave)(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。
关于电磁现象的观察记录,可以追溯到公元前6世纪希腊学者泰勒斯(Thales),他观察到用布摩擦过的琥珀能吸引轻微物体,英文中“电”的语源就来自希腊文“琥珀”一词。
在我国,最早是在公元前4到3世纪战国时期《韩非子》中关于司南(一种用天然磁石做成的指向工具)和《吕氏春秋》中有关“慈石召铁”的记载。
由此可见,电磁现象很早就已经被发现。
然而真正对电磁现象的系统研究则要等到十六世纪以后,并且静电学的研究要晚于静磁学,这是由于难以找到一个能产生稳定静电场的方法,这种情况一直持续到1660年摩擦起电机被发明出来。
十八世纪以前,人们一直采用这类摩擦起电机来产生研究静电场,代表人物如本杰明富兰克林。
人们在这一时期主要了解到了静电力的同性相斥、异性相吸的特性、静电感应现象以及电荷守恒原理。
后来,人们曾将静电力与在当时已享有盛誉的万有引力定律做类比,发现彼此在理论和实验上都有很多相似之处,包括实验观测到带电球壳内部的球体不会带电,这和有质量的球壳内部物体不会受到引力作用(由牛顿在理论上证明,是平方反比力的一个特征)的情形类似。
其间苏格兰物理学家约翰罗比逊(1759年)和英国物理学家亨利卡文迪什(1773年)等人都进行过实验验证了静电力的平方反比律,然而他们的实验却迟迟不为人知。
法国物理学家夏尔奥古斯丁库仑于1784年至1785年间进行了他著名的扭秤实验,其实验的主要目的就是为了证实静电力的平方反比律,因为他认为“假说的前一部分无需证明”,也就是说他已经先验性地认为静电力必然和万有引力类似,和电荷电量成正比。
扭秤的基本构造为:一根水平悬于细金属丝的轻导线两端分别置有一个带电小球A和一个与之平衡的物体P,而在实验中在小球A的附近放置同样大小的带电小球B,两者的静电力会在轻导线上产生扭矩,从而使轻杆转动。
通过校正悬丝上的旋钮可以将小球调回原先位置,则此时悬丝上的扭矩等于静电力产生的力矩。
如此,两者之间的静电力可以通过测量这个扭矩、偏转角度和导线长度来求得。
库仑的结论为:对同样材料的金属导线而言,扭矩的大小正比于偏转角度,导线横截面直径的四次方,且反比于导线的长度―夏尔奥古斯丁库仑, 《金属导线扭矩和弹性的理论和实验研究》库仑在其后的几年间也研究了磁偶极子之间的作用力,他也得出了磁力也具有平方反比律的结论。
不过,他并未认识到静电力和静磁力之间有何内在联系,而且他一直将电力和磁力吸引和排斥的原因归结于假想的电流体和磁流体――具有正和负区别的,类似于“热质”一般的无质量物质。
静电力的平方反比律确定后,很多后续工作都是同万有引力做类比从而顺理成章的结果。
1813年法国数学家、物理学家西莫恩德尼泊松指出拉普拉斯方程也适用于静电场,从而提出泊松方程;其他例子还包括静电场的格林函数(乔治格林,1828年)和高斯定理(卡尔高斯,1839年)。
意大利物理学家亚历山德罗伏打1800年发明了伏打电堆、伏打电池,伏打电堆和电池的发明为研究稳恒电流创造了条件。
库仑发现了磁力和电力一样遵守平方反比律,但他没有进一步推测两者的内在联系,然而人们在自然界中观察到的电流的磁现象(如富兰克林在1751年发现放电能将钢针磁化)促使着人们不断地探索这种联系。
首先发现这种联系的人是丹麦物理学家奥斯特,他本着这种信念进行了一系列有关的实验,最终于1820年发现接通电流的导线能对附近的磁针产生作用力,这种磁效应是沿着围绕导线的螺旋方向分布的。
在奥斯特发现电流的磁效应之后,法国物理学家让-巴蒂斯特毕奥和费利克斯萨伐尔进一步详细研究了载流直导线对周围磁针的作用力,并确定其磁力大小正比于电流强度,反比于距离,方向垂直于距离连线,这一规律被归纳为著名的毕奥-萨伐尔定律。
1826年,安培从斯托克斯定理推导得到了著名的安培环路定理,证明了磁场沿包围产生其电流的闭合路径的曲线积分等于其电流密度,这一定理成为了麦克斯韦方程组的基本方程之一。
安培的工作揭示了电磁现象的内在联系,将电磁学研究真正数学化,成为物理学中又一大理论体系――电动力学的基础。
麦克斯韦称安培的工作是“科学史上最辉煌的成就之一”,后人称安培为“电学中的牛顿”。
迈克尔法拉第(Michael Faraday,1791-1867),英国著名物理学家、化学家。
在化学、电化学、电磁学等领域都做出过杰出贡献。
他家境贫寒,未受过系统的正规教育,但却在众多领域中作出惊人成就,堪称刻苦勤奋、探索真理、不计个人名利的典范。
从1824年起,法拉第进行了一系列相关实验试图寻找导体中的感应电流,然而始终未获成功。
直到1831年8月29日,法拉第在软铁环两侧分别绕两个线圈,其一为闭合回路,在导线下端附近平行放置一磁针,另一与电池组相连,接开关,形成有电源的闭合回路。
实验发现,合上开关,磁针偏转;切断开关,磁针反向偏转,这表明在无电池组的线圈中出现了感应电流。
法拉第立即意识到,这是一种非恒定的暂态效应。
紧接着他做了几十个实验,把产生感应电流的情形概括为5类:变化的电流,变化的磁场,运动的恒定电流,运动的磁铁,在磁场中运动的导体,并把这些现象正式定名为电磁感应。
进而,法拉第发现,在相同条件下不同金属导体回路中产生的感应电流与导体的导电能力成正意义。
法拉第另一个重要的贡献是创立了力线和场的概念,力线实际是否认了超距作用的存在,这些思想成为了麦克斯韦电磁场理论的基础。
爱因斯坦称其为“物理学中引入了新的、革命性的观念,它们打开了一条通往新的哲学观点的道路”。
电磁感应现象是电磁学中最重大的发现之一,它显示了电、磁现象之间的相互联系和转化,对其本质的深入研究所揭示的电、磁场之间的联系。
牛顿曾经说过:“如果我比别人看得远些,那是因为我站在巨人们的肩上。
”我在钦佩牛顿谦虚的同时,也不得不佩服这句话的精辟。
在科学研究中,任何伟大的成果都不可能是在一朝一夕之间就研究出来的,这必须要经过很多科学家的研究成果的积累。
电磁学发展到法拉第时代时已经比较完善,但还存在缺陷。
在法拉第发现电磁感应现象的那一年,英国物理学家、数学家詹姆斯克拉克麦克斯韦出生,他因创立电磁场理论而成为十九世纪最伟大的物理学家,他对电磁理论的贡献是里程碑式的。
麦克斯韦于1856年发表了他的第一篇论文《论法拉弟的力线》,在这篇文章中,他试图用数学语言精确地表述法拉弟的力线概念,他采用数学推论与物理类比相结合的方法,以假想流体的力学模型去模拟电磁现象。
他说:“借助于这种类比,我试图以一种方便的和易于处理的形式为研究电现象提供必要的数学观念”他的目标是想据此统一已知的电磁学定律。
麦克斯韦为达到此目的,他运用了“建立力学模型――引出基本公式――进行数学引伸推导”的解决科学问题的思路和方法。
麦克斯韦在完成了统一已知电磁学定律的第一阶段工作后,又投入到第二阶段工作中。
他于1862年发表了具有决定意义的论文《论物理学的力线》。
麦克斯韦在这篇著作中,突破了法拉弟的电磁观念,创造性地提出了自己理论的核心部分――位移电流的概念。
在这一工作中,他一方面结合数学推论以逻辑手段揭示了旧电磁理论的内在矛盾,另一方面则构造了一个与以前的流体力学模型不同的、新的电磁以太模型。
1864年,麦克斯韦又发表了第三篇著名的论文《电磁场的动力理论》。
在这篇论文中,麦克斯韦舍弃了他原来提出的力学模型而完全转向场论的观点,并明确论述了光现象和电磁现象的统一性,奠定了光的电磁理论的基础。
1868年,麦克斯韦发表了一篇论文《关于光的电磁理论》,明确地创立了光的电磁学说。
他说:“光也是电磁波的一种,光是一种能看得见的电磁波。
”这样,麦克斯韦就把原来相互独立的电、磁和光都统一起来了,成为十九世纪物理学上实现的一次重大理论综合。
1873年麦克斯韦出版电磁理论的经典著作《论电和磁》在这部著作中,麦克斯韦对电磁理论作了全面系统和严密的论述,并从数学上证明了方程组解的唯一性,从而表明这个方程组是能够精确地反映电磁场的客观运动规律的完整理论。
科学史上,牛顿把天上和地上的运动规律统一起来,是实现第一次大综合,麦克斯韦把电、光统一起来,是实现第二次大综合,因此应与牛顿齐名。
下面就是我们在课上学到的麦克斯韦方程组:1.麦克斯韦方程组的微分形式式中:ρ是自由电荷的体密度;是传导电流密度;2.麦克斯韦方程组的积分形式是位移电流密度。
三个描述介质性质的方程式.对于各向同性介质来说,有:=εrε0=μrμ0=σ式中εr,μr和σ分别是介质的相对介电常数相对磁导率和电导率。
课程虽然已经结束,但是在这门课中所学到的知识足以让我们受益终身,我们现在所学的每一个定理每一个公式,都是许多科学家经过严谨的推理、精确的实验得来,了解这一门学科的发展也有助于我们对知识的学习。
课程结束不代表学习结束,知识之间的联系无处不在,在今后的学习与工作中,今天学到的知识可能就会派上大用场,我们应该“学而时习之”,不能将知识荒废。