《解三角形》单元检测试题
- 格式:doc
- 大小:140.50 KB
- 文档页数:5
解三角形单元测试题班级: ____ 姓名 成绩:_____________一、选择题:1、在△ABC 中,a =3,b =7,c =2,那么B 等于()A . 30°B .45°C .60°D .120° 2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )A .310+B .()1310-C .13+D .3103、在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .30°或120°D . 30°或150°4、在△ABC 中,a =12,b =13,C =60°,此三角形的解的情况是( )A .无解B .一解C . 二解D .不能确定 5、在△ABC 中,已知bc c b a ++=222,则角A 为()A .3π B .6π C .32π D . 3π或32π6、在△ABC 中,若B b A a cos cos =,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形 7、已知锐角三角形的边长分别为1,3,a ,则a 的范围是()A .()10,8B .()10,8C .()10,8D .()8,108、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 9、△ABC 中,已知===B b x a ,2, 60°,如果△ABC 两组解,则x 的取值范围( )A .2>xB .2<xC .3342<<x D . 3342≤<x 10、在△ABC 中,周长为7.5cm ,且sinA :sinB :sinC =4:5:6,下列结论:①6:5:4::=c b a ②6:5:2::=c b a ③cm c cm b cm a 3,5.2,2=== ④6:5:4::=C B A 其中成立的个数是 ( )A .0个B .1个C .2个D .3个11、甲船在岛B 的正南方A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是( )10000米, )则三角形的外接圆半径为 .的最大内角的度数是 5的情况下,求18、在△ABC 中,BC =a ,AC =b ,a ,b 是方程02322=+-x x 的两个根,且()1cos 2=+B A 。
解三角形单元测试题 一、选择题:1. 在△ABC 中,c=3,B=300,则a 等于( ) AB .CD .22.在ABC ∆中,已知三边a 、b 、c 满足()()3a b c a b c ab +++-=,则C =( ) A .15 B .30 C .45 D .603. 已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 的值为( )A .41-B .41C .32-D .324. 在△ABC 中,A =60°,b =1,其面积为3,则CB A cb a sin sin sin ++++等于( )A .33B .3392C .338D .2395. 在△ABC 中,AB =5,BC =7,AC =8,则BC AB ⋅的值为( ) A .79B .69C .5D .-56.△ABC 中,根据下列条件,确定△ABC 有两解的是( ) A.a=18,b=20,A=120° B.a=60,c=48,B=60° C.a=3,b=6,A=30° D.a=14,b=16,A=45°7. 设m 、m+1、m+2是钝角三角形的三边长,则实数m 的取值范围是( ) A.0<m <3 B.1<m <3C.3<m <4D.4<m <68. △ABC 中,若c=ab b a ++22,则角C 的度数是( ) A.60° B.120° C.60°或120° D.45°9.在△ABC 中,A B B A 22sin tan sin tan ⋅=⋅,那么△ABC 一定是( ) A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形10. 在ABC △中,cos cos sin sin A B A B >,则ABC △是( ) A.锐角三角形 B.直角三角形C.钝角三角形D.正三角形二、填空题13.在△ABC 中,有等式:①asinA=bsinB ;②asinB=bsinA ;③acosB=bcosA ;④sin sin sin a b cA B C+=+. 其中恒成立的等式序号为______________14. 在等腰三角形 ABC 中,已知sinA ∶sinB=1∶2,底边BC=10,则△ABC 的周长是 .15. 在△ABC 中,已知sinA ∶sinB ∶sinC=3∶5∶7,则此三角形的最大内角的度数等于___________.16. 在ABC △中,若12057A AB BC ∠===,,,则ABC △的面积S =_____________.三、解答题17. 已知在△ABC 中,A=450,BC=2,求解此三角形.18. 在△ABC 中,已知a-b=4,a+c=2b ,且最大角为120°,求△ABC 的三边长.19. 如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的 两个测点C 与D ,测得75BCD ︒∠=,60BDC ︒∠=,60CD =米, 并在点C 测得塔顶A 的仰角为60︒,求塔高20. 如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立 即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.21.在ABC △中,已知222sin sin sin A B C +=,求证:ABC △为直角三角形.22. 在△ABC 中,已知3cos 2cos a C c A =,且1tan 3A =,求B.23.已知ABC △中,AD 为BAC ∠的平分线,利用正弦定理证明AB BDAC DC=.222222442-41(4)(4) cos 222(4)100()14 10 6a b a b a c b c b A b c a b b b A bc b b b b -=⇒=++=⇒=+-+--+=⇒-=-==,代入 故易知:为最大角 解方程得:或舍去故三角形的三边长分别为:, ,正余弦定理单元测试参考答案 CDABD DBBDC13. ②④ 14.50, 15.120017. 已知在△ABC 中,A=450,BC=2,求解此三角形. 解答:作图观察,12060 232226sin sin sin sin 或故==⨯==⇒=C a A c C A a C c ,15180012,7518060=--===--==C A B C C A B C 时,当时,当13624645cos 2cos 2222±=-+=⇒-+=b b b bc a c b A 解方程得:将余弦定理作为方程来用!15120==B C ,故,三角形的解为:,1-3=AC 或 5706==B C ,,13+=AC 18. 在△ABC 中,已知a-b=4,a+c=2b ,且最大角为120°,求△ABC 的三边长. 解答:19.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,测得75BCD ︒∠=,60BDC ︒∠=,60CD =米,并在点C 测得塔顶A 的仰角为60︒,求塔高解答:63022236060sin 45sin =⨯=⇒=CB CBCD290363060tan 60tan =⨯==⇒=CB AB CBAB答:塔高为290米。
《解直角三角形》章节测试题时间100分钟 满分100分 班级 姓名 得分一、 选择题((每题3分,共21分))1. 在∆Rt 中,各边的长度都扩大3倍,则锐角A 的三角函数值( )A 也扩大3倍B 缩小为原来的31 C 都不变 D 有的扩大,有的缩小 2. 如图(1),在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC于D ,连结BD ,若cos ∠BDC=53,则BC 的长是( )A 、4cm B 、6cm C 、8cm D 、10cm3.若3tan(a+10°)=3,锐角a 的度数是( ) A 、20°B 、30°C 、35°D 、50°4. 在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( )A .c=A a sinB .c=Aa cos C .c=a·tanA D .c=a·cotA 5. 当锐角α>60°时,则cosα的取值范围是( )A .21cos 0<<α B.23cos 0<<α C.23cos 21<<α D .22cos 21<<α 6. Rt △ABC 中,∠C=90°,tanA=34,BC=8,则AC 等于( ) A .6 B .332 C .10 D .12 7. 点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(,)B .(-,)C .(-,-)D .(-,-)二、 填空题((每题3分,共48分))8. 在Rt △ABC 中,∠C =90°,a =2,b =3,则sin B = ,tan B = .图(1)9.在△ABC 中,∠C=90°,若cosA=53,则tanB=_____,cotB= , cosB= . 10. 一等腰三角形的两边长分别为4cm 和6cm ,则其底角的余弦值为________.11. 在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________.12. 在△ABC 中,AB=2,AC=2,∠B=30°,则∠A=______.13. 在Rt △ABC 中,∠C =90°,面积为24cm 2,b=6cm, 则sin A = .14. 在△ABC 中,∠C =90°,cosA=23,AB =8cm ,则△ABC 的面积为______. 15. 2sin30°+2cos60°+3tan45°=_______;=+ 65cos 25cos 22______16. =+ 12cos 12sin 22______; =+ 56sin 34sin 22______.17. 已知锐角α,(1).sin28°=cosα,则α=________, (2).tan28°=cosα,则α=________;(3).cos38°=sinα,则α=________, (4).cot 2432'22''=tan α,则α=____________ .18.sin40 ,sin75 ,tan45 ,cot25 的大小关系是(用""<符号连接)___________________19、若∠A 是锐角,且sinA =cosA ,则∠A 的度数是 .20、在△ABC 中,∠C =90°,如果AB =2,BC =1,那么sinA 的值是 ;21、如图(2),在坡度为1:2的山坡上种树,要求相邻两棵树间的水平距离为6米,斜坡上相邻两树间的坡面距离是 ;22、△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,如果a :b :c =1:3:2,那么∠A :∠B :∠C = ;23、如图(3),∠C =900,∠DBC =300,AB =DB ,那么tanA= ;三、计算(每题3分,共12分)24、---10)21(30sin 2|060cot -|+132+图(2)图(3)25112sin 602cot 30tan 601--+26、0)20093(30tan 160sin 160cos -+++27、 60sin 225tan 25cot 30tan 3-+四、简答题(19分)28、(9分)如图(4),一船在A 处看见灯塔B 在它的南偏西300方向,这时,船和灯塔B 的距离为40海里,然后船向西南方向航行到C 处,这时,望见灯塔B 在它正东方向,那么,船航行了多少海里?图(4)E 29、(10分)如图(5),D 是△ABC 的边AC 上一点,CD =2AD ,AE ⊥BC ,交BC 于点E.若BD =8,sin ∠CBD =43,求AE 的长。
《解三角形》单元测试题班级:__________学号:__________姓名:__________成绩:__________一、选择题。
1、一个三角形的三边之比为6:7:9,那么这三角形是A 、钝角三角形B 、锐角三角形C 、直角三角形D 、三内角之比为6:7:92、在ABC △中,已知4,6a b ==,60B =,则sin A 的值为A 、33B 、32C 、63D 、623、在ABC △中,::1:2:3A B C =,则sin :sin :sin A B C =A 、1:2:3B 、1:2:3C 、1:2:3D 、1:3:24、在ABC △中,sin :sin :sin 4:3:2A B C =,那么cos C 的值为A 、14B 、14-C 、78D 、11165、在ABC △中,13,34,7===c b a ,则最小角为A 、3πB 、6πC 、4πD 、12π 6、在ABC △中,60,16,A b == 面积3220=S ,则c =A 、610B 、75C 、55D 、497、在ABC △中,()()()a c a c b b c +-=+,则A =A 、30B 、60C 、120D 、1508、在ABC △中,根据下列条件解三角形,则其中有二个解的是A 、10,45,70b A C ===B 、60,48,60a c B ===C 、7,5,80a b A ===D 、14,16,45a b A ===9、在ABC △中,有一边是另一边的2倍,并且有一个角是30,那么这个三角形A 、一定是直角三角形B 、一定是钝角三角形C 、可能是锐角三角形D 、一定不是锐角三角形10、已知锐角三角形的边长分别是2,3,x ,则x 的取值范围是A 、15x <<B 、513x <<C 、05x <<D 、135x <<二、填空题。
A B C11、在ABC △中,3,2a b ==,45B =,则A =____________12、在ABC △中,60A =,且43c b =,则sin C =____________ 13、在ABC △中,已知7,8a b ==,13cos 14C =,则最大角的余弦值是___________ 14、在ABC △中,12,60,45a b A B +===,则a =____________三、解答题。
《解直角三角形》单元测试卷一、填空题:1、如下图,表示甲、乙两山坡的情况, _____坡更陡。
(填“甲”“乙”)αβ1213 34甲乙2、在Rt △ABC 中,∠C =90°,若AC =3,AB =5,则cosB 的值为__________。
3、在Rt △ABC 中,∠C=90°.若sinA=22,则sinB= 。
4、计算:tan 245°-1= 。
5、在△ABC 中,AB=AC=10,BC=16,则tanB=_____。
6、△ABC 中,∠C=90°,斜边上的中线CD=6,sinA=31,则S △ABC=______。
7、菱形的两条对角线长分别为23和6,则菱形较小的内角为______度。
8、如图2是固定电线杆的示意图。
已知:CD ⊥AB ,CD 33=m ,∠CAD=∠CBD=60°,则拉线AC 的长是__________m 。
9、升国旗时,某同学站在离旗杆底部24米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若双眼离地面1.5米,则旗杆的高度为______米。
(用含根号的式子表示)10、如图3,我校为了筹备校园艺术节,要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致,台阶的侧面如图所示,台阶的坡角为30,90BCA ∠=,台阶的高BC 为2米,那么请你帮忙算一算需要 米长的地毯恰好能铺好台阶.(结果精确到0.1m ,取2 1.414=,3 1.732=)11、如图4,如果△APB 绕点B 按逆时针方向旋转30°后得到△A'P 'B ,且BP=2,那么PP '的长为____________.(不取近似值. 以下数据供解题使用:sin15°=624-,cos 15°=624+)二、选择题:12、在ABC ∆中,︒=∠90C ,AB=15,sinA=13,则BC 等于( ) A 、45 B 、5 C 、15 D 、14513、李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是( ) A.40° B.30° C.20° D.10°14、身高相同的三个小朋友甲、乙、丙放风筝,他们放出的线长分别为300 m ,250 m ,200 m ;线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则三人所放的风筝( )A.甲的最高B.乙的最低C.丙的最低D.乙的最高 15、在△ABC 中,若tanA=1,sinB=22,你认为最确切的判断是( ) A.△ABC 是等腰三角形 B.△ABC 是等腰直角三角形C.△ABC 是直角三角形D.△ABC 是一般锐角三角形16、如图5,某地夏季中午,当太阳移至房顶上方偏南时,光线与地面成80°角,房屋朝南的窗子高AB=1.8 m ,要在窗子外面上方安装水平挡光板AC ,使午间光线不能直接射入室内,那么挡光板的宽度AC 为( )A.1.8tan80°mB.1.8cos80°mC.︒80sin 8.1 m D.︒80tan 8.1 m17、如图6,四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=23,AD=2,则四边形ABCD 的面积是( ) A.42B.43C.4D.6三、解答题:18、计算:(1)3cos30°+2sin45° (2)6tan 2 30°-3sin 60°-2sin 45°19、根据下列条件,求出Rt △ABC(∠C=90°)中未知的边和锐角. (1)BC=8,∠B=60°; (2)AC=2,AB=2.20、如图7,在Rt △ABC 中,∠C=90°,AC=8,∠A 的平分线AD=3316,求∠B 的度数及边BC 、AB 的长.21、等腰三角形的底边长20 cm ,面积为33100c m 2,求它的各内角.22、同学们对公园的滑梯很熟悉吧!如图是某公园在“六•一”前新增设的一台滑梯,该滑梯高度AC =2m ,滑梯着地点B 与梯架之间的距离BC =4m 。
《解直角三角形》整章测试【1】一、选择题(每小题3分,共24分)1.在Rt △ABC 中, ∠C=90︒,AB=4,AC=1,则cos A 的值是( )(A )154(B)14(C)15 (D)42.计算:2)130(tan -︒=( )(A)331-(B)13- (C)133-(D )1-3 3.在ABC ∆中,,A B ∠∠都是锐角,且sinA =21, cosB =23,则ABC ∆的形状( ) (A )直角三角形(B )钝角三角形 (C )锐角三角形 (D )不能确定4.如图,在Rt ABC △中,3tan 2B =,23BC =,则AC 等于( )(A )3(B )4(C )43(D )65.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的 眼睛距地面的距离),那么这棵树高是( ) (A)(53332+)m (B)(3532+)m (C)533m (D)4m 6.因为1sin 302=,1sin 2102=-, 所以sin 210sin(18030)sin 30=+=-;因为2sin 452=,2sin 2252=-,所以sin 225sin(18045)sin 45=+=-,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240=( )(A )12-(B)22-(C)32- (D)3-7.如图,客轮在海上以30km/h 的速度由B 向C 航行,在B 处测得 灯塔A 的方位角为北偏东80,测得C 处的方位角为南偏东25,航 行1小时后到达C 处,在C 处测得A 的方位角为北偏东20,则C 到A 的距离是( )(A)156km(B)152km (C)15(62)+km(D)5(632)+km北东ABC8.如图,在Rt ABC △中,906cm A AC ∠==,,8cm AB =,把AB 边翻折,使AB 边落在BC 边上,点A 落在点E 处,折痕为BD ,则sin DBE ∠的值为()(A)13(B)310(C)37373(D)1010二、填空题(每小题3分,共24分) 9.计算sin 60tan 45cos30-的值是.10. 用“>”或“<”号填空:1sin 50cos 402-0.(可用计算器计算) 11.在Rt ABC △中,90C ∠=,:3:4BC AC =,则cos A =. 12.如图,一架梯子斜靠在墙上,若梯子到墙的距离AC =3米,3cos 4BAC ∠=,则梯子AB 的长度为米.13.如图,一轮船由南向北航行到O 处时,发现与轮船相距40海里的A 岛在北偏东33方向.已知A 岛周围20海里水域有暗礁, 如果不改变航向,轮船(填“有”或“没有”)触暗礁 的危险.(可使用科学计算器)14. 如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE=6cm ,3sin 5A =,则菱形ABCD 的面积是__________2cm . 15.根据指令[s,A](s ≥0,0°≤A <360°)机器人在平面上能完成如下动作:先在原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点(-3,3),应下的指令是.16. 有古诗“葭生池中”今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问: 水深、葭长各几何?(1丈=10尺)回答:水深,葭长. 17.(本题8分)计算:242(2cos 45sin 60)4︒-︒+. 18.(本题10分)某校数学兴趣小组在测量一座池塘边上A B ,两点间的距离时用了以下三种测量方法,如下图所示.图中a b c ,,表示长度,β表示角度.请你分别求出AB 的长度(用含有a b c β,,,字母的式子表示).(1)______AB = (2)______AB = (3)______AB =19.(本题10分)小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m ,请你帮小强计算这块菜地的面积(结果保留根号). 20.(本题12分)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由. (1A C B a b(2AC B a β (3AC B aD Ec b A BCD EA BC21.(本题12分)如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向、点B的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求B,D之间的距离;(2)求C,D之间的距离.四、附加题(本题20分)22.现代家居设计的“推拉式”钢窗,运用了轨道滑行技术,纱窗装卸时利用了平行四边形的不稳定性,操作步骤如下:(1)将矩形纱窗转化成平行四边形纱窗后,纱窗上边框嵌入窗框的上轨道槽(如图1).(2)将平行四边形纱窗的下边框对准窗框的下轨道槽(如图2).(3)将平行四边形纱窗还原成矩形纱窗,同时下边框嵌入窗框的下轨道槽(如图3).在装卸纱窗的过程中,如图所示α∠的值不得小于81,否则纱窗受损.现将高96cm的矩形纱窗恰好安装在上、下槽深分别为0.9cm,高96cm(上、下槽底间的距离)的窗框上.试求合理安装纱窗时α∠的sin810.987=0.990=sin830.993=0.995=cos90.987=0.990=0.993=0.995=章《解直角三角形》整章测试答案:~8 BABA ACDD三、17.解:2=原式2=-2=18.解:(1)AB=(2)tanAB aβ=(3)acABb=.19.解:分两种情况:(1)当ACB∠为钝角时,BD是高,90ADB∴∠=.在Rt BCD△中,40BC=,30BD=∴CD==.在Rt ABD△中,50AB=,ABC中山路文化路D和平路45°15°30°环城路EF 图1 2 图3∴40AD ==.40AC AD CD ∴=-=-,新课标第一网∴211(4030(600)22ABC S AC BD ==-⨯=-△. (2)当ACB ∠为锐角时, BD 是高,90ADB BDC ∴∠=∠=,在Rt ABD △中,5030AB BD ==,,40AD ∴==.同理CD ==∴(40AC AD CD =+=+,∴211(4030(600)22ABC S AC BD ==+⨯=+△.综上所述:2(600)ABC S =±△.20.解:有触礁危险.理由: 过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°. ∴BD =PD =x .在Rt △PAD 中,∵∠PAD =90°-60°=30°,∴x .xAD 330tan =︒=∵BD ,AB AD +=∴x .x +=123 ∴)13(61312+=-=x .∵,<18)13(6+∴渔船不改变航线继续向东航行,有触礁危险.21. 解:(1)由题意得,∠EA D =45°,∠FBD=30°. ∴∠EAC=∠EA D +∠DA C =45°+15°=60°. ∵ AE∥BF∥CD,∴ ∠FBC=∠EAC =60°. ∴ ∠DBC=30°.又∵ ∠DBC=∠DAB+∠ADB, ∴ ∠ADB=15°.∴∠DAB=∠ADB.∴ BD=AB=2. 即B ,D 之间的距离为2km .(2)过B 作BO⊥DC,交其延长线于点O , 在Rt△DBO 中,BD=2,∠DBO=60°. ∴ DO=2×sin60°=2×323=,BO=2×cos60°=1. 在Rt△CBO 中,∠CBO=30°,CO=BOtan30°=33, ∴ CD=DO-CO=332333=-(km ). 即C ,D 之间的距离为332km . 22. 解:能够合理装上平行四边形纱窗时的最大高度:960.995.1-=(cm ) 能够合理装上平行四边形纱窗时的高:96sin α∠或96cos(90)α-∠·°当81α∠=°时,纱窗高:96sin81960.98794.75295.1=⨯=<° ∴此时纱窗能装进去,当82α∠=°时,纱窗高:96sin82960.99095.0495.1=⨯=<° ∴此时纱窗能装进去.当83α∠=°时,纱窗高:96sin83960.99395.32895.1=⨯=>° ∴此时纱窗装不进去.因此能合理装上纱窗时α∠的最大值是82°.。
第一章解直角三角形 单元测试题(满分100分;时间:90分钟)一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 , )1. 如果三角形满足一个角是另一个角的4倍,那么我们称这个三角形为“实验三角形”,下列各组数据中,能作为一个“实验三角形”三边长的一组是( )A.1,1,√2B.1,1,√3C.1,2,√3D.1,2,32. 如图,△ABC 中,∠B =90∘,BC =2AB ,则cos A =( )A.√52B.12C.2√55D.√553. 如图,在△ABC 中,∠C =90∘,sin A =35,则BC AC 等于( )A.34B.43C.35D.454. 在△ABC 中,∠C =90∘,如果tan A =34,那么sin B 的值等于( ) A.53 B.35 C.54 D.455. cot β=√33,则锐角β等于( )A.0∘B.30∘C.45∘D.60∘6. 如图是一台54英寸的大背投彩电放置在墙角的俯视图.设∠DAO=α,彩电后背AD平行于前沿BC,且与BC的距离为55cm,若AO=100cm,则墙角O到前沿BC的距离OE是()A.(55+100tanα)cmB.(55+100sinα)cmC.(55+100cosα)cmD.以上答案都不对7. 如果某人沿坡度为1:3的斜坡向上行走a米,那么他上升的高度为()A.√1010a米 B.√10a米 C.a3米 D.3a米8. 如图是一台54英寸的大背投彩电放置在墙角的俯视图(其中ABCD是矩形).设∠ADO=α,彩电后背AD与前沿BC的距离为60cm,若AO=100cm,则墙角O到前沿BC的距离OE是()A.(60+100sinα)cmB.(60+100cosα)cmC.(60+100tanα)cmD.(60−100sinα)cm9. 某校数学兴趣小组要测量摩天轮的高度.如图,他们在C处测得摩天轮的最高点A的仰角为45∘,再往摩天轮的方向前进50m至D处,测得最高点A的仰角为60∘.问摩天轮的高度AB约是()米(结果精确到1米,参考数据:√2≈1.41,√3≈1.73)A.120B.117C.118D.119二、填空题(本题共计11 小题,每题3 分,共计33分,)10. 如图,关于∠α与∠β的同一种三角函数值,有三个结论:①tanα>tanβ;②sinα>sinβ;③cosα>cosβ,正确的结论为________(填序号).11. 如图,在一次测绘活动中,某同学站在点A观测放置于B,C两处的标志物,数据显示点B在点A南偏东75∘方向20米处,点C在点A南偏西15∘方向20米处,则点B与点C的距离为________米..AC上有一点E,满足AE:CE= 12. 如图,已知AD是等腰△ABC底边上的高,且tan B=342:3.那么tan∠ADE的值是________.13. 如果在某建筑物的A处测得目标B的俯角为37∘,那么从目标B可以测得这个建筑物的A 处的仰角为________.14. 计算:sin60∘⋅cos30∘−tan45∘=________.15. 如图,要在宽AB为20米的瓯海大道两边安装路灯,路灯的灯臂CD与灯柱BC成120∘角,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线(即O为AB的中点)时照明效果最佳,若CD=√3米,则路灯的灯柱BC高度应该设计为________米.(计算结果保留根号).16. 茗茗在坡度为1:√3的坡面上走了100m,则茗茗上升了________m.17. 如图,我国一渔政船在A处,发现正东方向B处有一可疑船只,正以16海里/小时速度向西北方向航行,我渔政船立即往北偏东60∘方向航行,1.5小时后,在C处截获可疑船只,则我渔政船的航行路程AC=________海里(结果保留根号).18. 在Rt△ABC中,∠C=90∘,sin A=1,那么cos A=________.219. 如图,网格中的每个小正方形的边长都是1,△ABC每个顶点都在格点上,则sin A=________.20. 动手操作:今有一副三角板(如图1),中间各有一个直径为4cm的圆洞,现将三角形a的30∘角的那一头插入三角板b的圆洞内(如图2),则三角板a通过三角板b的圆洞的那一部分的最大面积为________cm2(不计三角板的厚度).三、解答题(本题共计6 小题,共计60分,)−√3⋅tan30∘.21. 计算:cos245∘+cos302sin60+122. 已知电线杆AB直立于地面,它的影子恰好照在土坡的坡面CD和地面BC上.如果CD与地面成45∘,∠A=60∘,CD=4√2米,BC=(4√3−4)米,求电线杆AB的长.23. 某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,CD部分),在起点A处测得大楼部分楼体CD的顶端C点的仰角为45∘,底端D点的仰角为30∘,在同一剖面沿水平地面向前走20米到达B处,测得顶端C的仰角为60∘(如图②所示),求大楼部分楼体CD的高度为多少米?24. 在旧城改造中,要拆除一烟囱AB,在地面上事先划定以B为圆心,半径与AB等长的圆形危险区,现在从离B点21米远的建筑物CD顶端C测得A点的仰角为45∘,到B点的俯角为30∘,问离B点30米远的保护文物是否在危险区内?(√3约等于1.732)25. 如图,已知“中国渔政310”船(A)在南海执行护渔任务,接到陆地指挥中心(P)命令,得知出事渔船(B)位于陆地指挥中心西南方向,位于“中国渔政310”船正南方向,“中国渔政310”船位于陆地指挥中心北偏西60∘方向,距离为80海里的地方.而“中国渔政310”船最大航速为20海里/时.根据以上信息,请你求出“中国渔政310”船接到命令后赶往渔船出事地点最少需要多少时间(结果保留根号)?26. 我区在修筑渭河堤防工程时,欲拆除河岸边的一根电线杆AB.如图,已知距电线杆AB 水平距离14米处是河岸,即BD=14米,该河岸的坡面CD的坡度为1:0.5,岸高CF为2米,在坡顶C处测得杆顶A的仰角为30∘,D、E之间的宽是2米,请你通过计算说明在拆除电线杆AB时,为确保安全,是否将DE段封止?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区域)参考答案一、选择题(本题共计9 小题,每题 3 分,共计27分)1.【答案】B【解答】解:A、若三边为1,1,√2,由于12+12=(√2)2,则此三边构成一个等腰直角三角形,所以这个三角形不是“实验三角形”,所以A选项错误;B、由1,1,√3能构成,此三边构成一个等腰三角形,通过作底边上的高可得到底角为30∘,顶角为120∘,所以这个三角形是“实验三角形”,所以B选项正确;C、若三边为1,2,√3,由于12+(√3)2=22,则此三边构成直角三角形,最小角为30∘,所以这个三角形不是“实验三角形”,所以C选项错误;D、由1,2,3不能构成三角形,所以D选项错误.故选B.2.【答案】D【解答】∵∠B=90∘,BC=2AB,∴AC=√AB2+BC2=√AB2+(2AB)2=√5AB,∴cos A=ABAC =√5AB=√55.3.【答案】A【解答】解:∵sin A=35,设a=3x,则c=5x,结合a2+b2=c2得b=4x;∴tan A=BCAC =ab=3x4x=34,故选A.4.【答案】D【解答】解:由tan A=34,可设∠A的对边是3k,∠A的邻边是4k.则根据勾股定理,斜边是5k.∴sin B=4.故选D.5.【答案】D【解答】解:∵cotβ=√33,β为锐角,∴β=60∘.故选D.6.【答案】B【解答】解:设OE、AD相交于F,则EF=55,在直角三角形AFO中,∵∠DAO=α,AO=100cm,∴OF=100sinα,∵EF=55,∴OE=55+100sinαOE=55+100sinα.故选B.7.【答案】A【解答】解:如图:根据题意得:AC=a,i=1:3,∴i=AECE =13.设AE=x米,则CE=3x米,∴AC=√AE2+CE2=√10x(米),∴√10x=a,解得:x=√1010a,∴AE=√1010a米.即他上升的高度为√1010a米.故选A.8.【答案】B【解答】解:∵△AOD是直角三角形,∴∠OAD+∠ODA=90∘,∵△AOF是直角三角形,∴∠OAD+∠AOF=90∘,∴∠AOF=∠ADO=α,在Rt△AOF中,OF=AO⋅cosα=100cosα,∵EF=CD=60cm,∴OE=EF+OF=(60+100cosα)cm.故选B.9.【答案】C【解答】解:在Rt△ABC中,由∠C=45∘,得AB=BC,在Rt△ABD中,∵tan∠ADB=tan60∘=ABBD,∴BD=ABtan60∘=√3=√33AB,又∵CD=50m,∴BC−BD=50,即AB−√33AB=50,解得:AB≈118.即摩天轮的高度AB约是118米.故选:C.二、填空题(本题共计11 小题,每题 3 分,共计33分)10.【答案】①②【解答】解:根据图形得:∠α>∠β,∴tanα>tanβ,sinα>sinβ,cosα<cosβ.∴①②正确.故答案为①②.11.【答案】20√2【解答】解:根据题意得:∠BAC=90∘,AB=AC=20米,在R t△ABC中,BC=√AC2+AB2=√202+202=20√2,故答案是:20√2.12.【答案】89【解答】解:作EF⊥AD于F,如图,∵△ABC为等腰三角形,AD为高,∴∠B=∠C,∴tan C=34=ADDC设AD=3t,DC=4t,∴AC=√AD2+CD2=5t,而AE:CE=2:3,∴AE=2t,∵EF // CD,∴△AEF∽△ACD,∴EFCD =AFAD=AEAC,即EF4t=AF3t=2t5t,∴AF=65t,EF=85t,∴FD=AD−AF=95t,在Rt△DEF中,tan∠FDE=EFFD =85t95t=89∴tan∠ADE=89.故答案为89.13.【答案】37∘【解答】解:如图,∵某建筑物的A处测得目标B的俯角为37∘,∴目标B可以测得这个建筑物的A处的仰角为37∘,故答案为:37∘14.【答案】−1 4【解答】解:sin60∘⋅cos30∘−tan45∘=√32⋅√32−1=−14.故答案为:−14.15.8√3【解答】解:如图,延长OD,BC交于点P.∵∠ODC=∠B=90∘,∠P=30∘,OB=10米,CD=√3米,∴在直角△CPD中,DP=DC⋅tan60∘=3米,PC=CD÷sin30∘=2√3(米),∵∠P=∠P,∠PDC=∠B=90∘,∴△PDC∽△PBO,∴PDPB =CDOB,∴PB=PD⋅OBCD =3×10√3=10√3(米),∴BC=PB−PC=10√3−2√3=8√3(米).故答案为:8√3.16.【答案】50【解答】解:根据题意画图:AB=100,tan B=ACBC =1√3,设AC=x,BC=√3x,则x2+(√3x)2=1002,解得x=50,答:茗茗上升了50m.故答案为:50.17.24√2【解答】解:如图,作CD⊥AB于点D,垂足为D,∵在直角三角形BCD中,BC=16×1.5=24海里,∠CBD=45∘,∴CD=BC⋅sin45∘=24×√22=12√2海里,∴在直角三角形ACD中,AC=CDsin30∘=12√2×2=24√2海里,故答案为:24√2.18.【答案】√32【解答】∵在Rt△ABC中,∠C=90∘,sin A=12,∴∠A=30∘,∴cos A=√32.19.【答案】35【解答】解:如图所示:作CD⊥AB,则DC=3,AC=5,故sin A=DCAC =35.故答案为:35.20.【答案】 14.9【解答】解:如图,BC =4,∠BAC =30∘,作AD ⊥BC 于点D ,当点D 是BC 的中点时,△ABC 的面积最大,此时由中垂线的性质知,AB =AC ,∠B =75∘,S △ABC =12BC ⋅BD tan 75∘=12×4×2×3.732≈14.9cm 2.-----------------------故答案为:14.9三、 解答题 (本题共计 6 小题 ,每题 10 分 ,共计60分 )21.【答案】原式=(√22)2+√322×√32+1−√3×√33=12+3−√34−1 =1−√34.【解答】原式=(√22)2+√322×√32+1−√3×√33=12+3−√34−1 =1−√34.22.【答案】解:如图,延长AD交BC的延长线于点E,作DF⊥BE于F.∵在Rt△DCF中,∠CFD=90∘,∠DCF=45∘,CD=4√2,∴CF=DF=4.∵在Rt△DEF中,∠EFD=90∘,∠E=30∘,∴EF=DFtan∠E =4√33=4√3,∴BE=BC+CF+FE=4√3−4+4+4√3=8√3.∵在Rt△ABE中,∠B=90∘,∠E=30∘,∴AB=BE tan30∘=8√3×√33=8.故电线杆AB的长为8米.【解答】解:如图,延长AD交BC的延长线于点E,作DF⊥BE于F.∵在Rt△DCF中,∠CFD=90∘,∠DCF=45∘,CD=4√2,∴CF=DF=4.∵在Rt△DEF中,∠EFD=90∘,∠E=30∘,∴EF=DFtan∠E =4√33=4√3,∴BE=BC+CF+FE=4√3−4+4+4√3=8√3.∵在Rt△ABE中,∠B=90∘,∠E=30∘,∴AB=BE tan30∘=8√3×√33=8.故电线杆AB的长为8米.23.【答案】解:设楼高CE为x米,∵ 在Rt△AEC中,∠CAE=45∘,∴ AE=CE=x.∵ AB=20,∴ BE=x−20.在Rt△CEB中,CE=BE⋅tan60∘=√3(x−20),∴√3(x−20)=x,解得:x=30+10√3(米).=10√3+10,在Rt△DAE中,DE=AE⋅tan30∘=(30+10√3)×√33∴ CD=CE−DE=30+10√3−(10√3+10)=20(米).答:大楼部分楼体CD的高度为20米.【解答】解:设楼高CE为x米,∵ 在Rt△AEC中,∠CAE=45∘,∴ AE=CE=x.∵ AB=20,∴ BE=x−20.在Rt△CEB中,CE=BE⋅tan60∘=√3(x−20),∴√3(x−20)=x,解得:x=30+10√3(米).=10√3+10,在Rt△DAE中,DE=AE⋅tan30∘=(30+10√3)×√33∴ CD=CE−DE=30+10√3−(10√3+10)=20(米).答:大楼部分楼体CD的高度为20米.24.【答案】文物在危险区内.解:在Rt△AEC中,∠ACE=45∘,则CE=EA,∵DB=CE=21m,∴DB=EA=21m,在Rt△CEB中,∠BCE=30∘,则tan30∘=BE,即BE=EC tan30∘,EC=7√3m,∴BE=21×√33∴AB=AE+EB=(21+7√3)m,∵AB=(21+7√3)>30,∴文物在危险区内.【解答】此题暂无解答25.【答案】“中国渔政310”船接到命令后赶往渔船出事地点最少需要(2+2√3)小时.【解答】解:过点P作PD⊥AB于点D.在Rt△APD中,∵AP=80海里,∠APD=90∘−60∘=30∘,AP=40海里,PD=√3AD=40√3海里.∴AD=12在Rt△BDP中,PD=40√3海里,∠B=45∘,∴BD=PD=40√3海里,∴AB=AD+BD=(40+40√3)海里,=2+2√3(小“中国渔政310”船接到命令后赶往渔船出事地点最少需要的时间为40+40√320时).26.【答案】解:∵i=1:0.5,CF=2米=2,∴tan∠CDF=CFDF∴DF=1米,BG=2米,∵BD=14米,∴BF=GC=15米.=5√3≈8.66(米),在Rt△AGC中,AG=15tan30∘=15×√33∴AB=AG+BG=8.66+2=10.66米,BE=BD−DE=14−2=12(米),∵10.66<12,∴没有必要封止DE.【解答】解:∵i=1:0.5,CF=2米=2,∴tan∠CDF=CFDF∴DF=1米,BG=2米,∵BD=14米,∴BF=GC=15米.=5√3≈8.66(米),在Rt△AGC中,AG=15tan30∘=15×√33∴AB=AG+BG=8.66+2=10.66米,BE=BD−DE=14−2=12(米),∵10.66<12,∴没有必要封止DE.。
解三角形一、单选题1.如图,在中,,,点在边上,,,为垂足.若,则()A.B.C.D.【答案】C【解析】【分析】根据三角形的内角关系,结合正弦定理与倍角公式,即可求得cosA的值。
【详解】在中,在中,由正弦定理得,即,整理得故选:C.【点睛】本题考查了三角形中的边角关系,正弦定理与二倍角公式的简单应用,属于基础题。
2.在,3,160A 0===∆∆ABC S b ABC ,中,则=++++CB A cb a sin sin sin ( )A .338B .32C .3326D .3392【答案】D 【解析】 试题分析:S=12bcsinA=√3,112c ⨯⨯=c=4a²=b²+c²-2bccosA=1+16-2⨯1⨯4⨯cos60°=13由正弦定理=++++C B A c b a sin sin sin sin a A=3392 考点:正弦定理3.在△ABC 中,若AC =√19,AB =3,∠B =2π3,则BC =( )A .2B .3C .4D .5 【答案】A 【解析】 【分析】由已知,利用余弦定理可得关于BC 的方程,解方程可得BC 的值. 【详解】解:∵AC =√19,AB =3,∠B =2π3,∴由余弦定理可得:AC 2=AB 2+BC 2−2AB ⋅BC ⋅cosB ,可得:19=9+BC 2−2×3×BC ×cos2π3,可得:BC 2+3BC −10=0,∴解得:BC =2或−5(舍去). 故选:A . 【点睛】本题主要考查了余弦定理在解三角形中的应用,属于基础题.4.生于瑞士的数学巨星欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上。
”这就是著名的欧拉线定理,在ΔABC 中,O,H,G 分别是外心、垂心和重心,D 为BC 边的中点,下列四个结论:(1)GH =2OG ;(2)GA ⃑⃑⃑⃑⃑ +GB ⃑⃑⃑⃑⃑ +GC ⃑⃑⃑⃑⃑ =0;(3)AH =2OD ;(4)S ΔABG =S ΔBCG =S ΔACG 正确的个数为( ) A .1 B .2 C .3 D .4 【答案】D 【解析】分析:根据题意,画出图形,结合图形,利用欧拉线定理得出选项(1)正确; 根据三角形的重心性质得出选项(2)正确; 根据△AHG ∽△DOG ,判断选项(3)正确;求出S ΔABG =S ΔBCG =S ΔACG =13S △ABC ,判断选项(4)正确.详解:ΔABC 中,O,H,G 分别是外心、垂心和重心,,画出图形,如图所示;对于(1),根据欧拉线定理得HG =2OG ,选项(1)正确;对于(2),根据三角形的重心性质得GA ⃑⃑⃑⃑⃑ +GB ⃑⃑⃑⃑⃑ +GC ⃑⃑⃑⃑⃑ =0,选项(2)正确; 对于(3),∵AH ∥OD ,∴△AHG ∽△DOG ,∴AH OD=AG DG=2,∴AH =2OD ,选项(3)正确;对于(4),过点G 作GE ⊥BC ,垂足为E ,则GEAN =DGDA =13,∴△BGC 的面积为S △BGC=12×BC ×GE =12×BC ×13×AN =13S △ABC ;同理,S △AGC=S △AGB=13S △ABC ,选项(4)正确. 故选D .点睛:本题考查了三角形中的重心,外心与垂心的应用问题,也考查了分析问题与解答问题的能力,是综合性题目5.在ΔABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,有下列结论: ①若a 2>b 2+c 2,则ΔABC 为钝角三角形; ②若a 2+b 2>c 2,则ΔABC 为锐角三角形; ③若A:B:C =1:2:3,则a:b:c =1:2:3. 其中正确的个数为 ( ) A .1 B .2 C .3 D .0【答案】A 【解析】 【分析】根据余弦定理可知,cosA =b 2+c 2−a 22bc,判断cosA 的正负,只需判断 b 2+c 2−a 2的正负即可判断①②,根据正弦定理,将角的比转化为角的正弦之比即可得边长之比判断③. 【详解】①由余弦定理cosA =b 2+c 2−a 22bc<0,所以A 为钝角,故①正确;②由余弦定理得cosA =b 2+c 2−a 22bc>0,所以C 为锐角,但A 和B 不一定为锐角,故②错误;③易知A =30°,B =60°,C =90°,由正弦定理得a:b:c =sinA:sinB:sinC =1:√3:2,故③错误. 【点睛】本题主要考查了余弦定理,正弦定理,属于中档题. 6.在ABC ∆中,若2=a ,则B c C b cos cos +等于A .4 B.2C .2 D.1【答案】A 【解析】 7.△ABC 中,如果==,那么△ABC 是( ).A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形 【答案】B 【解析】试题分析:根据题意,由于==,则可知a:b:c=sinA:sinB:sinC,则原式可变形为cosA=cosB=cosC,故可知A=B=C,该三角形为等边三角形,故选B. 考点:正弦定理点评:主要是考查了正弦定理的运用,属于基础题。
第19章解直⾓三⾓形单元检测题(含答案)-第19章解直⾓三⾓形单元检测题(A卷)⼀、填空题(每⼩题6分,本题满分30分)1.已知直⾓三⾓形中两条边的长分别是6cm和8cm,则第三条边长为 .2. △ABC中∠A=40o,∠C=90,a=4.2,则b≈,c≈ (保留2个有效数字).3.⼀副三⾓板放成如图所⽰的位置,如果重合的⼀条边长48厘⽶,则其余⼏条边的长度分别为 .4.在坡度为1:3.5的⼭坡上上⾏500⽶,则垂直⾼度上升了⽶.在这样的⼭坡上植树,要求株距(相邻两树间的⽔平距离)是3⽶,则斜坡上相邻两树间的坡⾯距离应是⽶ (精确到0.1⽶).5.已知等腰梯形的上、下底边的长分别为6cm和16cm,腰长13cm,则它的⾯积是 .⼆、选择题(每⼩题5分,本题满分25分)(A)锐⾓三⾓形 (B)直⾓三⾓形 (C)钝⾓三⾓形 (D)不能确定形状7.甲、⼄、丙三⼈放风筝,各⼈放出的风筝线长分别为60m、50m、40m,线与地平⾯所成的⾓分别为30o、45o、60o,假设风筝线近似看作是拉直的,则所放风筝最⾼的是( ).(A)甲 (B)⼄ (C)丙 (D)不能确定8.如图,已知∠ACB=∠CBD=90o,BC=a,AC=b,当CD=( )时,△CDB∽△ABC.9.如图,两建筑物⽔平距离为32⽶,从点A测得对点C的俯⾓为30o,对点D的俯⾓为45o,则建筑物CD的⾼约为( ).(A)14⽶ (B)17⽶ (C)20⽶ (D)22⽶10.历史上对勾股定理的⼀种证法采⽤了下列图形:其中两个全等的直⾓三⾓形边AE、EB在⼀条直线上.证明中⽤到的⾯积相等关系是( ).三、解答题(每⼩题9分,本题满分45分)11.我们知道,在测量中常⽤到的⽅法有相似形法和解直⾓三⾓形法.联系我们已有的学习经历以及你所想到的,归纳在不同情况下测量⼀棵树⾼AB,通常怎样进⾏?写出⼏个.你设计的简要⽅案Array12.在规划、设计住宅区的时候,要求不论任何季节,底层居民的门⼝在每天正午都能照到阳光.假设某地冬天正午时刻太阳光线与地⾯的最⼩夹⾓为35°,正南朝向的楼房⾼18⽶,如图.请你设计⼀下两幢楼房之间的距离最少应有多少⽶,才能不影响后楼居民的采光(精确到1⽶)?13.已知⼀个等腰三⾓形的腰长为5厘⽶,底边长4厘⽶,求出顶⾓余弦的值(试⽤两种不同的⽅法解).14.如图,AD是已知△ABC中BC边上的⾼.P是AD上任意⼀点,当P从A向D移动时,线段PB、PC的长都在变化,试探索PB-PC的值如何变化?15.⼀个半径为20海⾥的暗礁群中央P处建有⼀个灯塔,⼀艘货轮由东向西航⾏,第⼀次在A处观测此灯塔在北偏西60°⽅向,航⾏了20海⾥后到B,灯塔在北偏西30°⽅向,如图. 问货轮沿原⽅向航⾏有⽆危险?答案:1.10cm或cm.2.5.0;6.5.3.等腰直⾓三⾓形的两条直⾓边长各为厘⽶,含有30°⾓的直⾓三⾓形另两条边长分别为厘⽶和厘⽶.4.137.4;3.1.5.132cm6.C.7.B.8.D.9.A. 10.D.11.略(提⽰:分别考虑应⽤相似三⾓形和解直⾓三⾓形两种⽅法).12.26⽶.13.0.68或相近的近似值(提⽰:画出底边上的⾼之后,先求出底⾓度数,再逐⼀近似计算;或先求出底边上的⾼之后,再求出腰上的⾼).14.值不变(提⽰:应⽤勾股定理,它的值总等于DB2-DC2).第19章解直⾓三⾓形单元检测题(B卷)⼀、填空题(每⼩题6分,本题满分30分)1.Rt△ABC中∠C=90°,若a=8,b=6,则sinB= ;若b=25,c=30,则cotA= .2.含有30°⾓的直⾓三⾓形三边长的⽐值是;含有45°⾓的直⾓三⾓形三边长的⽐值是 .3.已知梯形的两底边长分别是3cm、5cm,同⼀底边上两个⾓分别是30°、60°,则这个梯形的周长是,⾯积是 .4.应⽤计算器填⼀填,分别⽐较各个三⾓函数值的⼤⼩,说⼀说有什么规律:(1)cos20°= , cos40°= , cos60°= ;cos80°= ;(2)tan10°= , tan30°= , tan50°= ;tan70°= ..5.如图,在⾼3⽶,坡度为1:2.5的楼梯表⾯铺地毯,地毯的长度⾄少需要⽶.⼆、选择题(每⼩题5分,本题满分25分)6.在Rt△ABC中,∠C=90°,下列式⼦不⼀定成⽴的是( ).(A)tanA=cotB; (B)tanAcotB=1; (C)(sinA)+(cosA)=1;(D)(sinA)+(sinB)=17.野外⽣存训练中,第⼀⼩组从营地出发向北偏东60o⽅向前进了3千⽶,第⼆⼩组向南偏东30o⽅向前进了3千⽶,经观察、联系,第⼀⼩组准备向第⼆⼩组靠拢,则⾏⾛⽅向和距离分别为( ).8.设长⽅体的长、宽、⾼分别是5分⽶、3分⽶、4分⽶,在长⽅体表⾯上从点M到点N处的最短的途径是( ).9.在三⾓形ABC中∠A、∠B是锐⾓,等式a cos B+b cos A=c成⽴的条件是( ).(A)∠C是锐⾓; (B)∠C是直⾓; (C)∠C是钝⾓; (D)上述三种情形都可以10.在河岸边⼀点A测得与对岸河边⼀棵树C的视线与河岸的夹⾓为30°、沿河岸前⾏100⽶到点B,测得与C的视线与河岸的夹⾓为45°,则河的宽度为( ).三、解答题(每⼩题9分,本题满分45分)11.⼀艘船向正东⽅向航⾏,上午8:50在A处测得⼀灯塔在北偏东60°⽅向距离72海⾥处.上午10:10到达B处,看到灯塔在船的正北⽅向.求这艘船的航⾏速度(精确到0.1海⾥/时).12.⼩张在课外活动时,发现⼀个烟囱在墙上的影⼦CD正好和⾃⼰⼀样⾼. 他测得当时⾃⼰在平地上的影⼦长2.4⽶,烟囱到墙的距离是7.2⽶. 如果⼩张的⾝⾼是1.6⽶,你能否据此算出烟囱的⾼度?13.⼀个⼤坝的横截⾯是如图所⽰的梯形,其中AB∥CD,∠A=45°,∠B=60°,AD=8⽶,AB=15⽶.若坝长2千⽶,问这条坝共有多少⼟⽅(保留两个有效数字)?14.已知⼀个三⾓形中相邻两边的长分别是6cm和4cm,第三边上的⾼是2cm,能否求出第三边的长?15.在⼀个坡⾓为15°的斜坡上,从点C测得对旗杆顶A的视线与斜坡⾯的夹⾓为50°,C到旗杆底部B的距离为2.5⽶,求旗杆AB的⾼(精确到0.1⽶).答案:4.(1)0.9397,0.7660,0.5,0.1736,在锐⾓范围内,余弦函数的值随着⾓度的增加⽽减⼩;(2)0.1763, 0.5774,1.192,2.747,在锐⾓范围内,正切函数的值随着⾓度的增加⽽增加.5.10.5.6.B.7.A.8.C.9.D. 10.C.11.约46.8海⾥/时(提⽰:先求出A、B之间的距离).12.烟囱⾼6.4⽶(提⽰:将梯形划分成三⾓形和平⾏四边形,然后应⽤相似形性质计算).13.12万⽴⽅⽶(提⽰:过D、C分别作⾼,先解直⾓三⾓形求得梯形的⾼,再求出上底的长;坝长2000⽶相当于四棱柱的⾼).14.应分两种情形:当第三边上⾼的垂⾜在第三边上时,第三边长()cm;当第三边上⾼的垂⾜在第三边的延长线上时,第三边长()cm.15.约4.5⽶(提⽰:过点C作直线AB的垂线,垂⾜G,先求得C与旗杆的⽔平距离CG,再分别求得AG、BG的长).。
《解三角形》单元测试题一、选择题(本大题共10小题,每小题6分,共60分)1.在ABC ∆中,2,45,6000===b C A ,则此三角形的最小边长为( )A .2B .232-C .13-D .)12(2- 2.根据下列条件,确定三角形有两解的是( ) A .060,6,3===A b a B .030,5,4===C b c C .0120,2,3===B b aD .060,4,5===C b c3.已知ABC ∆中,030,1,3===B b a ,则其面积等于( )A .23或3 B .23 C .23或43 D .43 4.在△ABC 中,2m :1)(m :m sinC :sinB :sinA +=,则m 的取值范围是( ) A .R m ∈ B .2>m C .0>mD .21>m 5.已知三角形的三边长分别是)0(33,2,3222>++++m m m m m m ,则这个三角形的最大角是( ) A .0150 B .0135 C .0120 D .0906.在△ABC 中,若bc a c b c b a 3))((=-+++,则A ∠等于( )A .030 B .060 C .0120 D .0150 7. 在△ABC 中,已知0120,4,6===C b a ,则B sin 的值是( )A .1957 B .721 C .383- D .1957- 8. 钝角三角形三边长为2,1,++a a a ,其最大角不超过0120,则a 的取值范围是( )A .)3,23[B .)25,1[ C .]3,2( D .)3,0( 9.关于x 的方程22cos cos cos 02Cx x A B -⋅⋅-=有一个根为1,则△ABC 一定是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形10.甲、乙两楼相距m 20 ,从乙楼底望甲楼顶的仰角为060,从甲楼顶望乙楼顶的俯角为030,则甲、乙两楼的高分别是( ) A .m m 3320,2315 B .m m 320,310 C .m m 320,)23(10+ D .m m 3340,320 二、填空题(本大题共4小题,每小题6分,共24分)11.在△ABC 中,若AB =5,AC =5,且cos C =109,则BC =________. 12.在△ABC 中,∠C =60°,a 、b 、c 分别为∠A 、∠B 、.C 的对边,则ca bc b a +++=________. 13.△ABC 中,A 为锐角,2lg 21sin lg 1lg lg -==+A c b ,则△ABC 为 三角形.14.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60,行驶4h 后,船到达C处,看到这个灯塔在北偏东15,这时船与灯塔的距离为 km . 三、解答题(本大题共5小题,共66分)15.(本小题共12分)已知a =33,c =2,B =150°,求边b 的长及S △. 16.(本小题共12分)在△ABC 中,设,2tan tan bbc B A -=求A 的值. 17.(本小题共14分)如图,在四边形ABCD 中,AC 平分∠DAB ,∠ABC=600,AC=7,AD=6,S △ADC =2315,求AB 的长. 18.(本小题共14分)在△ABC 中,证明:2222112cos 2cos ba b B a A -=-. 19. (本小题共14分) 一缉私艇A 发现在北偏东45方向,距离12 nmile的海面上C 处有一走私船正以10 nmile/h 的速度沿东偏南15方向逃窜.缉私艇的速度为14 nmile/h, 若要在最短的时间内追上该走私船,缉私艇应沿北偏东α+45的方向去追,.求追及所需的时间和α角的正弦值.600 2 1DCB A 17题图ABC北 东19题图。
解三角形单元测试题
一、选择题:(每小题5分,共计60分)
1. △ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A 直角三角形 B 等腰直角三角形 C 等边三角形 D 等腰三角形
2. 在△ABC 中,c=3,B=300,则a 等于( )
A B . C D .2
3. 不解三角形,下列判断中正确的是( )
A .a=7,b=14,A=300有两解
B .a=30,b=25,A=1500有一解
C .a=6,b=9,A=450有两解
D .a=9,c=10,B=600无解
4. 已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 的值为
( ) A .41- B .41 C .32- D .3
2 5. 在△ABC 中,A =60°,b =1,其面积为3,则
C
B A c b a sin sin sin ++++等于( ) A .33 B .3
392 C .338 D .2
39 6. 在△ABC 中,AB =5,BC =7,AC =8,则⋅的值为( ) A .79
B .69
C .5
D .-5 7.关于x 的方程02
cos cos cos 22=-⋅⋅-C B A x x 有一个根为1,则△ABC 一定是( ) A .等腰三角形 B .直角三角形 C .锐角三角形 D .钝角三角形
8. 设m 、m+1、m+2是钝角三角形的三边长,则实数m 的取值范围是( )
A.0<m <3
B.1<m <3
C.3<m <4
D.4<m <6
9. △ABC 中,若c=ab b a ++22,则角C 的度数是( )
A.60°
B.120°
C.60°或120°
D.45°
10. 在△ABC 中,若b=22,a=2,且三角形有解,则A 的取值范围是( )
A.0°<A <30°
B.0°<A ≤45°
C.0°<A <90°
D.30°<A <60° 11.在△ABC 中,A B B A 22sin tan sin tan ⋅=⋅,那么△ABC 一定是
( ) A .锐角三角形 B .直角三角形
C .等腰三角形
D .等腰三角形或直角三角形
12. 如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )
(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 由增加的长度决定
11.
二、填空题(每小题4分,满分16分)
13.在△ABC 中,有等式:①asinA=bsinB ;②asinB=bsinA ;③acosB=bcosA ;④sin sin sin a b c A B C +=+. 其中恒成立的等式序号为______________
14. 在等腰三角形 ABC 中,已知sinA ∶sinB=1∶2,底边BC=10,则△ABC 的周长是 。
15. 在△ABC 中,已知sinA ∶sinB ∶sinC=3∶5∶7,则此三角形的最大内角的度数等于________.
16. 已知△ABC 的三边分别是a 、b 、c ,且面积4
2
22c b a S -+=,则角C=____________. 三、解答题
17. 已知在△ABC 中,A=450
,BC=2,求解此三角形.
18. 在△ABC 中,已知a-b=4,a+c=2b ,且最大角为120°,求△ABC 的三边长.
19. 在锐角三角形中,边a 、b 是方程x 2-2 3 x+2=0的两根,角A 、B 满足2sin(A+B)- 3 =0,求角C 的度数,边c 的长度及△ABC 的面积.
20. 在△ABC 中,已知边c=10, 又知cosA cosB =b a =43
,求a 、b 及△ABC 的内切圆的半径。
21. 已知ABC △1,且sin sin A B C +=.
(I )求边AB 的长; (II )若ABC △的面积为
1sin 6
C ,求角C 的度数.
22.在△ABC 中,已知角A 、B 、C 所对的边分别是a 、b 、c ,边c=72
,且tanA+tanB= 3 tanA ·tanB - 3 ,又△ABC 的面积为S △ABC =332
,求a+b 的值。
正余弦定理单元测试参考答案
1. A
2.C
3. B
4. A
5. B
6. D
7. A
8. B
9.B 10. B 11.D 12.A
13. ②④ 14.50, 15.1200,16. 450
17. 解答:C=120 B=15 AC=13-或C=60 B=75
18. 解答:a=14,b=10,c=6
19. 解答:解:由2sin(A+B)- 3 =0,得sin(A+B)=
32 , ∵△ABC 为锐角三角形 ∴A+B=120°, C=60°, 又∵a 、b 是方程x 2-2 3 x+2=0的两根,∴a+b=2 3 ,
a ·b=2, ∴c 2=a 2+
b 2-2a ·bcosC=(a+b)2-3ab=12-6=6, ∴c= 6 , S △ABC =12 absinC=12 ×2×32 =32
. 20.解答:由cosA cosB =b a ,sinB sinA =b a ,可得 cosA cosB =sinB sinA
,变形为sinAcosA=sinBcosB ∴sin2A=sin2B, 又∵a ≠b, ∴2A=π-2B, ∴A+B=2
π. ∴△ABC 为直角三角形. 由a 2+b 2=102和b a =43 ,解得a=6, b=8, ∴内切圆的半径为r=a+b-c 2 =6+8-102
=2
21解:(I )由题意及正弦定理,得1AB BC AC ++=,
BC AC +=,
两式相减,得1AB =.
(II )由ABC △的面积11sin sin 26
BC AC C C = ,得13BC AC = , 由余弦定理,得222
cos 2AC BC AB C AC BC
+-= 22()2122
AC BC AC BC AB AC BC +--== , 所以60C =
.
22. 解答:由tanA+tanB= 3 tanA ·tanB - 3 可得 tan tan 1tan tan A B A B
+-∙=- 3 ,即tan(A+B)=- 3 ∴tan(π-C)= - 3 , ∴-tanC=- 3 , ∴tanC= 3
∵C ∈(0, π), ∴C=3
π 又△ABC 的面积为S △ABC =332 ,∴12 absinC=332
即12 ab ×32 =332
, ∴ab=6 又由余弦定理可得c 2=a 2+b 2-2abcosC
∴(72 )2= a 2+b 2-2abcos 3
∴(72
)2= a 2+b 2-ab=(a+b)2-3ab ∴(a+b)2=1214 , ∵a+b>0, ∴a+b=112。