浙江大学-电磁场与电磁波实验(第二次).doc
- 格式:doc
- 大小:1.05 MB
- 文档页数:10
电磁场与电磁波实验报告电磁场与电磁波实验报告引言:电磁场和电磁波是物理学中非常重要的概念。
电磁场是由电荷产生的一种物理场,它的存在和变化会影响周围空间中的其他电荷。
而电磁波则是电磁场的一种传播形式,它以电磁场的振荡和传播为基础,具有波动性质。
本次实验旨在通过实际操作和测量,深入了解电磁场和电磁波的特性。
实验一:测量电磁场强度在实验一中,我们使用了一个电磁场强度计来测量不同位置的电磁场强度。
首先,我们将电磁场强度计放置在一个固定的位置,记录下此时的电磁场强度。
然后,我们将电磁场强度计移动到其他位置,重复测量过程。
通过这些数据,我们可以得出不同位置的电磁场强度的分布情况。
实验结果显示,电磁场强度随着距离的增加而逐渐减弱。
这符合电磁场的特性,即电荷产生的电磁场在空间中以一定的规律传播,而传播的强度会随着距离的增加而减弱。
这一实验结果验证了电磁场的存在和变化对周围环境的影响。
实验二:测量电磁波频率和波长在实验二中,我们使用了一个频率计和一个波长计来测量电磁波的频率和波长。
首先,我们将频率计和波长计设置好,并将它们与电磁波源连接。
然后,我们观察频率计和波长计的测量结果,并记录下来。
通过这些数据,我们可以得出电磁波的频率和波长的数值。
实验结果显示,不同频率的电磁波具有不同的波长。
频率越高的电磁波,波长越短;频率越低的电磁波,波长越长。
这符合电磁波的特性,即电磁波的振荡频率和波长之间存在一定的关系。
这一实验结果验证了电磁波的波动性质,以及频率和波长之间的关系。
实验三:观察电磁波的干涉和衍射现象在实验三中,我们使用了一块光栅和一个狭缝装置来观察电磁波的干涉和衍射现象。
首先,我们将光栅放置在光源前方,并调整光源的位置和光栅的角度。
然后,我们观察到在光栅后方的屏幕上出现了一系列明暗相间的条纹。
这些条纹是由电磁波的干涉和衍射效应引起的。
实验结果显示,当电磁波通过光栅时,会发生干涉和衍射现象。
干涉现象表现为明暗相间的条纹,而衍射现象表现为条纹的扩散和交替。
北京邮电大学电磁场与微波测量学院:电子工程学院班级:2013211212姓名:学号:实验四迈克尔逊干涉实验一、实验目的1、通过实验观察迈克尔逊干涉现象。
2、掌握利用迈克尔逊干涉测量平面波长的方法。
二、实验设备DH926B型微波分光仪、三厘米固态振荡器、喇叭天线、可变衰减器、晶体检波器、反射板、半透射玻璃板三、实验原理如图5.1所示,在平面电磁波前进的方向放置一块与传播方向成450夹角的半透射板(实验中用玻璃板),由于该板的作用,将入射的电磁波分成为两束,一束穿透玻璃板继续前进,向反射板B方向传播,另外一束被玻璃板反射后,向反射板A方可移动反射板B的波,被反射板B反射后,又到达玻璃板,其中一部分被玻璃板反射后到达接收喇叭;而到达反射板A的波,被反射板A反射后,又到达玻璃板,其中一部分穿过玻璃板也到达接收喇叭,因此接收喇叭接收到的是这两束电磁波的和,当两束电磁波的传播路程相同,或相差波长的整数倍时,接收喇叭接收的信号最强,当他们传播的路程相差为半个波长的奇数倍时,接收喇叭接收到的信号最弱。
通过移动反射板B,可以改变这两束电磁波的传播路程,使得接收喇叭接收到的信号由弱变强,或由强变弱,测得两个相邻最强或最弱时反射板所移动的距离L,就可以得到电磁波的波长,即=2L。
实验中直接观察电压表的读数,为当表头指的距离,由此距示从一次极小变到又一次极小时,则B处的反射板就移动了2离就可求得平面波的波长。
四、实验内容及步骤1、如图5.2,连接仪器。
2、使两喇叭口面互成900。
3、半透射板与两喇叭轴线互成450。
4、将读数机构通过它本身上带有的两个螺钉旋入底座上,使其固定在底座上,再插上反射扳,使固定反射板的法线与接受喇叭的轴线一致,可移反射板的法钱与发射喇叭轴线一致。
5、按信号源操作规程接通电源,调节衰减器使信号电平读数指示合适值。
图5.2 迈克尔逊干涉实验系统6、将可移反射板移到读数机构的一端,在此附近测出一个极小的位置,然后旋转读数机构上的手柄使反射板移动,从表头上测出(n +1)个极小值,并同时从读数机构上得到相应的位移读数,从而求得可移反射板的移动距离L ,则波长nL2=λ。
最新电磁场与电磁波实验报告
在本次实验中,我们深入研究了电磁场与电磁波的基本特性,并进行了一系列的实验来验证理论和观测实际现象。
以下是实验的主要部分和观察结果的概述。
实验一:静电场的建立与测量
我们首先建立了一个简单的静电场,通过使用高压电源对两个相对的金属板进行充电。
通过改变电源的电压,我们观察到金属板上的电荷积累情况,并使用电位差计测量了电场强度。
实验数据显示,电场强度与电压成正比,这与库仑定律的预测一致。
实验二:电磁波的产生与传播
接下来,我们通过振荡电路产生了电磁波。
在一个封闭的微波腔中,我们使用电磁波发生器产生不同频率的电磁波,并通过特殊的探测器来测量波的传播特性。
实验结果表明,电磁波的传播速度在不同的介质中有所变化,这与介质的电磁特性有关。
实验三:电磁波的极化与干涉
在这部分实验中,我们研究了电磁波的极化现象。
通过使用不同极化的波前,我们观察到了波的干涉效应。
特别是在双缝干涉实验中,我们观察到了明显的干涉条纹,这证明了电磁波的波动性质。
实验四:电磁波的吸收与反射
最后,我们探讨了电磁波与物质相互作用的过程。
通过将电磁波照射在不同材料的样品上,我们测量了波的吸收和反射率。
实验发现,吸收和反射率与材料的电磁性质密切相关,并且可以通过改变波的频率来调整这些性质。
通过这些实验,我们不仅验证了电磁场与电磁波的基本理论,而且加深了对这些现象在实际应用中的理解。
这些实验结果对于无线通信、雷达技术以及其他相关领域的研究和开发具有重要的指导意义。
电磁场与电磁波第二版课后答案本文档为《电磁场与电磁波》第二版的课后答案,包含了所有章节的练习题的答案和解析。
《电磁场与电磁波》是电磁学领域的经典教材,它讲述了电磁场和电磁波的基本原理和应用。
通过学习本书,读者可以深入了解电磁学的基本概念和原理,并且能够解决一些相关问题。
第一章绪论练习题答案1.电磁场是由电荷和电流产生的一种物质性质,具有电场和磁场两种形式。
电磁波是电磁场的振动。
电磁辐射是指电磁波传播的过程。
2.对于一点电荷,其电场是以该点为中心的球对称分布,其强度与距离成反比。
对于无限长直导线产生的电场,其强度与距离呈线性关系,方向垂直于导线轴线。
3.电磁场的本质是相互作用力。
电场力是由于电荷之间的作用产生的,磁场力是由于电流之间的作用产生的。
解析1.电磁场是由电荷和电流产生的物质性质。
当电荷存在时,它会产生一个电场,该电荷周围的空间中存在电场强度。
同时,当电流存在时,它会产生一个磁场,该电流所在的区域存在磁场。
电磁波是电磁场的振动传播。
电磁波是由电磁场的变化引起的,相邻电磁场的振动会相互影响,从而形成了电磁波的传播。
电磁辐射是指电磁波在空间中的传播过程。
当电磁波从一个介质传播到另一个介质时,会发生折射和反射现象。
2.在一点电荷产生的电场中,电场强度与该点到电荷的距离成反比,即\(E = \frac{{k \cdot q}}{{r^2}}\),其中\(E\)为电场强度,\(k\)为电场常数,\(q\)为电荷量,\(r\)为距离。
对于无限长直导线产生的电场,其电场强度与离导线的距离呈线性关系。
当离无限长直导线的距离为\(r\)时,其电场强度可表示为\(E = \frac{{\mu_0 \cdot I}}{{2 \pi \cdot r}}\),其中\(E\)为电场强度,\(\mu_0\)为真空中的磁导率,\(I\)为电流强度。
3.电磁场的本质是相互作用力。
当两个电荷之间有作用力时,这个作用力是由于它们之间的电场力产生的。
电磁场与电磁波实验报告09024126 张亦驰一.实验目的使用简单迭代法与超松弛迭代法求解电磁场金属槽边值问题二.实验步骤1.简单迭代法:源程序:#include<xxgc.h>main(){int i;double a[50][3][3];a[0][0][0]=a[0][1][0]=a[0][2][0]=25;a[0][0][1]=a[0][1][1]=a[0][2][1]=50;a[0][0][2]=a[0][1][2]=a[0][2][2]=75;for(i=0;i<50;i++){printf("a[%d][0][0]=%.3f,a[%d][1][0]=%.3f,a[%d][2][0]=%.3f\n",i,a[i][0][0],i,a[i][1][0],i,a[i ][2][0]);printf("a[%d][0][1]=%.3f,a[%d][1][1]=%.3f,a[%d][2][1]=%.3f\n",i,a[i][0][1],i,a[i][1][1],i,a[i ][2][1]);printf("a[%d][0][2]=%.3f,a[%d][1][2]=%.3f,a[%d][2][2]=%.3f\n\n",i,a[i][0][2],i,a[i][1][2],i,a[i][2][2]);getch();a[i+1][0][0]=0.25*(0+0+a[i][1][0]+a[i][0][1]);a[i+1][0][1]=0.25*(0+a[i][0][0]+a[i][1][1]+a[i][0][2]);a[i+1][0][2]=0.25*(0+a[i][0][1]+a[i][1][2]+100);a[i+1][1][0]=0.25*(a[i][0][0]+0+a[i][2][0]+a[i][1][1]);a[i+1][1][1]=0.25*(a[i][0][1]+a[i][1][0]+a[i][2][1]+a[i][1][2]);a[i+1][1][2]=0.25*(a[i][0][2]+a[i][1][1]+a[i][2][2]+100);a[i+1][2][0]=0.25*(a[i][1][0]+0+0+a[i][2][1]);a[i+1][2][1]=0.25*(a[i][1][1]+a[i][2][0]+0+a[i][2][2]);a[i+1][2][2]=0.25*(a[i][1][2]+a[i][2][1]+0+100);}getch();}实验结果如图2.超松弛迭代法源程序:#include<stdio.h>#include<math.h> #include<iostream> using namespace std;#define pi 3.1415926void Boundary_conditions_initialize(float Boundary_areas[5][5]) {for(int j=0;j<5;j++){ Boundary_areas[0][j]=0;Boundary_areas[4][j]=100; }for(int i=0;i<5;i++){Boundary_areas[i][0]=0;Boundary_areas[i][4]=0;j =100 Vj =0j =0}}void nodes_Field_region_Initialization(float Field_region[5][5]) {for(int i=1;i<4;i++){ for(int j=1;j<4;j++){Field_region[i][j]=0; }}}void Output_nodes_value (float all_nodes[5][5],int count){if(count==0){cout<<"场内各点的初始值为:"<<'\n' ;}else{cout<<"迭代次数N="<< count<<'\n'<<"迭代最终结果为:" <<'\n'; }for(int i=4;i>=0;i--){ for(int j=0;j<5;j++){cout<<all_nodes[i][j]<<'\t'<<'\t';}cout<<'\n';}}void main(void){int a=4 ;int h=a/4;float areas[5][5] ;int N=0 ;const float e=0.00001;float Maxerror ;float a0=2/(1+sin(pi/4));Boundary_conditions_initialize(areas);nodes_Field_region_Initialization(areas);Output_nodes_value (areas,N) ;cout<<"加速因子a="<<a0<<'\n';do{ N=N+1 ;for(int i=1;i<4;i++){ for(int j=1;j<4;j++){ float areasK=areas[i][j];areas[i][j]=areas[i][j]+(a0/4)*(areas[i-1][j]+areas[i][j-1]+areas[i+1 ][j]+areas[i][j+1]-4*areas[i][j]);float error=fabs(areas[i][j]-areasK);if(i==1&&j==1){Maxerror=error; }else{if (Maxerror<error) Maxerror=error ;}}}} while(Maxerror>e) ;Output_nodes_value(areas,N);}。
实验一 静电场仿真1.实验目的建立静电场中电场及电位空间分布的直观概念。
2.实验仪器计算机一台3.基本原理当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。
点电荷q 在无限大真空中产生的电场强度E 的数学表达式为(1-1)真空中点电荷产生的电位为(1-2)其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为4= (1-3) 电位为4= (1-4) 本章模拟的就是基本的电位图形。
4.实验内容及步骤(1)点电荷静电场仿真题目:真空中有一个点电荷-q,求其电场分布图。
程序1:负点电荷电场示意图clear[x,y]=meshgrid(-10:1.2:10);E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;E=(-q./m1).*r;surfc(x,y,E);负点电荷电势示意图clear[x,y]=meshgrid(-10:1.2:10); E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;z=-q./m1surfc(x,y,z);xlabel('x','fontsize',16)ylabel('y','fontsize',16)title('负点电荷电势示意图','fontsize',10)程序2clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.16:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10)); R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));Z=q*k*(1./R2-1./R1);[ex,ey]=gradient(-Z);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(Z)),max(max(Z)),40); contour(X,Y,Z,cv,'k-');hold onquiver(X,Y,ex,ey,0.7);clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.15:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10));R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));U=q*k*(1./R2-1./R1);[ex,ey]=gradient(-U);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(U)),max(max(U)),40); surfc(x,y,U);实验二恒定电场的仿真1.实验目的建立恒定电场中电场及电位空间分布的直观概念。
本科实验报告课程名称:电磁场与微波实验姓名:wzh学院:信息与电子工程学院专业:信息工程学号:xxxxxxxx指导教师:王子立选课时间:星期二9-10节2017年 6月17日CopyrightAs one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life.——Wzh实验报告课程名称:电磁场与微波实验指导老师:王子立成绩:__________________实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量同组学生姓名:矩形波导馈电角锥喇叭天线CST仿真一、实验目的和要求1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。
2.熟悉 CST 软件的基本使用方法。
3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。
二、实验内容和原理1. 喇叭天线概述喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。
合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。
因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。
喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反射的能量很小。
第一章反射实验●实验原理当微波遇到金属板时将会发生全反射,本实Array验就是以一块金属板作为障碍物,来研究当微波以某一入射角投射到金属板时,所遵守的反射定律。
●实验报告●在误差允许范围内入射角等于反射角。
第二章 衍射实验●实验原理:如图所示,当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。
在缝后面出现的衍射波强度并不是均匀的,中央最强,同时也最宽。
在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为ϕ=sin-1(λ/a),其中λ是波长,a 是狭缝宽度。
两者取同一长度单位。
然后,随着衍射角增大,衍射波强度又逐渐增大,直至出现一级极大值,角度为:ϕ=sin-1(3λ/2a)。
Ф—I 曲线图(标注极大值点)-20204060801001202468101214161820222426283032343638404244464850● 实验分析随着角度的增加,电流强度出现两个峰值,证明这是两个加强点。
第三章 干涉实验●实验原理如图所示,当一平面波垂直入射到一金属板的两条狭缝上,则每一条狭缝就是次级波波源。
由两缝发出的次级波是相干波,因此在金属板的背面空间中,将产生干涉现象。
当然,通过每个缝也有衍射现象。
因此实验将是衍射和干涉两者结合的结果。
为了只观察双缝的两束中央衍射波相互干涉的现象,令双缝的缝宽a 接近λ,λ=32mm ,a=40mm 。
这时单缝的一级极小接近53︒。
因此取较大的b ,则干涉强度受狭缝衍射的影响小,当b 较小时,干涉强度受狭缝衍射影响大。
干涉加强的角度为:ϕ=sin -1(K ⋅λ/(a+b)),式中K=1、2、…。
干涉减弱的角度为:ϕ=sin -1((2K+1)⋅λ/2(a+b)),式中K=1、2、…。
实验报告 ()Ф—I 曲线图(标注极大值点)-2020406080100012345678910111213141516171819202122232425● 实验分析由于光的干涉,随着角度的增加,出现了光的加强的区和减弱区。
本科实验报告
课程名称:电磁场与微波实验
姓名:wzh
学院:信息与电子工程学院
专业:信息工程
学号:xxxxxxxx
指导教师:王子立
选课时间:星期二9-10节
2017年 6月 17日
Copyright
As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life.
——W z h 实验报告
课程名称:电磁场与微波实验指导老师:王子立成绩:__________________
实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量
同组学生姓名:
矩形波导馈电角锥喇叭天线CST仿真
一、实验目的和要求
1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。
2.熟悉 CST 软件的基本使用方法。
3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。
二、实验内容和原理
1. 喇叭天线概述
喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。
合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。
因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。
喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反
射的能量很小。
2. 喇叭天线的分类
矩形波导馈电的喇叭天线根据喇叭扩展的形式不同分为:E 面扇形喇叭,由扩展其窄边形成;H 面扇形喇叭,由扩展其宽边形成;角锥喇叭,由宽边、窄边同时扩展形成。
三种类型的矩形波导馈电的喇叭天线示意图如图 2(a)-(c)所示。
圆波导馈电的喇叭天线圆波导馈电的喇叭一般是圆锥喇叭,如图 3 所示
实验中采用的是矩形波导馈电的角锥喇叭天线。
3. 矩形波导馈电角锥喇叭天线理论分析
1)尺寸确定
角锥喇叭天线是对馈电的矩形波导在宽边和窄边均按一定的角度张开的,结构示意图如图 3 所示。
矩形波导的尺寸为a×b,喇叭口径尺寸为D H×D E,喇叭高度为L,其 H 面(xz面)内虚顶点到口径中点的距离为 R1,E面(yz面)内虚顶点到口径中心的距离为R2。
根据实际矩形波导馈电角锥喇叭天线,该天线工作在X波段,工作频段为8.2-12.4GHz。
根据工作的频段,选择X波段的标准矩形波导作为馈电波导a=22.86mm , b=10.16mm 。
同时选择合适的角锥参数D H=141 mm , D E=105mm,L=200mm获得较好的天线增益。
2)矩形波导馈电的角锥喇叭天线的增益理论值
对于矩形波导的尺寸为a×b,喇叭口径尺寸为DH×DE,喇叭高度为L的角锥喇叭天线。
可以用下公式来估算该天线的增益。
ΔG G,ΔG E ,可以由表1得,其中参数α,β,可由公式2-9求得。
根据公式1-9以及表格1,可以估算出本实验中用到的矩形波导馈电的角锥喇叭天线的理论增益约为19.35dB。
三、主要仪器设备
装有CST软件的电脑
四、操作方法和实验步骤
a. CST 初始设置打开CST软件,选择New Project->MICROWAVES&RF->Antennas->
Waveguide(Horn,Cone,etc.)->TimeDomain->Dimensions:mm;Frequency:GHz;
b. 建立模型
①参数设置
参数设置在实验窗口的下方。
②创建矩形
点击 Modeling->Shape->Brick,直接按Esc键,弹出窗口,输入数据,Layer选择PEC
③建立喇叭模型
喇叭口径面:Modeling->Curves->Rectangle;
Modeling->Curve Tools->Cover Curve
设置喇叭口径面的空间位置:Modeling->Transform->Translate
创建喇叭侧壁:Modeling->Picks->Pick Face,选中渐变的两个口径面,Modeling->Loft,侧壁创建完成
全层相加:Modeling->Boolean->Add 命令使整个 PEC 层变成一个物体。
掏空:选择面:分别选取物体前后两个面
掏空生成喇叭:Modeling->Shape tools->Shell Solid or Thicken Sheet;
完成整个天线的 CST 建模。
c. 设置仿真条件
①仿真频率设置:
Simulation->Frequency
②仿真边界条件设置:
Simulation->Background(设置为 Normal);
Simulation->Boundaries(设置为 open (add space));
③端口设置
选取波导口面:Modeling->Picks->Pick Face;设置波导端口,输入参数后确定模式吸收数(Number of modes =5):Simulation->Waveguide Port;
④设置监视器
Simulation->Field Monitor->Farfield(RCS)(中心频率:10.3GHz)。
1.模式分析
a. 模式分析设置
Simulation->Start Simulation->Source type: All Ports Modes: All Simulation->Setup Solver
b 模式仿真分析
Simulation->Solver->Logfile->Solve Logfile;
2.仿真及仿真结果
a.仿真设置
Simulation->Start Simulation->Stimulation settings (Source type :Port 1;Mode :1)
b.1D Results
在1D Results中S11和驻波曲线
c.Farfield
①方向图:Farfield->Abs
Farfeild Plot->Directivity
Farfeild Plot->Polar(Cut angle:90(phi); Step Size:1)
②增益:Farfeild->Abs
Farfeild Plot->Gain(IEEE)
Farfield Plot-> Polar(Cut angle:90(phi); Step Size:1)
d.E-field,H-field
设置 E-field,H-field and surface current 监视器,表面电流的仿真
观察基模电场分布:选择左侧菜单 2D/3D Results->Port Modes->Port1->e1
五、实验结果与分析
1. 模式仿真分析
仿真最高频率为14.6GHz,根据仿真结果可见此结构喇叭天线中只传播一种模式的波。
2. S11和驻波曲线
3. VSWR曲线
4. 方向图:Farfield->Abs
5. 增益图:Farfield->Abs
6.E-field,H-field
表面电流仿真图
端口基模电场图
六、分析、讨论、心得
本次实验我们接触了CST仿真,见识到了CST在电磁场仿真的直观性。
从结果上来看,主瓣方向为φ=0°,θ=0°,主瓣宽度大约为18°,主瓣的最大增益为23.32dB,与理论值差不多。
喇叭天线的辐射特性测量
一、实验目的和要求
1、揭示喇叭天线的幅射特性。
2、覆盖的基本概念:
1.天线辐射方向图
2.波束宽度
3.天线的极化特性
4.电磁波在空间传播中与距离的关系
3、学会操作使用喇叭天线,并能进行相应的测量。
4、能够使用matlab对数据进行必要的处理,与理论值进行匹配,分析实验结果。
二、实验内容和原理
描述天线的参量很多,择其主要的有:天线方向性、辐射方向图、波束宽度、旁瓣电平、工作频率与响应、效率等等。
除此之外,天线发射(或接收)的电磁。