高考数学大一轮复习 第3章 第3节 三角函数的图象与性质课件 文 新人教版
- 格式:ppt
- 大小:2.59 MB
- 文档页数:85
课时提升练(十八) 三角函数的图象与性质一、选择题1.(2014·陕西高考)函数f (x )=cos ⎝⎛⎭⎪⎫2x -π6的最小正周期是 ( )A.π2B.π C .2π D .4π【解析】 最小正周期为T =2πω=2π2=π.故选B.【答案】 B2.(2013·浙江高考)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 若f (x )是奇函数,则f (0)=0,所以cos φ=0,所以φ=π2+k π(k ∈Z ),故φ=π2不成立;若φ=π2,则f (x )=A cos ⎝ ⎛⎭⎪⎫ωx +π2=-A sin(ωx ),f (x )是奇函数.所以f (x )是奇函数是φ=π2的必要不充分条件.【答案】 B3.若f (x )=2sin(ωx +φ)+m ,对任意实数t 都有f ⎝ ⎛⎭⎪⎫π8+t =f ⎝ ⎛⎭⎪⎫π8-t ,且f ⎝ ⎛⎭⎪⎫π8=-3,则实数m 的值等于( )A .-1B .±5C .-5或-1D .5或1【解析】 由题意得函数的对称轴为x =π8,故当x =π8时,函数取得最大值或最小值,所以-2+m =-3或2+m =-3.∴m =-1或m =-5.【答案】 C4.函数f (x )=cos 2x +sin ⎝⎛⎭⎪⎫5π2+x 是( )A .非奇非偶函数B .仅有最小值的奇函数C .仅有最大值的偶函数D .有最大值又有最小值的偶函数 【解析】 f (x )=cos 2x +sin ⎝⎛⎭⎪⎫5π2+x =2cos 2x -1+cos x =2⎝⎛⎭⎪⎫cos x +142-98.显然有最大值又有最小值,而且在R 上有f (-x )=f (x ),所以正确答案为D.【答案】 D5.已知ω>0,函数f (x )=cos ⎝⎛⎭⎪⎫ωx +π3的一条对称轴为x =π3,一个对称中心为点⎝ ⎛⎭⎪⎫π12,0,则ω有( )A .最小值2B .最大值2C .最小值1D .最大值1【解析】 由题意知π3-π12≥T 4,T =2πω≤π,∴ω≥2.【答案】 A6.已知函数f (x )=sin x +3cos x ,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π3,则a ,b ,c的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a【解析】 ∵f (x )=sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3, ∴函数f (x )的图象关于直线x =π6对称,从而f ⎝ ⎛⎭⎪⎫π3=f (0),又f (x )在⎣⎢⎡⎦⎥⎤0,π6上是增函数,∴f (0)<f ⎝ ⎛⎭⎪⎫π7<f ⎝ ⎛⎭⎪⎫π6,即c <a <b .【答案】 B 二、填空题7.函数y =lg(sin x )+cos x -12的定义域为________.【解析】 要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),∴2k π<x ≤π3+2k π,k ∈Z ,∴函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z. 【答案】 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z8.(2014·江苏高考)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是________.【解析】 由题意,得sin ⎝ ⎛⎭⎪⎫2×π3+φ=cos π3,因为0≤φ<π,所以φ=π6.【答案】π69.关于函数f (x )=4sin ⎝ ⎛⎭⎪⎫2x +π3,x ∈R ,有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎪⎫2x -π6;③y =f (x )的图象关于点⎝ ⎛⎭⎪⎫-π6,0对称;④y =f (x )的图象关于直线x =-5π12对称.其中正确命题的序号是________.(填入所有正确命题的序号)【解析】 由f (x 1)=f (x 2)=0得,x 1-x 2必是半个最小正周期的整数倍,由于f (x )的最小正周期是π,故①错;f (x )=4sin ⎝ ⎛⎭⎪⎫2x +π3=4cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x +π3=4cos ⎝ ⎛⎭⎪⎫2x -π6,故②正确;因为f ⎝ ⎛⎭⎪⎫-π6=0,所以③正确;f ⎝ ⎛⎭⎪⎫-5π12=-4,所以④正确. 【答案】 ②③④ 三、解答题10.(2014·福建高考)已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间. 【解】 法一 (1)因为0<α<π2,sin α=22,所以cos α=22. 所以f (α)=22×⎝ ⎛⎭⎪⎫22+22-12=12. (2)因为f (x )=sin x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12 =12sin 2x +12cos 2x =22sin ⎝⎛⎭⎪⎫2x +π4,所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z . 所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .法二 f (x )=sin x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12 =12sin 2x +12cos 2x =22sin ⎝⎛⎭⎪⎫2x +π4.(1)因为0<α<π2,sin α=22,所以α=π4,从而f (α)=22sin ⎝⎛⎭⎪⎫2α+π4=22sin 3π4=12.(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z . 所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .11.设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,0,求函数f (x )的值域. 【解】 (1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝⎛⎭⎪⎫2ωx -π6+λ, 由直线x =π是y =f (x )图象的一条对称轴,可得 sin ⎝⎛⎭⎪⎫2ωπ-π6=±1.所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝ ⎛⎭⎪⎫12,1,k ∈Z ,所以ω=56.所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝ ⎛⎭⎪⎫π4,0,得f ⎝ ⎛⎭⎪⎫π4=0, 即λ=-2sin ⎝ ⎛⎭⎪⎫56×π2-π6=-2sin π4=-2,即λ=- 2.故f (x )=2sin ⎝ ⎛⎭⎪⎫53x -π6-2,函数f (x )的值域为[-2-2,2-2].12.已知a >0,函数f (x )=-2a ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg(g (x ))>0,求g (x )的单调区间.【解】 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6.∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ].∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1 ∴b =-5,3a +b =1,∴a =2,b =-5. (2)由(1)得f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝⎛⎭⎪⎫2x +7π6-1=4sin ⎝⎛⎭⎪⎫2x +π6-1. 又∵lg(g (x ))>0,∴g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12. ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z .其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z .当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6(k ∈Z ),单调减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3(k ∈Z ).。