导学案不等式的证明-综合法
- 格式:doc
- 大小:89.50 KB
- 文档页数:4
不等式的基本性质导学案☆学习目标: 1. 理解并掌握不等式的性质,能灵活运用实数的性质;2 .掌握比较两个实数大小的一般步骤一、课前准备(请在上课之前自主完成)1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总 左边的点所表示的数,可知:0b a b a -⇔> 0b a b a -⇔= 0b a b a -⇔<结论:要比较两个实数的大小,只要考察它们的 的符号即可。
2. 不等式的基本性质:10. 对称性:b a >⇔ ;20. 传递性:⇒>>c b b a , ;30. 同加性:⇒>b a ; 推论:同加性:⇒>>d c b a , ; 30. 同乘性:⇒>>0,c b a ,⇒<>0,c b a ;推论1:同乘性:⇒>>>>0,0d c b a ; 推论2:乘方性:⇒∈>>+N n b a ,0 ; 推论3:开方性:⇒∈>>+N n b a ,0 ;推论4:可倒性:⇒>>0b a .☆比较两数大小的一般方法:比差法与比商法(两正数)b a b a ⇔> 1 b a b a ⇔= 1 ba b a ⇔< 1 二、新课导学☆案例学习: 例1 若3042,1624,x y <<<<则:(1)x y +的取值范围是是__________;(2)23x y -的取值范围是_____________;(3)x y 的取值范围是______________________. 例2 (1)若[]1,3x ∈--,则1x ∈___________; (2)若[]1,3x ∈,则1x ∈____________; (3)若(],1x ∈-∞,则1x ∈____________; (4)若[)2,x ∈+∞,则1x ∈____________; (5)若()0,3x ∈,则1x ∈____________; (6)若()2,3x ∈-,则1x∈___________________. 例3(1).若0<<b a ,则下列不等关系中不成立的是( )A .b a 11> B .ab a 11>- C .b a > D .22b a > (2)已知a 、b 、c 满足c b a <<,且ac <0,那么下列选项中一定成立的是( ) A. ab ac > B. c b a ()-<0 C. cb ab 22< D. ac a c ()->0(3) 对任意实数,,a b c ,在下列命题中,真命题是( )A .""ac bc >是""a b >的必要条件B .""ac bc =是""a b =的必要条件C .""ac bc >是""a b >的充分条件D .""ac bc =是""a b =的充分条件(4) 若b a c b a >∈,R 、、,则下列不等式成立的是( )(A )ba 11<. (B )22b a >. (C )1122+>+c b c a .(D )||||c b c a > (5) 若a >0,b >0,则不等式-b <1x<a 等价于( ) A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a例4 ()1若0x y <<,试比较()()22x y x y +-与()()22x y x y -+的大小;()2设0a >,0b >,且a b ≠,试比较a b a b 与b a a b 的大小.例5 若2()f x ax c =-满足4-≤(1)f ≤1-,1-≤(2)f ≤5,求(3)f 的取值范围.三、当堂检测1.判断下列各题是否正确?正确的打“√”,错误的打“×”(1) 不等式两边同时乘以一个整数,不等号方向不变。
第二章一元一次不等式和一元一次不等式组§2.1 不等关系一、学习目标1. 感受生活中存在着大量的不等关系,了解不等式的意义;2. 理解实数范围内代数式的不等关系,能够根据具体的事例列出不等关系式;3.初步体会不等式是研究量与量之间关系的重要模型之一,训练分析判断能力和逻辑推理能力.二、学习重点根据具体的事例列出不等关系式.三、学习过程【课前预习自主学习】3、用不等式表示:(1)x的一半与5的差小于1;(2)x与6的和大于9;(3)8与y的2倍的和是正数;(4)x与8的差不大于0.【合作探究课堂导学】一般地,式子叫做不等式.【例1】用不等式表示:(1)a是正数;(2)a是负数;(3)a与6的和小于5;(4)x与2的差小于-1;【互助释疑精讲点拨】【例2】如图:用两根长度均为Lcm的绳子,各围成正方形和圆.(1)如果要使正方形的面积不大于25㎝²,那么绳长L应该满足怎样的关系式?(2)如果要使原的面积大于100㎝²,那么绳长L应满足怎样的关系式?(4)由(3)你能发现什么?改变L 的取值再试一试.在上面的问题中,所围谓成的正方形的面积可以表示为(L /4)²,圆的面积可以表示为π(L /2π)² .(1)要是正方形的面积不大于25㎝²,就是 (L /4)²≤25, 即 L ²/16≤25. (2)要使原的面积大于100㎝²,就是 π(L /2π)²>100, 即 L ²/4π>100.(3)当L =8时,正方形的面积为8²/16=6,圆的面积为8²/4π≈5.1,4<5.1 此时圆的面积大. 当L =12时,正方形的面积为12²/16=9,圆的面积为12²/4π≈11.5,9<11.5 此时还是圆的面积大. (4)由(3)可以发现,无论绳长L 取何值,圆的面积总大于正方形的面积,即 L ²/4π>L ²/16. 观察由上述问题得到的关系式,它们有什么共同特点?162l ≤25 π42l >100 π42l >162l 3x+5>240,这些关系式都是用不等号连接的式子.由此可知:结论:用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子叫做不等式. 【巩固练习 达标测评】1. 下列式子中,是不等式的有① x+y, ② 3x ﹥7, ③ 2x+3=5, ④ -2>0, ⑤ x≠3,⑥ x+3≤y+1, ⑦ x 2+ xy -2y ≥52.“x 与4的和的2倍不大于x 的二分之一与3的差”用不等式表示为( )A.321)4(2-<+x x B.32124-≤⨯+x x C.321)4(2-≤+x x D.)3(21)4(2-≤+x x 3.下列各数:0.5,0,-1,π,1.5,2,其中使不等式x +1>2成立的是( )A. 0.5,0,-1B. 0,-1,πC. -1,π,1.5D. π,1.5,2 4.根据下列数量关系列不等式:(1)a 是正数; (2)a 的绝对值是非负数; (3)x 的3倍与1的差大5; (4)x 的一半不小于3; (5)x 的31与x 的2倍的和是非负数; (6)a 与b 两数和的平方不超过3; (7)a 的4倍大于a 的3倍与7的差; (8)x 的3倍与8的和比x 的5倍大 ; (9)a 的3倍与b 的和不大于0;(10)直角三角形斜边c 比它的两直角边a ,b 都长. 【学后反思】知识: 方法: 【拓展延伸】a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:(1)a______b; (2)|a|______|b|; (3)a+b_________0;(4)a -b_______0; (5)a+b_______a -b; (6)ab______a.§2.2 不等关系式的基本性质一、学习目标1.探索并掌握不等式的基本性质; 2. 理解不等式与等式性质的联系与区别. 二、学习重点归纳并运用不等式的基本性质. 三、学习过程【课前预习 自主学习】1.阅读教材:我们知道,在等式的两边都加上或都减去同一个数或整式,等式不变. 如: ∵3<5 ∴3+2<5+2 ; 3-2<5-2;2.回答问题:如果在不等式的两边都加上或都减去同一个数或整式,那么结果会怎样? 如: 3+a <5+a ; 3-a <5-a 是否成立?3.完成填空: 2<3, 2×5 3×5;2<3, 212⨯ 213⨯;2<3, 2×(-1) 3×(-1); 2<3, 2×(-5) 3×(-5); 2<3, 2×(21-) 3×(21-).4. 不等式的基本性质1:在不等式的两边都加上(或减去)同一个整式,不等号的方向 ; 不等式的基本性质2: 在不等式的两边同乘以(或除以)一个正数时,不等号的方向 ; 不等式的基本性质3: 在不等式的两边同乘以(或除以)一个负数时,不等号的方向 .【互助释疑 精讲点拨】(1)若a >b ,则2a+1 2b+1; (2)若y 45-<10,则y -8; (3)若a <b ,且c >0,则ac+c bc+c ; (4)若a >0,b <0, c <0,(a-b )c 0. 【例2】将下列不等式化成“a x >”或“a x <”的形式:(1)15->-x (2)32>-x【例3】由(m-1)x>m-1得到x<1,则m 的取值范围是 .【巩固练习 达标测评】1.(1)用“>”号或“<”号填空,并简说理由.① 6+2 -3+2; ② 6×(-2) -3×(-2); ③ 6÷2 -3÷2; ④ 6÷(-2) -3÷(-2) (2)如果a >b ,则① b a + c b + ② b a - c b - ③ ac c bc (>0) ④c a cb(c <0) 2.根据不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式: (1)x -2<3; (2)6x <5x -1; (3)-4x >3.3.判断正误. 若a >b .则(1)a -3<b -3; ( ) (2)2a >2b; ( ) (3)-4a >-4b ;( ) (4)5a <5b ;( ) (5)ac>bc ;( ) (6) a 2c >b 2c ;( ) (7)2a > 2b ;( ) (8)2c a >2c b;( ) (9) 3-a>3-b .( ) 【学后反思】知识: 方法: 【拓展延伸】 1.判断正误(1)若x-y>x ,则y>0( ) (2) 若a 2c >b 2c ,则a >b ( ) 2. 如果10<<x ,则下列不等式成立的( ) A 、 x x x 12<< B 、x x x 12<< C 、21x x x << D 、x x x<<213. a 是任意有理数,试比较5a 与3a 的大小.§2.3 不等式的解集一、学习目标1. 能够根据具体问题中的大小关系了解不等式的意义.2. 理解不等式的解、不等式的解集、解不等式这些概念的含义.3. 会在数轴上表示不等式的解集. 二、学习重点了解不等式的解、解集的含义,会在数轴上表示解集. 三、学习过程【课前预习 自主学习】1. 还记得怎么解一元一次方程、二元一次方程吗?还记得它们的解的含义吗?想一想:(1)x =5,6,8能使不等式x >5成立吗?(2)是否还能找出一些使不等式x >5成立的x 的值?2. 类比方程,阅读教材,归纳结论:(1)能使不等式 ,叫做不等式的解.不等式的解有时有 个,有时有有限个,有时 .(2)一个含有未知数的不等式的 ,组成这个不等式的 ,求不等式的 的过程叫做解不等式.【合作探究 课堂导学】1. 燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m 以外的安全区域.已知导火线的燃烧速度为以0.02 m/s ,人离开的速度为4 m/s ,那么导火线的长度应为多少厘米?分析:人转移到安全区域需要的时间最少为 秒,导火线燃烧的时间 为 秒,要使人转移到安全地带,必须有: > . 解:设导火线的长度应为x cm ,根据题意,得2. 尝试在数轴上表示出下列不等式的解集:(1)x >-1; (2)1-≥x ; (3)x <-1; (4)1-≤x注意:数轴上表示不等式的解集遵循(1)大于向右走,小于向左走 (2)有“ = ”用实心小圆点,没有“ = ”用空心圈. 【互助释疑 精讲点拨】【例1】判断下列说法是否正确:(1)2=x 是不等式3+x <4的解;( ) (2)2=x 是不等式x 3<7的解集;( ) (3)不等式x 3<7的解是2=x ;( ) (4)3=x 是不等式93≥x 的解.( ) 【例2】在数轴上表示下列不等式的解集.(1)x>3; (2) x<﹣2; (3) x≥121; (4) ﹣3 < x ≤ 1.【巩固练习 达标测评】 备选答案: 1.(1)不等式43-≤x 的解集是( ),解集是图( ); A.25-≤x B.x <0 (2)不等式324x x ->的解集是( ),解集是图( ); C.34-≤x D. x >0 (3)不等式x 53->0的解集是( ),解集是图( ); (4)不等式52≥-x 的解集是( ),解集是图( ).2.求不等式3+x <6的正整数解.3.在数轴上与原点的距离小于8的点对应的x 满足( )A 、x <8B 、x >8C 、x <-8或x >8D 、-8<x <8 【学后反思】知识: 方法: 【拓展延伸】 已知关于x 的方程4152435-=-m m x 的解为非负数,求m 的取值范围,并在数轴上表示出来.§2.4.1 一元一次不等式(一)一、学习目标1. 了解什么是一元一次不等式;2. 会解一元一次不等式;3.培养学生运用数学方法解决实际问题的创新能力及探究意识. 二、学习重点解一元一次不等式. 三、学习过程【课前预习 自主学习】 观察下列不等式:(1)2x-2.5≥1.5 (2)x≤8.75 (3)x<4 (4)5+3x>240这些不等式有哪些共同点?结论:左右两边都是 ,只含有 个未知数,并且未知数的最高次数是 的不等式,叫做一元一次不等式.【合作探究 课堂导学】【例1】解下列不等式,写出详细步骤,并把它的解集表示在数轴上(1) 3-x < 2x +6 (2) 22-x ≥3x-7归纳:解一元一次不等式的步骤:【例2】 已知关于x 的不等式32125+>-+ax x 的解集为21<x 求a 的值【巩固练习 达标测评】1. 下列不等式是一元一次不等式吗?(1)2x -2.5≥15; (2) 5+3x =240; (3) x >-4; (4)x1>1. (5) x (x+3)>-2 (6) xy -3>0 2. 已知不等式x ﹣1≥0,此不等式的解集在数轴上表示为( )A .B .C .D .3. 已知点M (1﹣2m ,m ﹣1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示应是( )A .B .C .D .4. 解下列不等式,并把它们的解集分别表示在数轴上.(1) x-4≥2(x+2) (2) -3x +12≤0; (3)21-x <354-x ; (4)27+x -1<223+x .【学后反思】知识: 方法: 【拓展延伸】若关于x 的不等式x <2x +a 与2x >4的解集相同,求a 的值.§2.4.2 一元一次不等式(二)一、学习目标1.进一步熟练掌握解一元一次不等式;2.会利用一元一次不等式解决简单的实际问题. 二、学习重点用一元一次不等式解决简单的实际问题. 三、学习过程【课前预习 自主学习】温故知新:解下列不等式,并把它们的解集分别表示在数轴上 (1)132<-x x (2)2235-+≥x x【合作探究 课堂导学】【例1】一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?【例2】小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2.2元,她买了2本笔记本.请你帮她算一算,她还可以买几支笔?小结:解一元一次不等式应用题的步骤:点评:解决这类问题的关键是理解题意,抓住“超过”、“不足”、“以上”、“最多”、“最少”、“至少”等关键词语,将其转化为不等式,并结合实际意义寻求最后的答案。
Cauchy 不等式导学案【学习目标】1.理解Cauchy 不等式的二维、三维形式,了解Cauchy 不等式的n 维形式与向量形式;2.能利用Cauchy 不等式求一些特殊函数的最值,以及证明一些简单的不等式.【复习指导】不等式的证明是中学数学学习的难点,Cauchy 不等式只要掌握一些简单的应用即可.【知识梳理】1、 二维形式的Cauchy 不等式:2、 三维形式的Cauchy 不等式:3、 n 维形式的Cauchy 不等式:4、 Cauchy 不等式的向量形式:【基础巩固】○1若,R a b ∈,且2210a b +=,则+b a 的取值范围为()A.[-B. [-C. [D. [○2已知+y=1x ,那么222x +3y 的最小值是() A. 56B. 65 C. 2536 D. 3625○3已知+,a b R ∈,且2P=(ax+by)与22Q=ax +by 的关系是() A. P Q ≤ B. P Q < C. P Q ≥ D. P Q >○4已知+,a b R ∈且+y 1x z +=,则222+z x y +的最小值是() A. 1B.13C.23 D. 32【2014高考考向导析】题型一:求函数的最值例1. 求函数.变式1:求函数.例2.,R x y ∈,2210x y +=,求3x y +的最大值与最小值.变式1:设23529x y z ++=,求函数y .变式2:设a = (1,0,-2),b=(,,)x y z ,若22216,x y z ++=则a b ∙ 的最大值.变式3:,,R x y z +∈,若2224x y z ++=则22x y z -+的最小值.变式4:,,R a b c +∈,且9a b c ++=,则4916a b c++的最小值.题型二:利用cauchy 不等式证明不等式例3 已知+,a b R ∈+b=1a ,12,x x R +∈,求证:122112(a +b )(a +b )x x x x x x ≥.练习1: 已知221a b +=,求证:|cos sin |1a b θθ+≤.练习2: 设0xy >,求证: 222241()()9x y y x ++≥.例4. 若a b c >>,求证:114+a b b c a c≥---【高考链接】1.(2012.郑州)已知实数,,,a b c d 满足221a b +=,221c d +=,求ac bd +的最小值.2(2012.福建)已知函数()|2|,f x m x m R =--∈,且(2)0f x +≥的解集为[]1,1-;(1)求m 的值;(2)若+,,a b c R ∈,且11123m a b c++=,求证:2+39a b c +≥。
课题:9.1.1不等式及其解集[教学目标]1、知识与技能 : 感知生活中的不等式关系,了解不等式的意义,初步体会不等式是研究量与量之间关系的重要模型之一;理解不等式的解与解集的意义,了解不等式解集的数轴表示。
2、过程与方法: 经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化能力。
通过闲事情境学会“建模”,感受同类之间的大小比较方法,在问题解决中发展学生归纳、猜想的能力。
3、情感、态度与价值观:进一步培养学生的数学思维和参与数学活动的自信心、合作交流意识,培养学生对问题实质的认识与理解以及感知事物变化规律的重要模型和最优化思想。
[重点难点] 不等式、不等式的解、解集的概念是重点;不等式解集的理解与表示是难点。
[教学方法] 本节课采用“生动探索——引导发现——讲评点拨”的教学方法 [教学准备] 刻度尺 [教学过程]一、创设情景,复习导入一辆匀速行驶的汽车在11:20时距离A 地50千米,要在12:00以前驶过A 地,车速应该具备什么条件?问题1:题目中有等量关系吗?问题2:从时间上看,汽车到达A 地的行驶时间是多少呢?从路程上看,11:20——12:00之间,汽车走过的实际路程是多少?二、探索新知,突出重点若设车速为x km/h ,你能用一个式子表示上面的关系吗?① ②问题3:观察①②两个式子,思考与以前学过的等式有什么区别?归纳: 叫做不等式。
不等号:注意:≤的含义: ,≥的含义: 。
及时反馈(1)下列式子中哪些是不等式?①10712x =; ②15>2x ; ③ 239m n ≠-; ④5m -3; ⑤23x ≤-7y ; ⑥2a b b a +=+; ⑦-10>-15. (2)用不等式表示①a 是正数; ②x 与5的和小于7; ③n 与2的差大于-1; ④m 的4倍不大于8; ⑤x 的一半大于等于-3; ⑥a 是非负数. 注意:有些不等式不含未知数,有些不等式含有未知数。
柯西不等式导学案【学习目标】1.理解柯西不等式的二维、三维形式,了解柯西不等式的n 维形式与向量形式;2. 能利用柯西不等式求一些特殊函数的最值,以及证明一些简单的不等式.【复习指导】不等式的证明是中学数学学习的难点,柯西不等式只要掌握一些简单的应用即可.【基础先学】1、 二维形式的柯西不等式:,,,,______________________a b c d R ∈设则,当且仅当____________时,等号成立.2、 三维形式的柯西不等式:,,1,2,3___________________________________i i a b R i ∈=设则,当且 仅当0(1,2,3),i i i b i k a kb ===,或存在一个实数使得时,等号成立.3、 n 维形式的柯西不等式:,,1,2,3,,___________________________________i i a b R i n ∈=设…,则,当且仅当0(1,2,i b i ==…,n) 或存在一个数k ,使得(1,2,n)i i a kb i ==…,时,等号成立.【基础巩固】1. 若,R a b ∈,且2210a b +=,则+b a 的取值范围为( )A. [-B. [-C. [D. [2. 已知+y=1x ,那么222x +3y 的最小值是( )A. 56B. 65C. 2536D. 36253. 已知+,a b R ∈且1,a b += 则2P=(ax+by)与22Q=ax +by 的关系是( )A. P Q ≤B. P Q <C. P Q ≥D. P Q >4. 已知+,a b R ∈且+y 1x z +=,则222+z x y +的最小值是( )A. 1B.13 C.23 D. 32【2014高考考向导析】题型一:求函数的最值例1. 【展示反馈】求函数.【练习评价】1:求函数的最大值.例2. 【点拨思辨】,R x y ∈,2210x y +=,求3x y +的最大值与最小值.【练习评价】2:,R x y ∈,22510x y +=,求x y +的最大值与最小值.例3.【点拨思辨】设23529x y z ++=,求函数y =.【练习评价】3:1、 ,,R x y z +∈,若2224x y z ++=则22x y z -+的最小值为_______. 2、,,R a b c +∈,且9a b c ++=,则4916a b c++的最小值为_______.题型二:利用柯西不等式证明不等式例3.【点拨思辨】 已知+,a b R ∈ +b=1a ,12,x x R +∈,求证:122112(a +b )(a +b )x x x x x x ≥.【练习评价】4: (1) 设0xy >,求证: 222241()()9x y y x ++≥; (2) 已知221a b +=,求证: |cos sin |1a b θθ+≤.(3) 若a b c >>,求证:114+a b b c a c≥---【练习评价:高考链接】1.(2012.郑州)已知实数,,,a b c d 满足221a b +=,221c d +=,则ac bd +的最小值为_________.2.(2012.湖北)设222,,,1,23________.x y z R x y z x y z x y z ∈++=++=++=且满足则3.(2013.湖北)设222222,,,,,10,40,().a b c a b x y z R a b c x y z x y z +++∈++=++==++且满足则A.14B. 13C. 12D. 343(2012. 福建)已知函数()|2|,f x m x m R =--∈,且(2)0f x +≥的解集为[]1,1-;(1)求m 的值; (2)若+,,a b c R ∈,且11123m a b c++=,求证:2+39a b c +≥【课堂小结】【作业】《高考调研》课时作业(九十四)。
1.2 基本不等式(二)1.理解定理3、定理4,会用两个定理解决函数的最值或值域问题.2.能运用三个正数的平均值不等式解决简单的实际问题.自学导引1.当a 、b 、c ∈R +时,a +b +c3≥3abc 当且仅当a =b =c 时,等号成立,称a +b +c 3为正数a ,b ,c 的算术平均值,3abc 为正数a 、b 、c 的几何平均值.2.如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n a 1=a 2=…=a n时,等号成立.基础自测1.设a 、b 、c ∈R ,下列各不等式中成立的是( ) A.a 2+b 2≥2|ab | B.a +b ≥2ab C.a 3+b 3+c 3≥3abcD.a +b +c3≥3abc解析 由a 2+b 2-2|ab |=|a |2-2|ab |+|b |2=(|a |-|b |)2≥0,故选A. 答案 A2.函数y =x 2·(1-5x )⎝ ⎛⎭⎪⎫0≤x ≤15的最大值为( )A.4675 B. 2657 C.4645D.2675解析 由y =x 2·(1-5x )=425·52x ·52x (1-5x ) ≤425⎝⎛⎭⎪⎪⎫52x +52x +1-5x 33=4675.答案 A3.已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则a 的最大值是________. 解析 利用不等式求解.因为a +b +c =0,所以b +c =-a . 因为a 2+b 2+c 2=1,所以-a 2+1=b 2+c 2=(b +c )2-2bc =a 2-2bc , 所以2a 2-1=2bc ≤b 2+c 2=1-a 2, 所以3a 2≤2,所以a 2≤23,所以-63≤a ≤63,所以a max =63. 答案63知识点1 利用平均值不等式证明不等式 【例1】 已知a 、b 、c ∈R +,且a +b +c =1. 求证:1a +b +1b +c +1c +a ≥92. 证明 a +b +c =1⇒(a +b )+(b +c )+(c +a )=2, [(a +b )+(b +c )+(c +a )]⎝⎛⎭⎪⎫1a +b +1b +c +1c +a≥33(a +b )(b +c )(c +a )·313(a +b )(b +c )(c +a )=9⇒1a +b +1b +c +1c +a ≥92. ●反思感悟:认真观察要证的不等式的结构特点,灵活利用已知条件构造出能利用平均值不等式的式子.1.证明(a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1a +c ≥92(a ,b ,c ∈R +).证明 ∵(a +b )+(b +c )+(c +a ) ≥33(a +b )(b +c )(c +a ),1a +b +1b +c +1a +c ≥331a +b ·1b +c ·1a +c , ∴(a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1a +c ≥92.当且仅当a =b =c 时,等号成立.知识点2 利用平均值不等式求最值【例2】 若正数a ,b 满足ab =a +b +3,求ab 的取值范围. 解 方法一:∵a 、b ∈R +,且ab =a +b +3≥333ab , ∴a 3b 3≥81ab .又ab >0,∴a 2b 2≥81. ∴ab ≥9(当且仅当a =b 时,取等号). ∴ab 的取值范围是[9,+∞). 方法二:∵ab -3=a +b ≥2ab , ∴ab -2ab -3≥0且ab >0,∴ab ≥3,即ab ≥9(当且仅当a =b 时取等号) ∴ab 的取值范围是[9,+∞).●反思感悟:注意平均值不等式应用的条件是三个正数在求最值时,一定要求出等号成立时未知数的值,如果不存在使等号成立的未知数的值,则最值不存在.2.求y =sin x cos 2x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最大值.解 ∵x ∈⎝⎛⎭⎪⎫0,π2,∴sin x >0,y >0.y 2=sin 2x cos 4x =2sin 2x cos 2x cos 2x2≤12⎝ ⎛⎭⎪⎫2sin 2x +cos 2x +cos 2x 33=12⎝ ⎛⎭⎪⎫233=854=427.故y ≤427=239,此时,2sin 2x =cos 2x ,tan 2x =12, y 有最大值239. 知识点3 平均值不等式的实际应用【例3】 某产品今后四年的市场需求量依次构成数列{a n },n =1,2,3,4,并预测到年需求量第二年比第一年增长的百分率为P 1,第三年比第二年增长的百分率为P 2,第四年比第三年增长的百分率为P 3,且P 1+P 2+P 3=1.给出如下数据: ①27,②25,③13,④12,⑤23, 则其中可能成为这四年间市场需求量的年平均增长率的是( ) A.①② B.①③ C.②③④D.②⑤解析 设这四年间市场年需求量的年平均增长率为x (x >0),则a 4=a 1(1+x )3=a 1(1+P 1)(1+P 2)(1+P 3), ∴(1+x )3=(1+P 1)(1+P 2)(1+P 3), ∴(1+x )3=(1+P 1)(1+P 2)(1+P 3)≤⎝ ⎛⎭⎪⎫1+P 1+1+P 2+1+P 333=⎝ ⎛⎭⎪⎫433. ∴1+x ≤43,即x ≤13,对比所给数据,只有①③满足条件,故选B. 答案 B3.设长方体的体积为1 000 cm 3,则它的表面积的最小值为__________ cm 2. 解析 设长方体的长、宽、高分别为a 、b 、c , 则abc =1 000,且a >0,b >0,c >0.∴它的表面积S =2(ab +bc +ca )≥2×33(abc )2=600. 当且仅当a =b =c =10 (cm)时取“=”号. 所以它的表面积S 的最小值为600 cm 2. 答案 600课堂小结利用基本不等式解决实际问题的步骤:(1)理解题意,设出变量,一般设变量时,把要求最大值或最小值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)回答实际问题.随堂演练1.设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A.q =r <p B.p =r <q C.q =r >pD.p =r >q解析 利用对数的运算性质和对数函数的单调性判断p ,q ,r 之间的相等与不等关系. 因为b >a >0,故a +b2<ab .又f (x )=ln x (x >0)为增函数,所以f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p .答案 B2.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A.最大值54B.最小值54C.最大值1D.最小值1解析 f (x )=(x -2)2+12(x -2)=12⎣⎢⎡⎦⎥⎤(x -2)+1(x -2),又∵x ≥52,x -2≥12,则f (x )≥12·2(x -2)1(x -2)=1.答案 D3.函数y =x 2·(1-3x )在⎝ ⎛⎭⎪⎫0,13上的最大值是________.解析 由y =x 2·(1-3x ) =49·32x ·32x (1-3x ) ≤49⎝⎛⎭⎪⎪⎫32x +32x +1-3x 33=3243.答案32434.用长为16 cm 的铁丝围成一个矩形,则可围成的矩形的最大面积是________ cm 2. 解析 设矩形长为x cm(0<x <8),则宽为(8-x ) cm , 面积S =x (8-x ).由于x >0,8-x >0,可得S ≤⎝ ⎛⎭⎪⎫x +8-x 22=16,当且仅当x =8-x 即x =4时,S max =16. 所以矩形的最大面积是16 cm 2. 答案 16基础达标1.若x >0,则4x +9x2的最小值是( )A.9B.3336C.13D.不存在解析 ∵x >0,∴4x +9x 2=2x ·2x ·9x2≥332x ·2x ·9x2=3336.答案 B2.设a ,b ,c ∈(0,+∞)且a +b +c =1,令x =⎝⎛⎭⎪⎫1a -1·⎝⎛⎭⎪⎫1b -1⎝⎛⎭⎪⎫1c-1,则x 的取值范围为( )A.⎣⎢⎡⎭⎪⎫0,18B.⎣⎢⎡⎭⎪⎫18,1 C.[1,8)D.[8,+∞)解析 ∵x =⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1=1-a a ·1-b b ·1-cc=(b +c )(c +a )(a +b )abc ≥2bc ·2ca ·2ab abc=8,当且仅当a =b =c 时取等号,∴x ≥8. 答案 D3.已知x ,y 都为正数,且1x +4y=1,则xy 有( )A.最小值16B.最大值16C.最小值116D.最大值116解析 ∵x ,y ∈(0,+∞)且1x +4y=1,∴1=1x +4y ≥24xy=4xy,∴xy ≥4,∴xy ≥16,当且仅当⎩⎪⎨⎪⎧1x =4y ,1x +4y =1,x ,y ∈(0,+∞),即⎩⎪⎨⎪⎧x =2,y =8,时取等号,此时(xy )min =16. 答案 A4.已知a ,b ,∈R *,则⎝ ⎛⎭⎪⎫a b +b c +c a ⎝ ⎛⎭⎪⎫b a +c b +a c ≥________.解析 ⎝ ⎛⎭⎪⎫a b +b c +c a ⎝ ⎛⎭⎪⎫b a +c b +a c =1+1+1+ac b 2+a 2bc +b 2ac +ab c 2+bc a 2+c 2ab ≥3+2ac b 2·b 2ac+2a 2bc ·bc a 2+2abc 2+c 2ab=9. 答案 95.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元). 解析 利用均值(基本)不等式解决问题.设该长方体容器的长为x m ,则宽为4xm.又设该容器的造价为y 元,则y =20×4+2⎝ ⎛⎭⎪⎫x +4x ×10,即y =80+20⎝⎛⎭⎪⎫x +4x(x >0).因为x +4x≥2x ·4x=4⎝⎛⎭⎪⎫当且仅当x =4x,即x =2时取“=”,所以y min =80+20×4=160(元).答案 1606.已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值; (2)求at +12+bt 的最大值.解 (1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1. (2)-3t +12+t=34-t +t ≤[(3)2+12][(4-t )2+(t )2] =24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t )max =4.综合提高7.已知圆柱的轴截面周长为6,体积为V ,则下列关系式总成立的是( ) A.V ≥π B.V ≤π C.V ≥18πD.V ≤18π解析 设圆柱的底面半径为r ,高为h , 则由题意得:4r +2h =6,即2r +h =3,于是有V =πr 2h ≤π·⎝ ⎛⎭⎪⎫r +r +h 33=π⎝ ⎛⎭⎪⎫333=π,当且仅当r =h 时取等号.答案 B8.如果圆柱的轴截面周长l 为定值,那么圆柱的体积最大值是( )A.⎝ ⎛⎭⎪⎫l 63π B.⎝ ⎛⎭⎪⎫l 33π C.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π 解析 l =4r +2h ,即2r +h =l2,V =πr 2h ≤⎝ ⎛⎭⎪⎫r +r +h 33π=⎝ ⎛⎭⎪⎫l 63π.答案 A9.定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.解析 先利用新定义写出解析式,再利用重要不等式求最值.因为x ⊗y =x 2-y 2xy ,所以(2y )⊗x =4y 2-x 22xy .又x >0,y >0,故x ⊗y +(2y )⊗x =x 2-y 2xy +4y 2-x 22xy=x 2+2y 22xy ≥22xy 2xy=2,当且仅当x =2y 时,等号成立. 答案210.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000 v v 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为______辆/时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/时. 解析 把所给l 值代入,分子分母同除以v ,构造基本不等式的形式求最值. (1)当l =6.05时,F =76 000v v 2+18v +121=76 000v +121v+18≤76 0002v ·121v+18=76 00022+18=1 900.当且仅当v =11米/秒时等号成立,此时车流量最大为1 900辆/时. (2)当l =5时,F =76 000v v 2+18v +100=76 000v +100v+18≤76 0002v ·100v+18=76 00020+18=2 000.当且仅当v =10米/秒时等号成立,此时车流量最大为2 000辆/时,比(1)中的最大车流量增加100辆/时.答案 (1)1 900 (2)10011.如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 在AM 上,D 在AN 上且对角线MN 过C 点,已知|AB |=3米,|AD |=2米.(1)要使矩形AMPN 的面积大于32平方米,则AN 的长应在什么范围内? (2)当AN 的长度是多少时,矩形AMPN 的面积最小?并求最小面积;(3)若AN 的长度不少于6米,则当AN 的长度是多少时,矩形AMPN 的面积最小?并求出最小面积.解 设AN 的长为x 米(x >2),矩形AMPN 的面积为y . ∵|DN ||AN |=|DC ||AM |,∴|AM |=3x x -2, ∴S 矩形AMPN =|AN |·|AM |=3x 2x -2(x >2)(1)由S 矩形AMPN >32得3x2x -2>32,∵x >2,∴3x 2-32x +64>0,即(3x -8)(x -8)>0,∴2<x <83或x >8,即AN 的长的取值范围是⎝ ⎛⎭⎪⎫2,83∪(8,+∞). (2)令y =3x 2x -2=3(x -2)2+12(x -2)+12x -2=3(x -2)+12x -2+12≥23(x -2)·12x -2+12=24, 当且仅当3(x -2)=12x -2, 即x =4时,y =3x2x -2取得最小值,即S 矩形AMPN 取得最小值24平方米.(3)令g (x )=3x +12x(x ≥4),设x 1>x 2≥4,则g (x 1)-g (x 2)=3(x 1-x 2)+12(x 2-x 1)x 1x 2=3(x 1-x 2)(x 1x 2-4)x 1x 2,∵x 1>x 2≥4,∴x 1-x 2>0,x 1x 2>16,∴g (x 1)-g (x 2)>0,∴g (x )在[4,+∞)上递增. ∴y =3(x -2)+12x -2+12在[6,+∞)上递增. ∴当x =6时,y 取得最小值,即S 矩形AMPN 取得最小值27平方米.12.甲、乙两地相距s km ,汽车从甲地匀速行驶到乙地,速度不得超过c km/h ,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v (km/h)的平方成正比,比例常数为b ,固定部分为a 元.(1)把全程运输成本y 元表示为速度v (km/h)的函数,并指出函数的定义域; (2)为了使全程运输成本最少,汽车应以多大的速度行驶? 解 (1)因为汽车每小时的运输成本为bv 2+a (元), 全程时间为s v (小时),故y =s v(bv 2+a ),即y =s ⎝ ⎛⎭⎪⎫a v +bv ,v ∈(0,c ].(2)由于a v+bv ≥2ab ,当且仅当v = ab时取等号,故 ①若 ab ≤c ,则当v = ab时,y 取最小值. ②若a b >c ,则先证y =s ⎝ ⎛⎭⎪⎫a v +bv ,v ∈(0,c ]为单调减函数,事实上,当v 1、v 2∈(0,c ],且v 1<v 2,则y 1-y 2=s ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a v 1+bv 1-⎝ ⎛⎭⎪⎫a v 2+bv 2=s ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a v 1-a v 2+(bv 1-bv 2)=s (v 1-v 2)⎝ ⎛⎭⎪⎫b -a v 1v 2=sb (v 1-v 2)·v 1v 2-a bv 1v 2,∵v 1、v 2∈(0,c ],v 1<v 2, ∴v 1-v 2<0,v 1v 2>0,v 1<ab ,v 2< a b. 进而v 1v 2<a b,从而y 1-y 2>0.故y =s ⎝⎛⎭⎪⎫av+bv ,v ∈(0,c ]为单调减函数, 由此知当v =c 时,y 取得最小值.综上可知,若ab≤c,则当v=ab时,y取得最小值;若ab>c,则当v=c时,y取得最小值.。
§基本不等式(一)本节学习是学生对不等式认知的一次飞跃。
要善于引导学生从数和形两方面深入地探究不等式的证明,从而进一步突破难点。
变式练习的设计可加深学生对定理的理解,并为以后实际问题的研究奠定基础。
两个定理的证明要注重严密性,老师要帮助学生分析每一步的理论依据,培养学生良好的数学品质。
一、【学习目标】1、理解两个实数的平方和不小于它们之积的2倍的不等式的证明;理解两个正数的算术平均数不小于它们的几何平均数的证明以及它的几何解释;2、理解“当且仅当a=b 时取等号”的数学内涵;二、【自学内容和要求及自学过程】阅读教材第97—100页内容,然后回答问题提问1:我们把“风车”造型抽象成图.在正方形ABCD 中有4个全等的直角三角形.设直角三角形的长为、,那么正方形的边长为多少?面积为多少呢?22a b +)提问2:那4个直角三角形的面积和是多少呢? ( )提问3:根据观察4个直角三角形的面积和正方形的面积,我们可得容易得到一个不等式,222a b ab +≥。
什么时候这两部分面积相等呢?(当直角三角形变成等腰直角三角形,即时,正方形EFGH 变成一个点,这时有222a b ab +=)1、一般地,对于任意实数 、,我们有222a b ab +≥,当且仅当时,等号成立。
提问4:你能给出它的证明吗?证明:222)(2b a ab b a +=-+ 0)(2>-≠b a ,b a 时当 0)(2=-=b a ,b a 时当所以 222a b ab +≥注意强调 (1) 当且仅当时, 222a b ab +=(2)特别地,如果,0,0>>b a 用和代替、,可得ab b a 2≥+,(0,0)2a b a b +≤>>,引导学生利用不等式的性质推导提问5:观察图形,你能得到不等式0,0)2a b a b +≥>>的几何解释吗? 的算术平均数,为称b a b a ,2.2+ . , 的几何平均数为b a ab 为两两不相等的实数,已知例c b a ,,1. . 222ca bc ab c b a ++>++求证: 练习、已知:,0,0,0>>>c b a 求证:c b a cab b ac a bc ++≥++ , ,,, 2. 都是正数已知例d c b a .4 ))(( abcd bd ac cd ab ≥++求证:例3、若1>>b a ,b a P lg lg ⋅=,)lg (lg 21b a Q +=,2lg b a R += 比较R P 、、Q 、的大小 例4、当1->x 时,求函数113)(2++-=x x x x f 的值域。
§3基本不等式第1课时基本不等式知能目标解读1.理解基本不等式,并掌握基本不等式的几何意义.2.掌握基本不等式成立的条件;能应用基本不等式解决求最值、证明不等式、比较大小、求取值范围等问题.3.在使用基本不等式过程中,要注意定理成立的条件,在解题时,常采用配凑的方法,创造条件应用均值不等式.重点难点点拨重点:理解并掌握基本不等式,借助几何图形说明基本不等式的意义,并用基本不等式求最值.难点:利用基本不等式求最值时,等号成立的条件.学习方法指导一、基本不等式1.基本不等式:如果a,b都是非负数,那么2ba+≥ab,当且仅当a=b时,等号成立,我们称上述不等式为基本不等式.其中2ba+称为a,b的算术平均数,ab称为a,b的几何平均数,因此,基本不等式又称为均值不等式.2.重要不等式:如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时,取"=").证明:a2+b2-2ab=(a-b) 2,当a≠b时,(a-b)2>0;当a=b时,(a-b)2=0.所以(a-b)2≥0,即a2+b2≥2ab.3.基本不等式的几何解释:基本不等式一种几何解释如下:以a+b长的线段为直径作圆,在直径AB上取点C,使AC=a,CB=b.过点C作垂直于直径AB的弦DD′,连结AD、DB,易证Rt△ACD∽Rt△DCB,则CD2=CA·CB,即CD=ab.这个圆的半径为2ba+,显然,它大于或等于CD,即2ba+≥ab, 其中,当且仅当点C与圆心重合,即a=b时,等号成立.以上我们从几何图形中进行了解释,获得了不等式ab ≤2b a +(a ≥0,b ≥0).其实质是:在同一圆中,半径不小于半弦,或者直角三角形斜边的一半不小于斜边上的高. 4.关于a 2+b 2≥2ab 和2b a +≥ab (a,b >0)(1)两个不等式:a 2+b 2≥2ab 与2b a +≥ab 成立的条件是不同的,前者要求a,b 都是实数,后者则要求a,b 都是正数.如:(-3)2+(-4)2≥2×(-3)×(-4)是成立的, 而()()243-+-≥()()43-⨯-是不成立的.注意:(1)要在理解的基础上,记准这两个不等式成立的条件. (2)两个不等式:a 2+b 2≥2ab ,2b a +≥ab 都是带有等号的不等式.“当且仅当a=b 时取‘=’”这句话的含义是“a=b ”时,a 2+b 2≥2ab ,2b a +≥ab 中只有等号成立,反之,若a 2+b 2≥2ab ,2b a +≥ab中的等号成立时,必有“a=b ”,这一条件至关重要,忽略它,往往会导致解题的失误.(3)两个不等式的应用两个不等式的结构都是一边为“和式”,另一边为“积式”,因此两个不等式都具有将“和式”化为“积式”以及将“积式”化为“和式”的放缩功能,可证明不等式.利用等号成立的条件,可求最大、最小值.二、利用基本不等式求最大(小)值 利用基本不等式2b a +≥ab ,在求某些简单的最大(小)值问题时,很有应用价值.一般地: x,y都为正数时,(1)若x+y=S (和为定值),则当x=y 时,积xy 取得最大值42S;(2)若xy=p (积为定值),则当x=y 时,和x+y 取得最小值2p .证明:∵x,y 都为正数, ∴2y x +≥xy(1)和式为定值S 时,有xy ≤2S ,∴ xy ≤41S 2.上式当“x=y ”时取“=”号,因式当x=y 时,积xy 有最大值41S 2;(2)积式xy为定值p时,有2yx+≥p,∴x+y≥2p.上式当“x=y”时取“=”,因此,当x=y时,和x+y有最小值2p. 注意:(1)在应用均值不等式ab≤2ba+求最值时,需满足三个条件:“一正、二定、三相等”.“正”是所有变量均为正数,“定”是指变量的积或和为定值,“相等”是指等号成立的条件,以上三者,缺一不可.(2)在有关证明或求最值时,不等式都可连续多次使用,但需注意的是等号成立是否矛盾,只有当各次应用基本不等式时"="号成立的条件一致时,“=”才会取得,否则"="将不成立.知能自主梳理1.基本不等式如果a,b都是非负数,那么,当且仅当时,等号成立.此不等式称为基本不等式,其中称为a,b的算术平均数,称为a,b的几何平均数.2.利用基本不等式求最值(1)两个正数的和为定值时,它们的积有,即若a>0,b>0,且a+b=M,M为定值,则ab≤42M,等号当且仅当a=b时成立.(2)两个正数的积为定值时,它们的和有,即若a>0,b>0,且ab=P,P为定值,则a+b ≥,等号当且仅当a=b时成立.[答案] 1.2ba+≥ab a=b2ba+ab2.(1)最大值42M(2)最小值2p思路方法技巧命题方向利用基本不等式比较代数式的大小[例1]已知0<a<1,0<b<1,则a+b,2ab,a2+b2,2ab中哪一个最大?[分析]由已知a,b均为正数,且四个式子均为基本不等式中的式子或其变形,可用基本不等式来加以解决.[解析]方法一:∵a>0,b>0,∴a+b≥2ab,a2+b2≥2ab,∴四个数中最大数应为a+b或a2+b2.又∵0<a<1,0<b<1,∴a2+b2-(a+b)=a2-a+b2-b=a (a -1)+b (b -1)<0,∴a 2+b 2<a+b ,∴a+b 最大. 方法二:令a=b =21,则a+b =1,2ab =1, a 2+b 2=21,2ab =2×21×21=21,再令a =21,b =81,a+b =21+81=85,2ab =28121⨯=21,∴a+b 最大.[说明] 运用基本不等式比较大小应注意等号成立的条件.特殊值法是解决不等式的一个有效方法,但要使特殊值具有一般性. 变式应用1已知m=a +21-a (a >2),n =22-b2(b ≠0),则m 、n 的大小关系是( )A.m>nB.m<nC.m=nD.不确定 [答案] A[解析] ∵a >2,∴a -2>0, 又∵m=a +21-a =(a -2)+21-a +2≥2()212-⋅-a a +2=4,当且仅当a -2=21-a ,即(a -2)2=1,又a -2>0,∴a -2=1,即a =3时取等号.∴m ≥4. ∵b ≠0, ∴b 2≠0, ∴2-b 2<2, ∴22-b2<4,即n <4, ∴m>n .命题方向 利用基本不等式求最值[例2] (1)若x >0,求函数f (x )=x12 +3x 的最小值;(2)若x <0,求函数f (x )= x12+3x 的最大值.[分析] 利用基本不等式求最值,必须同时满足3个条件:①两个正数;②其和为定值或积为定值;③等号必须成立.三个条件缺一不可.对(1),由x >0,可得x12>0,3x >0.又因为x12·3x =36为定值,且x12=3x (x >0)时,x =2,即等号成立,从而可利用基本不等式求最值.对(2),由x <0,得x12<0,3x <0,所以-x12>0,-3x >0,所以对 (-x12)+(-3x )可利用基本不等式求最值.[解析] (1)因为x >0,所以x12>0,3x >0,所以f (x )= x12+3x ≥2x x312⋅=236=12.当且仅当x12=3x ,即x =2时,等号成立.所以当x =2时,f (x )取得最小值12. (2)因为x <0,所以-x >0, 所以-f (x )= (-x 12)+(-3x )≥2()x x 312-⋅⎪⎭⎫⎝⎛-=12,所以f (x )≤-12 . 当且仅当-x12=-3x ,即x =-2时,等号成立.所以当x =-2时,f (x )取得最大值-12.[说明] 利用基本不等式求函数最值时,要注意体会“一正、二定、三相等”,当两个数均为负数时,首先将它们变为正数,即在前面加一个负号,再利用基本不等式求解. 变式应用2设x >0,求y =2-x -x4的最大值.[解析] ∵x >0,∴x +x4≥2xx 4⋅=4,∴y =2- (x +x4)≤2-4=-2.当且仅当x =x4,即x =2时等号成立,y取最大值-2.[例3] (1)已知x <45,求函数y =4x -2+541-x 的最大值;(2)已知0<x <31,求函数y=x (1-3x )的最大值.[分析] 此题不容易看出积或和为定值,必须对函数解析式进行拼凑,让其产生定值. [解析] (1)因为x <45,所以4x -5<0,即5-4x >0,所以y =4x -2+541-x =- (5-4x +x451-)+3.因为5-4x +x451-≥2()xx 45145-⋅-=2,所以y ≤-2+3=1,当且仅当5-4x =x451-,即x =1时等号成立,所以当x =1时,函数y 取得最大值1.(2)因为0<x <31,所以1-3x >0,所以y=x (1-3x )=31·3x (1-3x )≤31 [()2313x x -+]2=121.当且仅当3x =1-3x ,即x =61时等号成立,所以当x =61时,函数y 取得最大值121.[说明] 解决本题的关键是拼凑.(1)中将4x -2拼凑成4x -5.(2)中将x 拼凑成3x ,从而可产生定值.(1)中是积为定值.(2)中是和为定值. 变式应用3求函数y =31-x +x (x >3)的最小值.[解析] y =31-x +x =31-x +(x -3)+3,∵x >3,∴x -3>0, ∴31-x +(x -3)≥2()331--x x =2,当且仅当31-x =x -3,即x -3=1,x =4时,等号成立. ∴当x =4时,函数y =31-x +x (x >3)取最小值2+3=5.命题方向 利用基本不等式解决有关实际应用问题[例4] 某商品进货价为每件50元,据市场调查,当销售价格每件x 元(50<x ≤80)时,每天销售的件数为p =()254010-x ,若想每天获得的利润最多,则销售价为多少元?[分析] 首先据题意建立关于利润的函数模型,利润=销售件数×(销售价格-进货价格).再应用基本不等式解决最值问题.[解析] 解法一:由题意知利润 S =(x -50)·()254010-x=(x -50)·()()1005020501025+-+-x x=()()205010050105+-+-x x .∵x -50≥0, ∴(x -50)+()50105-x ≥20.∴S ≤2020105+=2500,当且仅当(x -50)=()5010-x ,即x =60或x =40(不合题意舍去)时取=. 解法二:由题意知利润 S =(x -50)·()254010-x令x -50=t ,x =t +50(t >0), 则S =()251010+t t=100201025++t t t=20100105++tt ≤2020105+=2500.当且仅当t =t100,即t =10时取等号,此时x =60.答:当销售价格定为60元时,每天获得的利润最多. [说明] 1.解实际应用问题要遵循以下几点:(1)在理解题意的基础上设变量,设变量时一定要把求最大值或最小值的变量定义为函数; (2)建立相应的函数解析式,将实际应用问题转化,抽象为函数的最大值或最小值问题(纯数学问题);(3)在定义域内(使实际问题有意义的自变量取值范围)求出函数的最大值、最小值; (4)回到实际问题中,写出正确答案.2.本题为分式函数模型,可将其转化为基本不等式的形式求解.若分子次数高时,可把分子拼凑成分母的形式,用分母除开;若分母次数高时,可把分母拼凑成分子的形式,反过来相除,此外,也可以先使用换元法,再拼凑上基本不等式的形式,去求最值. 变式应用4某企业开发一种新产品,现准备投入适当的广告费,对产品进行促销,在一年内,预计年销量Q (万件)与广告费x (万元)之间的函数关系为Q =xx 23- (x >0).已知生产此产品的年固定投入为3万元,每年生产1万件此产品仍需要投入32万元,若年销售额为“年生产成本的150%”与“年广告费的50%”之和,而当年产销量相等.(1)试将年利润P (万元)表示为年广告费x (万元)的函数; (2)当年广告费投入多少万元时,企业年利润最大? [解析] (1)P =(32Q +3)·150%+x ·50%-(32Q +3)-x =-2x -x32+49.5(x >0);(2)P =- (2x +x32)+49.5≤-2×4+49.5=41.5,当且仅当21x =x32时,即x =8时,P 有最大值41.5万元.答:当年广告费投入8万元时,企业年利润最大,最大值为41.5万元.名师辨误做答[例5] 已知a >0,b >0,且a1+b9=1,求a+b 的最小值.[误解] ∵a >0,b >0 ∴a1+b9≥2ab9=6ab1,∴6ab1≤1,∴ab1≤361,∴ab ≥36.∴a+b ≥2ab ≥12. ∴a+b 的最小值为12.[辨析] 上述解法错误的原因是两次使用均值不等式时,两个等号成立的条件不同,即第一次等号成立的条件为a1+b9,即b =9a ,第二次等号成立的条件为a=b ,故a+b 取不到最小值12.[正解] ∵a >0,b >0,a1+b9=1,∴a+b =(a 1+b9)(a+b )=1+9+ba ab 9+≥10+2ba ab 9⋅=10+2×3=16. 当且仅当ba ab 9=,即b 2=9a 2时等号成立.解得a =4,b =12.故当a =4,b =12时,a+b 取最小值16.课堂巩固训练一、选择题 1.已知ab >0,则ba ab +的取值范围是( )A.(2,+∞)B.[2,+∞)C.(4,+∞)D.[4,+∞) [答案] B[解析] ∵ab >0, ∴a b >0,ba >0,∴ba ab +≥2b aa b ⋅=2. 当且仅当ba ab =,即a=b 时,等号成立.2.不等式a 2+4≥4a 中等号成立的条件是( ) A.a =±2 B.a =2 C.a =-2 D.a =4 [答案] B[解析] 因为a 2-4a +4=(a -2) 2≥0, 当且仅当a =2时取“=”,所以a =2. 3.如果a,b 满足0<a<b ,a+b =1,则21,b ,2ab ,a 2+b 2中值最大的是( )A. 21 B.aC.2abD.a 2+b 2 [答案] D[解析] 解法一:∵0<a<b , ∴1=a+b >2a , ∴a <21,又a 2+b 2≥2ab ,∴最大数一定不是a 和2ab , 又a 2+b 2=(a+b ) 2-2ab =1-2ab , ∵1=a+b >2ab ,∴ab <41,∴1-2ab >1-21=21,即a 2+b 2>21.解法二:特值检验法:取a =31,b =32,则2ab =94,a 2+b 2=95,∵95>21>94>31,∴a 2+b 2最大.二、填空题 4.若x >0,则x +x2的最小值为 .[答案] 22 [解析] ∵x >0,∴x +x2≥2xx 2⋅=22,当且仅当x =x2,即x =2时,等号成立.5.x,y ∈R ,x+y =5,则3x +3y 的最小值是 . [答案] 183[解析] 3x >0,3y >0.∴3x +3y ≥2y x 33⋅=2yx +3=2·(3)5=183,当且仅当x=y =25时等号成立.课后强化作业一、选择题1.下列函数中,最小值为2的是( ) A.y=x +x1 B.y =sin x +xsin 1,x ∈ (0,2π)C.y =2322++x x D.y =x +x1[答案] D[解析] A 中,不满足正数这一条件; B 中,∵x ∈ (0,2π),∴sin x ∈(0,1),∴等号不成立; C 中,y =2322++x x =21222+++x x =22+x +212+x ,当22+x =212+x 时,x 2+2=1,x 2=-1(不成立); D 中x >0, y =x +x1≥2,当且仅当x =x1,即x =1时,取最小值2. 2.a,b ∈R +,则2b a +,ab ,ba ab +2三个数的大小顺序是( )A. 2b a +≤ab ≤b a ab +2B. ab ≤2b a +≤b a ab +2C. ba ab +2≤ab ≤2b a +D. ab ≤ba ab +2≤2b a +[答案] C[解析] 解法一:取a =2,b =8,则2b a +=5,ab =4,ba ab +2=3.2,∴选C.解法二:已知2b a +≥ab ,又ab -ba ab +2=()ba abb a ab +-+2=()2ba ba ab+-≥0∴ab ≥ba ab +2. 也可作商比较abb a ba ab ab22+=+≥1.3.(2011·上海理,15)若a,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A.a 2+b 2>2ab B.a+b ≥2abC.ba 11+ >ab2 D.ba ab +≥2[答案] D[解析] 本题考查不等式的性质、基本不等式,可用排除法逐项判断. 用排除法: A:a=b 时不满足; B:a<0,b <0时不满足; C:a <0,b <0时不满足; D:ab >0,ba >0,ab +ba ≥2baa b ⋅=2. 4.设x +3y =2,则函数z =3x +27y 的最小值是( ) A.32 B.22C.3D.6 [答案] D [解析] ∵x +3y =2, ∴x =2-3y . ∴z =3x+27y=32-3y+27y=y279+27y≥2yy27279⋅=6,当且仅当y279=27y,即27y =3,∴33y=3, ∴3y =1, ∴y =31.即x =1,y =31时,z =3x +27y 取最小值6.5.某工厂第一年产量为A ,第二年的增长率为a , 第三年的增长率为b ,这两年的平均增长率为x ,则( ) A.x =2b a + B.x ≤2b a +C.x >2b a + D.x ≥2b a +[答案] B[解析] ∵这两年的平均增长率为x , ∴A (1+x ) 2=A (1+a )(1+b ),∴(1+x ) 2=(1+a )(1+b ),由题设a >0,b >0. ∴1+x =()()b a ++11≤()()211b a ++=1+2b a +,∴x ≤2b a +.等号在1+a =1+b 即a=b 时成立. 6.若x >4,则函数y=x +41-x ( )A.有最大值-6B.有最小值6C.有最大值-2D.有最小值2 [答案] B[解析] ∵x >4,∴x -4>0,∴y=x -4+41-x +4≥2()414-⋅-x x +4=6.当且仅当x -4=41-x ,即x -4=1,x =5时,取等号.7.若a>b >1,P =b a lg lg ⋅,Q =21 (lg a +lg b ),R =lg (2b a +),则( )A.R<P<QB.P<Q<RC.Q<P<RD.P<R<Q [答案] B[解析] 由a >b >1,得lg a >lg b >0, Q =21 (lg a +lg b )>b a lg lg ⋅=P ,R =lg(2b a +)>lg ab =21 (lg a +lg b )=Q ,∴R >Q >P .8.设正数x,y 满足x +4y =40,则lg x +lg y 的最大值是( ) A.40 B.10C.4D.2 [答案] B [解析] ∵x +4y ≥2y x 4⋅=4xy ,∴xy ≤44y x + =440=10,当且仅当x =4y 即x =20,y =5时取“=”, ∴xy ≤100,即(xy )max =100, ∴lg x +lg y =lg(xy )的最大值为lg100=2. 二、填空题9.周长为l 的矩形对角线长的最小值为 . [答案]42 l[解析] 设矩形长为a ,宽为b ,则a+b =21,∵(a+b ) 2=a 2+b 2+2ab ≤2a 2+2b 2,∴a 2+b 2≥()22b a +,∴对角线长22b a +≥()22b a + =42l .当且仅当a=b 时,取"=".10.若a >0,b>0,a+b =2,则下列不等式对一切满足条件的a,b 恒成立的是 (写出所有正确命题的编号). ①ab ≤1; ②b a +≤2;③a 2+b 2≥2; ④a 3+b 3≥3; ⑤ba 11+≥2.[答案] ①③⑤ [解析] ①ab ≤(2b a +)2=(22)2=1,成立.②欲证b a +≤2,即证a+b +2ab ≤2,即2ab ≤0,显然不成立. ③欲证a 2+b 2=(a+b )2-2ab ≥2, 即证4-2ab ≥2,即ab ≤1,由①知成立. ④a 3+b 3=(a+b )(a 2-ab+b 2)≥3⇔a 2-ab+b 2≥23⇔ (a+b ) 2-3ab ≥23⇔4-23≥3ab ⇔ab ≤65,由①知,ab ≤65不恒成立.⑤欲证a1+b1≥2,即证abb a +≥2,即证ab ≤1,由①知成立.11.(2010·山东·文)已知x ,y ∈R +,且满足43y x +=1,则xy 的最大值为 .[答案] 3[解析] ∵x >0,y >0,且1=43y x +≥212xy ,∴xy ≤3,当且仅当43y x =,即x =23,y =2时,等号成立.12.(2011·浙江文,16)若实数x,y 满足x 2+y 2+xy =1,则x+y 的最大值是 [答案]332[解析] 题考查了均值不等式及学生灵活运用该知识的能力. 由x 2+y 2+xy =1可得,(x+y )2=xy +1 而由均值不等式得xy ≤(2y x +)2∴(x+y )2≤(2y x +)2+1整理得,43(x+y )2≤1∴x+y ∈[-332,332]∴x+y 的最大值为332.三、解答题13.设实数a 使a 2+a -2>0成立,t >0,比较21log a t 与log a21+t 的大小.[解析] ∵a 2+a -2>0,∴a <-2或a >1, 又a >0且a ≠1,∴a >1, ∵t >0,∴21+t ≥t ,∴log a21+t ≥log a t =21log a t ,∴21log a t ≤log a 21+t .14.已知a >0,b >0,a,b 的等差中项是21,且α=a +a1,β=b +b1,求α+β的最小值.[解析] 因为a,b 的等差中项是21,所以a+b =1, α+β= (a +a1)+ (b +b1)=(a+b )+ (a1+b1)=1+abb a +=1+ab1,∵ab ≤ (2b a +)2=41,∴ab1≥4,α+β≥5(当且仅当a=b =21时取等号),故α+β的最小值为5.15.已知x >0,y >0,lg x +lg y =1,求x2+y5的最小值.[解析] 方法一:由已知条件lg x +lg y =1可得: x >0,y >0,且xy =10.则x2+y5=1052x y +≥10102xy =2,所以 (x2+y5)min =2,方法二:由已知条件lg x +lg y =1可得: x >0,y >0,且xy =10,x2+y5≥2yx 52⋅=21010=216.(2012·济南高二检测)要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm 2,四周空白的宽度为10cm ,两栏之间的中缝空白的宽度为5cm ,怎样确定广告的高与宽的尺寸(单位:cm ),能使矩形广告面积最小?[分析] 本题是一道较为典型的求最值的实际应用题,考查了均值不等式的应用,同时考查了学生分析问题和解决问题的能力.[解析] 设矩形栏目的高为a cm,宽为b cm, 则ab =9000. ①广告的高为a +20,宽为2b +25,其中a >0,b >0.广告的面积S =(a +20)(2b +25)=2ab +40b +25a +500=18500+25a +40b ≥18500+2b a 4025 =18500+2ab 1000=24500.当且仅当25a =40b 时等号成立,此时b =85a,代入①式得a =120,从而b =75,即当a =120,b =75时,S 取得最小值24500,故广告的高为140cm,宽为175cm 时,可使广告的面积最小.。
§6.3不等式的证明(二)
主编:黄智宁,邹春芳,王心爱
【学习目标】
掌握综合法证明不等式
【学法指导】
利用某些已经证明过的不等式(例如均值不等式)和不等式的性质推导出
所要证明的不等式成立,这种证明方法通常叫做综合法
一、自主学习(做完后与你的本组同学对照答案)(学生完成本部分预计用时5 分
钟,实际用时 )
1.均值不等式:设,abR,则2abab(当且仅当 时取“”).
2.不等式的性质:
(1)a>b,b>c,a c
(2)a>bac b+c
(3)a>b,c>0ac bc
(4)a>b,c<0ac bc
(5)a>b,c>da+c b+c
(6)a>b>0, c>d>0ac bd
(7)a>b>0,,nNn>1na nb,na nb
二、合作探究(学生完成本部分预计用时 20 分钟,实际用时 )
1.已知a,b,c是正实数,求证:222abcabbcac
变式:已知a,b,c是不全相等的正数,求证:
222222
()()()abcbcacab
>6abc
2.设a,b,c为△ABC的三条边,求证222abc<2()abbcca
三、交流展示(学生完成本部分预计用时15 分钟,实际用时 )
1.已知xy>0,求证:14yxxyxyxy
2. 已知a>b>0,0<c<d, 求证:ac>bd
四、总结提升
【学习小结】
本节课学习了用综合法证明不等式,综合法是证明不等式的常用方法之一
【知识拓展】
综合法的证明格式:用“”或“”
在推导过程中,每步都要依据不等式的性质
五、达标检测(A组必做,B组选做)
A组
1.已知a,b,c是不全等的正数,求证:2(1)()abababacbcc>16abc
2.已知a,b,c是不全等的正数,
求证:2222()abc>222()()()abcbaccab
3.已知xR且*1,xnN,求证:(1)(1)nnxx>12nnx