三角函数的图像与性质题型归纳总结
- 格式:doc
- 大小:759.00 KB
- 文档页数:14
1●高考明方向1.能画出y =sin x ,y =cos x ,y =tan x 的图象, 了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、 最大值和最小值,图象与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性.★备考知考情三角函数的周期性、单调性、最值等是高考的热点,题型既有选择题、填空题、又有解答题,难度属中低档,如2014课标全国Ⅱ14、北京14等;常与三角恒等变换交汇命题,在考查三角函数性质的同时,又考查三角恒等变换的方法与技巧,注重考查函数方程、转化化归等思想方法.《名师一号》P552二、例题分析: (一)三角函数的定义域和值域 例1.(1)《名师一号》P56 对点自测3函数y =lg(sin x )+ cos x -12的定义域为____________解析 要使函数有意义必须有⎩⎪⎨⎪⎧ sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π (k ∈Z).∴2k π<x ≤π3+2k π,k ∈Z.∴函数的定义域为{x |2k π<x ≤π3+2k π,k ∈Z}.例1.(2)《名师一号》P56 高频考点 例1(1) 函数y =sin x -cos x 的定义域为________.3解:(1)要使函数有意义,必须有sin x -cos x ≥0,即sin x ≥cos x ,同一坐标系中作出y =sin x ,y =cos x ,x ∈[0,2π]的图象如图所示.结合图象及正、余弦函数的周期是2π知,函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+54π,k ∈Z .注意:《名师一号》P56 高频考点 例1 规律方法 (1)求三角函数的定义域实质就是解三角不等式(组). 一般可用三角函数的图象或三角函数线确定 三角不等式的解.例2.(1)《名师一号》P56 对点自测4函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 34解:∵0≤x ≤9,∴-π3≤π6x -π3≤7π6.∴sin ⎝ ⎛⎭⎪⎫π6x -π3∈⎣⎢⎡⎦⎥⎤-32,1. ∴y ∈[-3,2],∴y max +y min =2- 3. 注意:《名师一号》P56 高频考点 例1 规律方法2 求三角函数的值域的常用方法之一: 利用sin x 和cos x 的值域(图像)直接求;例2.(2)8月月考第17题(1)17.(满分12分)已知函数22()3cos 2cos sin sin f x x x x x =++.(I )当[0,]2x π∈时,求()f x 的值域;222()3cos 2cos sin sin 12cos sin 2f xx x x x x x =++=++………2分5)2x π=++ …………3分……4分即()f x 的值域为2]+. …………………6分注意:《名师一号》P56 高频考点 例1 规律方法2 求三角函数的值域的常用方法之二: 化为求sin()=++y A x b ωϕ的值域 如:①sin cos y a x b x =+sin()y A x ϕ=+ ②22sin sin cos cos y a x b x x c x =++ sin2cos2y d x e x f =++ sin(2)y A x b ϕ=++注意弦函数的有界性!变式:《名师一号》P58 特色专题 典例1降幂 合一变换 合一变换6若函数f (x )=a sin x -b cos x 在x =π3处有最小值-2,则常数a ,b 的值是( )A .a =-1,b = 3B .a =1,b =- 3C .a =3,b =-1D .a =-3,b =1解:函数f (x )=a sin x -b cos x 的最小值为-a 2+b 2. f (x )=a 2+b 2sin(x -φ)⎝⎛⎭⎪⎫其中cos φ=a a 2+b 2,sin φ=b a 2+b 2,则⎩⎨⎧-a 2+b 2=-2,f ⎝ ⎛⎭⎪⎫π3=32a -12b =-2,解得⎩⎨⎧a =-3,b =1.【名师点评】 解答本题的两个关键:①引进辅助角,将原式化为三角函数的基本形式; ②利用正弦函数取最值的方法建立方程组.例2.(3)《名师一号》P56 高频考点 例1(2)当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.7解:∵x ∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin x ∈⎣⎢⎡⎦⎥⎤-12,1.又y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=2⎝ ⎛⎭⎪⎫sin x -142+78.∴当sin x =14时,y min =78;当sin x =-12或sin x =1时,y max =2.注意:《名师一号》P56 高频考点 例1 规律方法2 求三角函数的值域的常用方法之三:把sin x 或cos x 看作一个整体,转换成二次函数求值域.练习: (补充)(1)求函数22tan 1()tan 1x f x x -=+的值域【答案】[)1,1-(2)求函数22sin 1()0,sin 22x f x x x π+⎛⎫⎛⎫=∈ ⎪ ⎪⎝⎭⎝⎭的值域8【答案】)+∞2222sin 13sin cos ()sin 22sin cos 3tan 1113tan 2tan 2tan 0,tan 0211()23tan 32tan x x x f x x x xx x x x x x f x x xπ++==+⎛⎫==+ ⎪⎝⎭⎛⎫∈∴> ⎪⎝⎭≥=注意:求三角函数的值域的常用方法之三:求三角函数的值域的常用方法: 化为求代数函数的值域注意约束条件----三角函数自身的值域!例2.(4)(补充)求函数()sin cos sin cos =+-f x x x x x 的值域【答案】12⎡⎤-+⎢⎥⎣⎦9注意:求三角函数的值域的常用方法之四: 《名师一号》P56 问题探究 问题3 如何求三角函数的值域或最值?③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(或最值).利用22sin cos 1x x +=转化为二次函数在指定区间 上的值域问题变式:求函数()sin cos sin cos +=+f x x x x x 的值域例2.(5)详见 第一章 第二讲函数值域 7.数形结合法: 例7(2)《名师一号》P14 问题探究 问题(6) 当一个函数图象可作时,通过图象可求其值域和最值;或利用函数所表示的几何意义,借助于几何方法求出函数的值域.(补充)如两点间距离、直线斜率等等求函数4sin 12cos 4+=-x y x 的值域10解:()114sin sin 4422cos 2cos 2⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭==--x x y x x 可视作单位圆外一点12,4⎛⎫- ⎪⎝⎭P 与圆221+=x y 上的点()cos ,sin x x 所连线段斜率的2倍,设过点12,4⎛⎫- ⎪⎝⎭P 的点的直线方程为()12+=-y k x 即1204---=kx y k1=解得34=-k 或512=k 答案:35,26⎡⎤-⎢⎥⎣⎦注意:求三角函数的值域的常用方法之五: 数形结合法练习:求函数[]cos 10,sin 2-=∈-x y x x π的值域11答案:40,3⎡⎤⎢⎥⎣⎦变式:求函数cos 1,sin 222-⎡⎤=∈-⎢⎥-⎣⎦x y x x ππ的值域答案:10,2⎡⎤⎢⎥⎣⎦拓展:8月月考第16题函数22)24()2cos x x xf x x xπ+++=+的最大值是M ,最小值是m ,则M m +的值是 .22222)2sin cos 2sin 4()12cos 2cos 2cos x x xx x x x x x f x x x x x x x π+++++++===++++,记2sin ()2cos x xg x x x+=+,则()g x 是奇函数且()1()f x g x =+,所以()f x 的最大值是max 1()M g x =+,最小值是min 1()m g x =+,因为()g x 是奇函数, 所以max min ()()0g x g x +=,所以max min 1()1()2M m g x g x +=+++=.12(三)三角函数的周期性、奇偶性、对称性 例1.(1)《名师一号》P56 对点自测5设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( )A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为π2的奇函数D.最小正周期为π2的偶函数答案 B例1.(2)《名师一号》P57 高频考点 例3(2)(2014·新课标全国卷Ⅰ)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③解:由于y =cos|2x |=cos2x ,所以该函数的周期为2π2=π;由函数y =|cos x |的图象易知其周期为π;函数y =cos ⎝⎛⎭⎫2x +π6的周期为2π2=π;函数y =tan ⎝⎛⎭⎫2x -π4的周期为π2,故最小正周期为π的函数是①②③,故选A.13注意:《名师一号》P56 问题探究 问题1 如何求三角函数的周期? (1)利用周期函数的定义. (2)利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|, y =tan(ωx +φ)的最小正周期为π|ω|.例1.(3)《名师一号》P58 特色专题 典例2函数f(x)=sin ⎝⎛⎭⎫ωx +π3+sin ωx(ω>0)相邻两对称轴之间的距离为2,则ω=________【规范解答】 相邻两对称轴之间的距离为2,即T =4.f(x)=sin ⎝⎛⎭⎫ωx +π3+sin ωx =12sin ωx +32cos ωx +sin ωx =32sin ωx +32cos ωx =3sin ⎝⎛⎭⎫ωx +π6,又因为f(x)相邻两条对称轴之间的距离为2,所以T =4,所以2πω=4,即ω=π2.注意:【名师点评】 函数f(x)=A sin (ωx +φ),f(x)=A cos (ωx +φ)图象上一个最高点和它相邻的最低点的横坐标之差的绝对值14是函数的半周期π|ω|,纵坐标之差的绝对值是2A .在解决由三角函数图象确定函数解析式的问题时,要注意使用好函数图象显示出来的函数性质、函数图象上特殊点的坐标及两个坐标轴交点的坐标等.练习:《加加练》P3 第11题例2.(1)《名师一号》P57 高频考点 例3(1)(1)若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( ) A.π2 B.2π3 C.3π2 D.5π3解: (1)∵f (x )=sin x +φ3是偶函数,∴f (0)=±1.∴sin φ3=±1,∴φ3=k π+π2(k ∈Z).∴φ=3k π+3π2(k ∈Z).又∵φ∈[0,2π],∴当k =0时,φ=3π2.故选C.15变式:若函数f (x )=sin x +φ3(φ∈[0,2π])是奇函数,则φ=?例2.(2)《名师一号》P57 高频考点 例3(3)(3)如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0中心对称,那么|φ|的最小值为( ) A.π6 B.π4 C.π3 D.π2解:(3)由题意得3cos ⎝⎛⎭⎫2×4π3+φ=3cos ⎝⎛⎭⎫2π3+φ+2π =3cos ⎝⎛⎭⎫2π3+φ=0,∴2π3+φ=k π+π2,k ∈Z. ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.注意:【规律方法】(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值,若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断16直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. 《名师一号》P56 问题探究 问题4如何确定三角函数的对称轴与对称中心?若f (x )=A sin(ωx +φ)为偶函数, 则当x =0时,f (x )取得最大值或最小值.若f (x )=A sin(ωx +φ)为奇函数, 则当x =0时,f (x )=0. 如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z),求x .(补充)结果写成直线方程! 如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z)即可. (补充)结果写点坐标!同理对于y =A cos(ωx +φ),可求其对称轴与对称中心, 对于y =A tan(ωx +φ)可求出对称中心.练习1:《名师一号》P58 特色专题 典例3已知f(x)=sin x +3cos x(x ∈R),函数y =f (x +φ)⎝⎛⎭⎫|φ|≤π2为偶函数,则φ的值为________.17【规范解答】 先求出f (x +φ)的解析式,然后求解.∵f (x )=sin x +3cos x =2sin ⎝⎛⎭⎫x +π3. ∴f (x +φ)=2sin ⎝⎛⎭⎫x +φ+π3. ∵函数f (x +φ)为偶函数,∴φ+π3=π2+k π,k ∈Z ,即φ=π6+k π(k ∈Z).又∵|φ|≤π2,∴φ=π6.练习2:《计时双基练》P247 第3题(四)三角函数的单调性 例1.(1)《名师一号》P56 对点自测6下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin ⎝⎛⎭⎫2x +π2B .y =cos ⎝⎛⎭⎫2x +π2C .y =sin ⎝⎛⎭⎫x +π2D .y =cos ⎝⎛⎭⎫x +π2解析 由函数的周期为π,可排除C ,D.又函数在⎣⎡⎦⎤π4,π2上为减函数,排除B ,故选A.18练习1:《计时双基练》P247 第7题函数y cos x π⎛⎫=- ⎪⎝⎭24的单调递减区间为练习2:《加加练》P1 第11题(2)《名师一号》P57 高频考点 例2已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间⎣⎡⎦⎤0,π2上的单调性.解:(1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4=22sin ωx ·cos ωx +22cos 2ωx =2(sin2ωx +cos2ωx )+2=2sin ⎝⎛⎭⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0.从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增; 当π2≤2x +π4≤5π4,即π8≤x ≤π2时,f (x )单调递减.19综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增, 在区间⎣⎡⎦⎤π8,π2上单调递减.注意:《名师一号》P56 问题探究 问题2 如何求三角函数的单调区间?(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”.(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中,ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.例2.《名师一号》P58 特色专题 典例4(2014·全国大纲卷)若函数f (x )=cos2x +a sin x 在区间⎝ ⎛⎭⎪⎫π6,π2是减函数,则a 的取值范围是________.【规范解答】 先化简,再用换元法求解. f (x )=cos2x +a sin x =1-2sin 2x +a sin x .20令t =sin x ,∵x ∈⎝⎛⎭⎫π6,π2, ∴t ∈⎝⎛⎭⎫12,1.∴g (t )=1-2t 2+at =-2t 2+at +1⎝⎛⎭⎫12<t <1, 由题意知-a 2×(-2)≤12,∴a ≤2.∴a 的取值范围为(-∞,2].课后作业一、计时双基练P247 基础1-11、 课本P56变式思考1二、计时双基练P247培优1-4课本P56变式思考2、3 预习 第五节练习:1、设函数f (x )=2sin(2πx +5π).若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为( )A .4B .2C .1 D.1221 分析:∵f (x )的最大值为2,最小值为-2,∴对∀x ∈R ,-2≤f (x )≤2.取到最值时x =2π+k π,|x 1-x 2|取最小值,即f (x 1)为最小值,f (x 2)为最大值且(x 1,f (x 1)),(x 2,f (x 2))为相邻的最小(大)值点,即半个周期.解析:f (x )的周期T =4,|x 1-x 2|min =2T =2. 故选B.2、为了使函数)0(sin >=ωωx y 在区间]1,0[上至少出现50次最大值,求ω的最小值。
三角函数图像与性质知识点总结The Standardization Office was revised on the afternoon of December 13, 2020函数图像与性质知识点总结一、三角函数图象的性质 1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0) ⎝ ⎛⎭⎪⎪⎫π2,1 (π,0)⎝ ⎛⎭⎪⎪⎫32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),⎝ ⎛⎭⎪⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎪⎫3π2,0,(2π,1)2.三角函数的图象和性质函数 性质y =sin x y =cos x y =tan x 定义域 R R{x |x ≠k π+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴: x =k π+π2(k ∈Z);对称轴:x =k π(k ∈Z) 对称中心:对称中心:⎝ ⎛⎭⎪⎪⎫k π2,0 (k ∈Z)3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期)4.求三角函数值域(最值)的方法:(1)利用sin x、cos x的有界性;关于正、余弦函数的有界性由于正余弦函数的值域都是[-1,1],因此对于∀x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;含参数的最值问题,要讨论参数对最值的影响.(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.利用换元法求三角函数最值时注意三角函数有界性,如:y =sin 2x -4sin x +5,令t =sin x (|t |≤1),则y =(t -2)2+1≥1,解法错误.5.求三角函数的单调区间时,应先把函数式化成形如y =A sin(ωx +φ) (ω>0)的形式,再根据基本三角函数的单调区间,求出x 所在的区间.应特别注意,应在函数的定义域内考虑.注意区分下列两题的单调增区间不同;利用换元法求复合函数的单调区间(要注意x 系数的正负号) (1)y =sin ⎝ ⎛⎭⎪⎪⎫2x -π4;(2)y =sin ⎝ ⎛⎭⎪⎪⎫π4-2x .6、y =A sin(ωx +φ)+B 的图象求其解析式的问题,主要从以下四个方面来考虑:①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点2;②B 的确定:根据图象的最高点和最低点,即B =最高点+最低点2;③ω的确定:结合图象,先求出周期,然后由T =2πω(ω>0)来确定ω;④φ的确定:把图像上的点的坐标带入解析式y =A sin(ωx +φ)+B ,然后根据φ的范围确定φ即可,例如由函数y =A sin(ωx +φ)+K 最开始与x 轴的交点(最靠近原点)的横坐标为-φω(即令ωx +φ=0,x =-φω)确定φ.二、三角函数的伸缩变化先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−→ 得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. .。
千里之行,始于足下。
三角函数及反三角函数图像性质、学问点总结三角函数及反三角函数是高中数学中重要的内容之一,它们的图像性质是我们学习和理解这些函数的基础。
下面是关于三角函数及反三角函数图像性质的学问点总结。
一、正弦函数的图像性质:1. 定义域:正弦函数的定义域为全体实数。
2. 值域:正弦函数的值域为闭区间[-1,1]。
3. 周期性:正弦函数的周期是2π,即在一个周期内,正弦函数的图像重复消灭。
4. 奇偶性:正弦函数是奇函数,即sin(-x)=-sin(x)。
5. 对称轴:正弦函数的对称轴是y轴。
6. 最值点:正弦函数的最值点包括最大值1和最小值-1,最值点的横坐标为周期的整数倍。
二、余弦函数的图像性质:1. 定义域:余弦函数的定义域为全体实数。
2. 值域:余弦函数的值域为闭区间[-1,1]。
3. 周期性:余弦函数的周期是2π,即在一个周期内,余弦函数的图像重复消灭。
4. 奇偶性:余弦函数是偶函数,即cos(-x)=cos(x)。
5. 对称轴:余弦函数的对称轴是x轴。
6. 最值点:余弦函数的最值点包括最大值1和最小值-1,最值点的横坐标为周期的半整数倍。
三、正切函数的图像性质:1. 定义域:正切函数的定义域为全体实数,除了临界点kπ(k为整数)。
第1页/共3页锲而不舍,金石可镂。
2. 值域:正切函数的值域为全体实数。
3. 周期性:正切函数的周期是π,即在一个周期内,正切函数的图像重复消灭。
4. 奇偶性:正切函数是奇函数,即tan(-x)=-tan(x)。
5. 渐近线:正切函数有两条渐近线,分别是x=kπ+π/2(k为整数)和x=kπ(k为整数)。
6. 最值点:正切函数没有最值点。
四、反正弦函数的图像性质:1. 定义域:反正弦函数的定义域为闭区间[-1,1]。
2. 值域:反正弦函数的值域为闭区间[-π/2,π/2]。
3. 奇偶性:反正弦函数是奇函数,即arcsin(-x)=-arcsin(x)。
4. 递增性:反正弦函数在定义域内是递增的。
专题七《三角函数》讲义7.3 三角函数的图像与性质知识梳理.三角函数的图像与性质1.正弦、余弦、正切函数的图象与性质函数y=sin x y=cos x y=tan x 图象定义域R R错误!值域[-1,1][-1,1]R奇偶性奇函数偶函数奇函数单调性在⎣⎡⎦⎤-π2+2kπ,π2+2kπ(k∈Z)上是递增函数,在⎣⎡⎦⎤π2+2kπ,3π2+2kπ(k∈Z)上是递减函数在[2kπ-π,2kπ](k∈Z)上是递增函数,在[2kπ,2kπ+π](k∈Z)上是递减函数在⎝⎛⎭⎫-π2+kπ,π2+kπ(k∈Z)上是递增函数周期性周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是kπ(k∈Z且k≠0),最小正周期是π对称性对称轴是x=π2+kπ(k∈Z),对称中心是(kπ,0)(k∈Z)对称轴是x=kπ(k∈Z),对称中心是⎝⎛⎭⎫kπ+π2,0(k∈Z)对称中心是⎝⎛⎭⎫kπ2,0(k∈Z)题型一. 三角函数图像的伸缩变换1.要得到函数y =3sin (2x +π3)的图象,只需要将函数y =3cos2x 的图象( ) A .向右平行移动π12个单位 B .向左平行移动π12个单位C .向右平行移动π6个单位D .向左平行移动π6个单位2.(2017•新课标Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 23.(2021春•闵行区校级期中)函数y =cos (2x +φ)的图象向右平移π2个单位长度后与函数y =sin (2x +2π3)的图象重合,则|φ|的最小值为 .4.(2016春•南通期末)将函数f(x)=sin(ωx +φ),(ω>0,−π2<φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π4个单位长度得到y =sin x 的图象,则f(π6)= .5.(2015•湖南)将函数f (x )=sin2x 的图象向右平移φ(0<φ<π2)个单位后得到函数g (x )的图象.若对满足|f (x 1)﹣g (x 2)|=2的x 1、x 2,有|x 1﹣x 2|min =π3,则φ=( ) A .5π12B .π3C .π4D .π6题型二. 已知图像求解析式1.图是函数y =A sin (ωx +φ)(x ∈R )在区间[−π6,5π6]上的图象,为了得到这个函数的图象,只要将y =sin x (x ∈R )的图象上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变2.已知函数y =sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则( )A .ω=π2,φ=−π4 B .ω=π2,φ=π4C .ω=π,φ=−π4D .ω=π,φ=π43.已知函数f (x )=A cos (ωx +φ)的图象如图所示,f (π2)=−23,则f (0)=( )A .−23B .−12C .23D .124.已知函数f (x )=A tan (ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,下列关于函数g (x )=A cos (ωx +φ)(x ∈R )的表述正确的是( )A .函数g (x )的图象关于点(π4,0)对称B .函数g (x )在[−π8,3π8]递减 C .函数g (x )的图象关于直线x =π8对称D .函数h (x )=cos2x 的图象上所有点向左平移π4个单位得到函数g (x )的图象题型三. 三角函数的性质 考点1.单调性1.函数y =sin (﹣2x +π3)的单调递减区间是( ) A .[k π−π12,k π+5π12],k ∈Z B .[2k π−π12,2k π+5π12],k ∈ZC .[k π−π6,k π+5π6],k ∈ZD .[2k π−π6,2k π+5π6],k ∈Z2.已知函数f(x)=Asin(x +φ)(A >0,−π2<φ<0)在x =5π6时取得最大值,则f (x )在[﹣π,0]上的单调增区间是( ) A .[−π,−5π6] B .[−5π6,−π6] C .[−π3,0]D .[−π6,0]3.已知函数f (x )=sin (2x +π3)在区间[0,a ](其中a >0)上单调递增,则实数a 的取值范围是( ) A .{a |0<a ≤π12} B .{a |0<a ≤π2} C .{a |a =k π+π12,k ∈N *} D .{a |2k π<a ≤2k π+π12,k ∈N *} 4.已知ω>0,函数f (x )=sin (ωx +π4)在区间(π2,π)上单调递减,则实数ω的取值范围是( ) A .[12,54] B .[12,34]C .(0,12]D .(0,2]考点2.周期性、奇偶性、对称性1.已知函数f (x )=cos 2x +sin 2(x +π6),则( )A .f (x )的最小正周期为π,最小值为12B .f (x )的最小正周期为π,最小值为−12C .f (x )的最小正周期为2π,最小值为12D .f (x )的最小正周期为2π,最小值为−122.已知f (x )=sin2x +|sin2x |(x ∈R ),则下列判断正确的是( ) A .f (x )是周期为2π的奇函数 B .f (x )是值域为[0,2]周期为π的函数 C .f (x )是周期为2π的偶函数 D .f (x )是值域为[0,1]周期为π的函数3.将函数y =sin2x −√3cos2x 的图象沿x 轴向右平移a 个单位(a >0)所得图象关于y 轴对称,则a 的最小值是( ) A .712π B .π4C .π12D .π64.已知函数f (x )=a sin x ﹣b cos x (ab ≠0,x ∈R )在x =π4处取得最大值,则函数y =f (π4−x )是( )A .偶函数且它的图象关于点(π,0)对称B .偶函数且它的图象关于点(3π2,0)对称 C .奇函数且它的图象关于点(3π2,0)对称 D .奇函数且它的图象关于点 (π,0)对称考点3.三角函数性质综合1.(2019•天津)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g (π4)=√2,则f (3π8)=( )A .﹣2B .−√2C .√2D .22.(2015•天津)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R ,若函数f (x )在区间(﹣ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为 .3.(2014•大纲版)若函数f (x )=cos2x +a sin x 在区间(π6,π2)是减函数,则a 的取值范围是 .4.(2016•新课标Ⅰ)若函数f (x )=x −13sin2x +a sin x 在(﹣∞,+∞)单调递增,则a 的取值范围是( ) A .[﹣1,1]B .[﹣1,13]C .[−13,13]D .[﹣1,−13]5.(2013•安庆二模)已知函数f (x )=sin (ωx +π6),其中ω>0,若f (π6)=f (π3),且f (x )在区间(π6,π3)上有最小值、无最大值,则ω等于( )A .403B .283C .163D .436.(2014•北京)设函数f (x )=A sin (ωx +φ)(A ,ω,φ是常数,A >0,ω>0)若f (x )在区间[π6,π2]上具有单调性,且f (π2)=f(2π3)=﹣f (π6),则f (x )的最小正周期为 .题型四. 三角函数最值1.函数f (x )=15sin (x +π3)+cos (x −π6)的最大值为( ) A .65B .1C .35D .152.函数f (x )=cos (ωx +π3)(ω>0)在[0,π]内的值域为[﹣1,12],则ω的取值范围为( ) A .[32,53]B .[23,43]C .[23,+∞)D .[23,32]3.已知函数f (x )=cos2x +sin x ,则下列说法中正确的是( ) A .f (x )的一条对称轴为x =π4 B .f (x )在(π6,π2)上是单调递减函数C .f (x )的对称中心为(π2,0)D .f (x )的最大值为14.若0<x ≤π3,则函数y =sin x +cos x +sin x cos x 的值域为 .5.已知函数f(x)=2sinωx ⋅cos 2(ωx 2−π4)−sin 2ωx(ω>0)在区间[−2π5,5π6]上是增函数,且在区间[0,π]上恰好取得一次最大值1,则ω的取值范围是( ) A .(0,35]B .[12,35]C .[12,34]D .[12,52)6.已知函数f (x )=cos x •sin (x +π3)−√3cos 2x +√34,x ∈R (1)求f (x )的最小正周期;(2)求f (x )在闭区间[0,π2]上的最大值和最小值及相应的x 值;(3)若不等式|f (x )﹣m |<2在x ∈[0,π2]上恒成立,求实数m 的取值范围.题型五.三角函数零点1.已知函数f (x )=sin ωx −√3cos ωx (ω>0),若方程f (x )=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为 .2.已知函数f (x )=√3sin ωx cos ωx +cos 2ωx −12,(ω>0,x ∈R ),若函数f (x )在区间(π2,π)内没有零点,则ω的取值范围( ) A .(0,512] B .(0,512]∪[56,1112]C .(0,58]D .(0,56]∪[1112,1)3.函数f(x)=2sin(2ωx +π6)(ω>0)图象上有两点A (s ,t ),B (s +2π,t )(﹣2<t <2),若对任意s ∈R ,线段AB 与函数图象都有五个不同交点,若f (x )在[x 1,x 2]和[x 3,x 4]上单调递增,在[x 2,x 3]上单调递减,且x 4−x 3=x 2−x 1=23(x 3−x 2),则x 1的所有可能值是课后作业. 三角函数的图像与性质1.函数f (x )=A sin (ωx +φ)(A >0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g (x )=A sin ωx 的图象,只需将函数y =f (x )的图象( )A .向左平移π3个单位长度B .向左平移π12个单位长度 C .向右平移π3个单位长度D .向右平移π12个单位长度2.关于函数y =2sin (3x +π4)+1,下列叙述正确的是( ) A .其图象关于直线x =−π4对称 B .其图象关于点(π12,1)对称 C .其值域是[﹣1,3]D .其图象可由y =2sin (x +π4)+1图象上所有点的横坐标变为原来的13得到 3.已知函数f (x )=(12a −√3)sin x +(√32a +1)cos x ,将f (x )的图象向右平移π3个单位长度得到函数g (x )的图象,若对任意x ∈R ,都有g (x )≤g (π4),则a 的值为 . 4.已知函数f (x )=sin (ωx +φ)(ω>1,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4,0)对称,且在区间[0,π2]上是单调函数,则ω和φ的值分别为( )A .23,π4B .2,π3C .2,π2D .103,π25.已知函数f (x )=sin (ωx +φ),其中ω>0,|φ|≤π2,−π4为f (x )的零点:且f (x )≤|f (π4)|恒成立,f (x )在区间(−π12,π24)上有最小值无最大值,则ω的最大值是( )A .11B .13C .15D .176.已知函数f (x )=2sin (ωx −π6)sin (ωx +π3)(ω>0),若函数g (x )=f (x )+√32在[0,π2]上有且只有三个零点,则ω的取值范围为( )A .[2,113) B .(2,113) C .[73,103) D .(73,103)。
三角函数的图像与性质(正弦、余弦、正切)【知识点1】函数y =sin x ,y =cos x ,y =tan x 的图象性质题型1:定义域例1:求下列函数的定义域(1)xx y cos 2cos 1+=; (2)x y 2sin = 2lg(4)x -题型2:值域 例2:求下列函数值域 (1))3π2,6π(,sin 2-∈=x x y (2)y=2sin(2x-3π),x 5,46ππ⎡⎤∈⎢⎥⎣⎦(3) )3π,2π(),3π2cos(2-∈+=x x y(4)函数1)6π21cos(2++-=x y 的最大值以及此时x 的取值集合题型3:周期例3:求下列函数的周期: (1)f(x)=2sin2x (2)y=cos(123x π-) (3)y=tan(2x 4π-) (4)y=sin x 例4: 若函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,则自然数k 的值为______.例5:若)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,则ϖ=________.例6:使x y ωsin =(ω>0)在区间[0,1]至少出现2次最大值,则ω的最小值为【 】A .π25B .π45C .πD .π23例7:设函数f(x)=2sin(25x ππ+),若对于任意的x R ∈,都有f(1x )2()()f x f x ≤≤成立,则12x x -的最小值是A.4B.2C.1D.12题型4:奇偶性 例8:函数y =sin (x +2π)(x ∈[-2π,2π])是【 】A.增函数B.减函数C.偶函数D.奇函数例9:判断下列函数的奇偶性 (1)y=xsin(x π+) (2)y=cos 1sin x x+例10:已知函数f(x)=x 3cosx+1,若f(a)=11,则f(-a)=________ 题型5:单调性例11:函数y =21log sin(2x +4π)的单调递减区间是【 】 A.(k π-4π,k π](k ∈Z ) B.(k π-8π,k π+8π](k ∈Z ) C.(k π-83π,k π+8π](k ∈ D.(k π+8π,k π+83π](k ∈Z )例12:.求1cos()3412logx y π+=的单调区间例13:求下列函数的单调增区间(1))3π21cos(-=x y ; (2) ]0,π[),6π2sin(2-∈+=x x y ;(3))23πsin(2x y -=例14:(1)求函数y=2sin(2x-3π)的单调递减区间。
三角函数的图像与性质一、知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )π3.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期. (2)正切曲线相邻两对称中心之间的距离是半个周期.(3).对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )解析 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条. (2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 答案 (1)× (2)× (3)× (4)√2.若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2解析 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 答案 A3.函数y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为________.解析 由-π2+k π<2x -3π4<π2+k π(k ∈Z ), 得π8+k π2<x <5π8+k π2(k ∈Z ),所以y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 答案 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2解析 由题意T =2π2=π. 答案 C5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65B.1C.35D.15解析 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝ ⎛⎭⎪⎫x +π3,函数的最大值为65. 答案 A6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________.解析 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 答案 -π6考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x |x ≠π6 B.⎩⎨⎧⎭⎬⎫x |x ≠-π12 C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z ) D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 解析 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56 π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 答案 (1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.解析 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .答案(1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z (2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________. (3)函数y =sin x -cos x +sin x cos x 的值域为________.解析 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3. (2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2 .所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 答案 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( )A.4B.5C.6D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________. 解析 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π. 答案 (1)B(2)⎣⎢⎡⎦⎥⎤π3,π考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z )C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . 答案 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c解析 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6, ∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 答案 A角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π解析 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.答案 A【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( )A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增 C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增(2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数,∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32.答案 (1)C (2)sin 68°>cos 23°>cos 97° (3)32考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( ) A.-π6 B.π6 C.-π3 D.π3解析 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3, 由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ). ∵|θ|<π2,∴k =-1时,θ=-π6. 答案 (1)B (2)A角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称 C.关于直线x =π3对称 D.关于直线x =π6对称解析 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33,所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. 规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x1+tan 2x的最小正周期为( )A.π4B.π2C.πD.2π(2)设函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3,则下列结论错误的是( )A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6 D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减解析 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .f (x )=sin x cos x 1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x ,∴f (x )的最小正周期T =2π2=π.(2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确.C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x+π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.答案 (1)C (2)D三、课后练习1.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为( )A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ) 解析 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4. 令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ). 答案 D2.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( ) A.ω=23,φ=π12 B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24解析 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12.答案 A3.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________.解析 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ),得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 答案 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z )4.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23.5.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.解析 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2. 答案 π26.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π解析 ∵y =2⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π.答案 C7.(2019·石家庄检测)若⎝ ⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8解析 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6.答案 C8.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32 C.2 D.3解析 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 B9.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2解析 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2.答案 C10.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 答案 2311.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 解 (1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π, ∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4. 令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). 注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8; 同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.。
三角函数图像性质及题型总结1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象与性质π1.y =A sin(ωx +φ)的有关概念2.用五点法画如下表所示:3.函数函数y =12sin x ,x ∈[-π,π]的单调性是( )A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎡⎦⎤-π2,π2上是增函数,在⎣⎡⎦⎤-π,-π2和⎣⎡⎦⎤π2,π上都是减函数 C .在[0,π]上是增函数,在[-π,0]上是减函数D .在⎣⎡⎦⎤π2,π和⎣⎡⎦⎤-π,-π2上是增函数,在⎣⎡⎦⎤-π2,π2上是减函数 答案 B2.函数y =tan 2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π4,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π2+π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π2+π4,k ∈Z 答案 D解析 由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan 2x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π4,k ∈Z .已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2) 答案 A解析 由于f (x )的最小正周期为π,∴ω=2,即f (x )=A sin(2x +φ), 又当x =2π3时,2x +φ=4π3+φ=2k π-π2(k ∈Z ),∴φ=2k π-11π6(k ∈Z ),又φ>0,∴φmin =π6,故f (x )=A sin(2x +π6).于是f (0)=A sin π6,f (2)=A sin ⎝⎛⎭⎫4+π6 =A sin ⎣⎡⎦⎤π-⎝⎛⎭⎫4+π6=A sin ⎝⎛⎭⎫5π6-4, f (-2)=A sin ⎝⎛⎭⎫-4+π6=A sin ⎝⎛⎭⎫13π6-4=A sin ⎣⎡⎦⎤π-⎝⎛⎭⎫13π6-4=A sin ⎝⎛⎭⎫4-7π6. 又∵-π2<5π6-4<4-7π6<π6<π2,又f (x )在⎝⎛⎭⎫-π2,π2上单调递增, ∴f (2)<f (-2)<f (0),故选A.函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为________,此时x =__________________. 答案 53π4+2k π(k ∈Z ) 解析 函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为3+2=5, 此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z ) D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) 答案 B 解析由k π-π2<2x -π3<k π+π2(k ∈Z )得,k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ),故选B.函数f (x )=sin ⎝⎛⎭⎫-2x +π3的单调减区间为___________ 答案)⎣⎡⎦⎤k π-π12,k π+512π 解析由已知函数为y =-sin ⎝⎛⎭⎫2x -π3, 欲求函数的单调减区间,只需求y =sin ⎝⎛⎭⎫2x -π3的单调增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调减区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ).在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( ) A .①②③ B .①③④ C .②④ D .①③答案 A解析 ①y =cos|2x |=cos 2x ,最小正周期为π; ②由图象知y =|cos x |的最小正周期为π; ③y =cos ⎝⎛⎭⎫2x +π6的最小正周期T =2π2=π; ④y =tan ⎝⎛⎭⎫2x -π4的最小正周期T =π2,因此选A. 已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝⎛⎭⎫π12,0对称D .关于点⎝⎛⎭⎫5π12,0对称 答案B解析由题意知2πω=π,∴ω=2;又由f (x )的图象向右平移π3个单位后得到y =sin[2⎝⎛⎭⎫x -π3+φ]=sin ⎝⎛⎭⎫2x +φ-23π,此时关于原点对称, ∴-2π3+φ=k π,k ∈Z ,∴φ=2π3+k π,k ∈Z ,又|φ|<π2,∴⎪⎪⎪⎪2π3+k π<π2,∴k =-1,φ=-π3, ∴f (x )=sin ⎝⎛⎭⎫2x -π3.当x =π12时,2x -π3=-π6,∴A 、C 错误;当x =5π12时,2x -π3=π2,∴B 正确,D 错误.(2015·四川)下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2x D .y =sin x +cos x 解析选项A 中,y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,符合题意.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析由图象知,周期T =2×⎝⎛⎭⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎫πx +π4. 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z .故选D.对于函数f (x )=sin ⎝⎛⎭⎫πx +π2,下列说法正确的是( ) A .f (x )的周期为π,且在[0,1]上单调递增 B .f (x )的周期为2,且在[0,1]上单调递减 C .f (x )的周期为π,且在[-1,0]上单调递增D .f (x )的周期为2,且在[-1,0]上单调递减 答案 B解析 因为f (x )=sin ⎝⎛⎭⎫πx +π2=cos πx ,则周期T =2,在[0,1]上单调递减,故选B. 2.函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3 B .0 C .-1 D .-1-3 答案 A解析 ∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴sin ⎝⎛⎭⎫π6x -π3∈⎣⎡⎦⎤-32,1. ∴y ∈[]-3,2,∴y max +y min =2- 3.关于函数y =tan ⎝⎛⎭⎫2x -π3,下列说法正确的是( ) A .是奇函数B .在区间⎝⎛⎭⎫0,π3上单调递减 C.⎝⎛⎭⎫π6,0为其图象的一个对称中心 D .最小正周期为π 答案 C解析 函数y =tan ⎝⎛⎭⎫2x -π3是非奇非偶函数,A 错误; 在区间⎝⎛⎭⎫0,π3上单调递增,B 错误; 最小正周期为π2,D 错误.∵当x =π6时,tan ⎝⎛⎭⎫2×π6-π3=0, ∴⎝⎛⎭⎫π6,0为其图象的一个对称中心,故选C.函数y =cos 2x +sin 2x ,x ∈R 的值域是( ) A .[0,1] B .[12,1] C .[-1,2] D .[0,2]答案 A解析 y =cos 2x +sin 2x =cos 2x +1-cos 2x2=1+cos 2x2. ∵cos 2x ∈[-1,1],∴y ∈[0,1].函数f (x )=sin(-2x )的单调增区间是___________________________________________. 答案 ⎣⎡⎦⎤k π+π4,k π+3π4(k ∈Z ) 解析 由f (x )=sin(-2x )=-sin 2x , 2k π+π2≤2x ≤2k π+3π2 (k ∈Z )得k π+π4≤x ≤k π+3π4(k ∈Z ).函数y =tan ⎝⎛⎭⎫2x +π4的图象与x 轴交点的坐标是__________________. 答案 ⎝⎛⎭⎫k π2-π8,0(k ∈Z ) 解析 由2x +π4=k π(k ∈Z )得,x =k π2-π8(k ∈Z ).∴函数y =tan ⎝⎛⎭⎫2x +π4的图象与x 轴交点的坐标是⎝⎛⎭⎫k π2-π8,0(k ∈Z ).把函数y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移π3个单位长度,那么所得图象的一条对称轴方程为( ) A .x =-π2 B .x =-π4C .x =π8D .x =π4答案 A 解析将y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y =sin(2x +π6);再将图象向右平移π3个单位长度,得到函数y =sin[2(x -π3)+π6]=sin(2x -π2),故x =-π2是其图象的一条对称轴方程函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为__________.答案f (x )=2sin(2x +π3)解析 由题图可知A =2,T 4=7π12-π3=π4,所以T =π,故ω=2,因此f (x )=2sin(2x+φ),又⎝⎛⎭⎫712π,-2为最小值点,∴2×712π+φ=2k π+3π2,k ∈Z ,∴φ=2k π+π3,k ∈Z ,又|φ|<π,∴φ=π3. 故f (x )=2sin(2x +π3).设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则下列说法正确的是________.(填序号)①f (x )的图象过点(0,32);②f (x )在[π12,2π3]上是减函数;③f (x )的一个对称中心是(5π12,0);④将f (x )的图象向右平移|φ|个单位长度得到函数y =3sin ωx 的图象.答案 ①③解析 ∵周期为π,∴2πω=π⇒ω=2,∴f (x )=3sin(2x +φ),f (2π3)=3sin(4π3+φ),则sin(4π3+φ)=1或-1.又φ∈(-π2,π2),4π3+φ∈(5π6,116π),∴4π3+φ=3π2⇒φ=π6,∴f (x )=3sin(2x +π6).①:令x =0⇒f (x )=32,正确.②:令2k π+π2<2x +π6<2k π+3π2,k ∈Z⇒k π+π6<x <k π+2π3,k ∈Z .令k =0⇒π6<x <2π3,即f (x )在(π6,2π3)上单调递减,而在(π12,π6)上单调递增,错误.③:令x =5π12⇒f (x )=3sin π=0,正确.④:应平移π12个单位长度,错误.已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.解 (1)f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π)=3cos x +sin x [3分]=2sin(x +π3),[5分]于是T =2π1=2π.[6分](2)由已知得g (x )=f (x -π6)=2sin(x +π6),[8分]∵x ∈[0,π],∴x +π6∈[π6,7π6],∴sin(x +π6)∈[-12,1],[10分]∴g (x )=2sin(x +π6)∈[-1,2].[11分]故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[12分]函数y =cos ⎝⎛⎭⎫2x -π3的部分图象可能是( )答案 D解析 ∵y =cos ⎝⎛⎭⎫2x -π3,∴当2x -π3=0, 即x =π6时,函数取得最大值1,结合图象看,可使函数在x =π6时取得最大值的只有D.已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 解 (1)由已知,有f (x )=1-cos 2x2-1-cos ⎝⎛⎭⎫2x -π32=12⎝⎛⎭⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎫2x -π6. 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数,在区间⎣⎡⎦⎤-π6,π4上是增函数,且f ⎝⎛⎭⎫-π3=-14, f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34,所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34,最小值为-12.。
三角函数的图像与性质一、题型全归纳题型一 三角函数的定义域和值域【题型要点】1.三角函数定义域的求法(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); 形如y =a sin x +b cos x +c ,可通过引入辅助角φ⎝⎛⎭⎪⎫cos φ=a a 2+b 2,sin φ=b a 2+b 2,将其转化为y =a 2+b 2sin(x +φ)+c .(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); 令t =sin x 或t =cos x ,进而将三角函数转化为关于t 的函数.形如y =a sin 2x +b sin x +c ,可设t =sin x ,将其转化为二次函数y =at 2+bt +c (t ∈[-1,1]);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).形如y =a sin x cos x +b (sin x ±cos x )+c ,可设t =sin x ±cos x ,则t 2=1±2sin x cosx ,即sin x cos x =±12(t 2-1),将其转化为二次函数y =±12a (t 2-1)+bt +c (t ∈[-2,2]).1.(2017·成都调研)函数y =2sin ⎝⎛⎭⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为( )A.2- 3 B.0 C.-1D.-1-32.函数y =-2sin x -1,x ∈⎣⎡⎭⎫76π,136π的值域是( )A.[-3,1] B.[-2,1] C.(-3,1] D.(-2,1] 3.(2016·全国Ⅱ卷)函数f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x 的最大值为( )A.4 B.5C.6D.74.(2017·高考全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. 5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( )A.65B.1C.35D.155.函数y =sin x -cos x +sin x cos x 的值域为________..6.已知函数f (x )=(sin x +cos x )2+cos 2x .求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最7.函数y =tan ⎝ ⎛⎭⎪⎫x 2+π4,x ∈⎝ ⎛⎭⎪⎫0,π6的值域是________..8当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的值域为________.9. .已知函数f (x )=3cos (2x -π4)在[0,π2]上的最大值为M ,最小值为m ,则M+m 等于( ).A.0B.3+3√22C.3-3√22D.3210. 函数y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2的值域是( )A.⎣⎡⎦⎤-32,12 B.⎣⎡⎦⎤-12,32 C.⎣⎡⎦⎤32,1 D.⎣⎡⎦⎤12,1 11. 设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________. 12.当函数取得最大值时,的值是.13. 已知,则函数的值域是_________________ 14.(2020·长沙质检)函数y =sin x -cos x +sin x cos x 的值域为________. 15..求函数y =-tan 2x +4tan x +1,x ∈⎣⎡⎦⎤-π4,π4的值域. 题型二 三角函数的单调性类型一 求三角函数的单调区间【题型要点已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.(1)形如y =A sin(ωx +φ)的函数的单调性问题,一般是将ωx +φ看成一个整体,再结合图象利用y =sin x 的单调性求解;(2)如果函数中自变量的系数为负值,要根据诱导公式把自变量系数化为正值,再确定其单调性.1.函数f (x )=4sin ⎝⎛⎭⎫π3-2x 的递减区间是 2函数f (x )=sin ⎝⎛⎭⎫-2x +π3的递减区间为 . 3.函数f (x )=tan ⎝⎛⎭⎫2x +π3的递增区间是 . 4.y =|cos x |的一个单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2 B .[0,π]C.⎣⎢⎡⎦⎥⎤π,3π2 D.⎣⎢⎡⎦⎥⎤3π2,2π5.函数y =cos ⎝ ⎛⎭⎪⎫π4-2x 的单调递减区间为________.()R x x x y ∈-=sin 3cos 2x tan _______x R ∈sin cos sin cos y x x x x =++6.2019·全国卷Ⅱ)下列函数中,以π2为周期且在区间⎪⎭⎫⎝⎛2,4ππ上单调递增的是( )A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |7..已知π3为函数f (x )=sin(2x +φ)⎪⎭⎫ ⎝⎛<<20πϕ的零点,则函数f (x )的单调递增区间是( )A.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-122,1252ππππ B.()Z k k k ∈⎥⎦⎤⎢⎣⎡++1272,122ππππ C.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-12,125ππππ D.()Z k k k ∈⎥⎦⎤⎢⎣⎡++127,12ππππ 类型二 根据单调性求参数【题型要点】已知三角函数的单调区间求参数的取值范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解;(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解;(3)周期法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解.【易错提醒】要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.1.若f (x )=cos x -sin x 在[0,a ]是减函数,则a 的最大值是( )A.π4B .π2 C.3π4D .π2.若f (x )=2sin ωx (ω>0)在区间[-π2,2π3]上是增函数,则ω的取值范围是________.3.已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是________.4.. 已知ω>0,函数f (x )=12cos ωx -32sin(π-ωx )在⎝ ⎛⎭⎪⎫π3,π2上单调递增,则ω的取值范围是( )A.[2,6]B.(2,6)C.⎣⎢⎡⎦⎥⎤2,103D.⎝ ⎛⎭⎪⎫2,103 5..(2012新课标)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是A .]45,21[B .]43,21[C .]21,0(D .]2,0(6.若函数f (x )=sin ωx (ω>0)在区间⎥⎦⎤⎢⎣⎡2,3ππ上单调递减,则ω的取值范围是________类型一 三角函数的周期性【题型要点】(1)公式法:函数y =A sin(ωx +φ)或y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T =π|ω|;(2)图象法:利用三角函数图象的特征求周期. (3)函数y =|sin x |,y =|cos x |,y =|tan x |的周期为π,函数y =sin|x |,不是周期函数,y =tan |x |不是周期函数.2.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.1.(2020·南开区模拟)函数f (x )=tan x 1+tan 2x的最小正周期为( )A.π4 B.π2 C .π D .2π2.(2020·云南保山模拟)在函数:①y =cos|2x |,①y =|cos x |,①y =cos ⎪⎭⎫⎝⎛+62πx ,①y =tan ⎪⎭⎫ ⎝⎛-42πx 中,最小正周期为π的所有函数的序号为( )A .①①①B .①①①C .①①D .①①3.(2017·全国Ⅱ卷)函数f (x )=sin ⎝⎛⎭⎫2x +π3的最小正周期为( )A.4π B.2π C.πD.π24.函数f (x )=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为( )A.π2B .πC .2πD .4π 5.函数f (x )=sin ⎝⎛⎭⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( )A .5 B .10 C .15 D .20 6.函数y =3tan(ωx +π6)的最小正周期是π2,则ω=____.类型二 三角函数的奇偶性1.奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.2.函数具有奇偶性的充要条件函数y =A sin(ωx +φ)(x ①R )是奇函数①φ=k π(k ①Z );函数y =A sin(ωx +φ)(x ①R )是偶函数①φ=k π+π2(k ①Z );函数y =A cos(ωx +φ)(x ①R )是奇函数①φ=k π+π2(k ①Z );函数y =A cos(ωx +φ)(x ①R )是偶函数①φ=k π(k ①Z ). 【例3】已知函数f (x )=3sin(2x -π3+φ),φ①(0,π).1若f (x )为偶函数,则φ=________; (2)若f (x )为奇函数,则φ=________. 2.若函数f (x )=sin(x +φ)+cos(x +φ)⎝⎛⎭⎫|φ|<π2为偶函数,则φ=__________. 3.若函数f (x )同时具有以下两个性质:①f (x )是偶函数;②对任意实数x ,都有f ⎝ ⎛⎭⎪⎫π4+x =f ⎝ ⎛⎭⎪⎫π4-x ,则f (x )的解析式可以是()A .f (x )=cos x B .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π2C .f (x )=sin ⎝ ⎛⎭⎪⎫4x +π2 D .f (x )=cos6x4.设函数f (x )=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为 .5设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=()A.-π6 B.π6C.-π3 D.π36(2020·北京中关村中学月考)下列函数中,对任意的x ①R ,同时满足条件f (x )=f (-x )和f (x -π)=f (x )的函数是( )A .f (x )=sin x B .f (x )=sin x cos x C .f (x )=cos x D .f (x )=cos 2x -sin 2x7.若函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +φ-π3(0<φ<π)是奇函数,则φ=________类型三 三角函数的对称性【题型要点】(1)对于函数f (x )=A sin(ωx +φ),其图象的对称轴一定经过函数图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数图象的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.(2)函数图象的对称性与周期T 之间有如下结论:①若函数图象相邻的两条对称轴分别为x =a 与x =b ,则最小正周期T =2|b -a |;①若函数图象相邻的两个对称中心分别为(a ,0),(b ,0),则最小正周期T =2|b -a |;①若函数图象相邻的对称中心与对称轴分别为(a ,0)与x =b ,则最小正周期T =4|b -a |.1.已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称 B.关于点⎝ ⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称 D.关于直线x =π6对称2.若⎝ ⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是()A.2 B.4 C.6D.83..如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎪⎫4π3,0对称,那么|φ|的最小值为( )A.π6 B.π4 C.π3 D.π2 4函数y =sin(2x +φ)⎝⎛⎭⎫-π2<φ<π2的图象关于直线x =π3对称,则φ的值为________. 5.已知函数f (x )=2sin ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期为4π,则该函数的图象( ) A .关于点⎝⎛⎭⎫π3,0对称 B .关于点⎝⎛⎭⎫5π3,0对称C .关于直线x =π3对称 D .关于直线x =5π3对称 6. 若函数y =cos(ωx +π6)(ω∈N *)的图象的一个对称中心是(π6,0),则ω的最小值为( )A.1 B .2C.4D .87.(2020·广东七校联考)已知函数y =sin(2x +φ)在x =π6处取得最大值,则函数y =cos(2x +φ)的图象( )A .关于点⎪⎭⎫⎝⎛0,6π对称 B .关于点⎪⎭⎫⎝⎛0,3π对称C .关于直线x =π6对称 D .关于直线x =π3对称 8.(2020·辽宁辽阳一模)已知偶函数f (x )=2sin ⎝⎛⎭⎫ωx +φ-π6⎝⎛⎭⎫ω>0,π2<φ<π的图象的相邻两条对称轴间的距离为π2,则⎪⎭⎫⎝⎛83πf =( )A.22 B .- 2 C .- 3 D.2三角函数中ω值的求法已知函数f (x )=cos ⎪⎭⎫⎝⎛+3πωx (ω>0)的一条对称轴为x =π3,一个对称中心为点⎪⎭⎫⎝⎛0,12π,则ω有( ) A .最小值2B .最大值2C .最小值1D .最大值1【例4】已知函数f (x )=2sin ωx 在区间⎥⎦⎤⎢⎣⎡-4,3ππ上的最小值为-2,则ω的取值范围是________. 【例5】已知f (x )=sin(ωx +π3)(ω>0),⎪⎭⎫ ⎝⎛6πf =⎪⎭⎫ ⎝⎛3πf ,且f (x )在区间⎪⎭⎫⎝⎛3,6ππ内有最小值无最大值,则ω=________.练习题3.(2020·河北衡水第十三中学质检(四))同时满足f (x +π)=f (x )与⎪⎭⎫ ⎝⎛+x f 4π=⎪⎭⎫⎝⎛-x f 4π的函数f (x )的解析式可以是( )A .f (x )=cos 2xB .f (x )=tan xC .f (x )=sin xD .f (x )=sin 2x4.(2020·河南六市联考)已知函数f (x )=2sin ⎪⎭⎫⎝⎛+6πωx (ω>0)的图象与函数g (x )=cos(2x +φ)⎪⎭⎫ ⎝⎛<2πϕ的图象的对称中心完全相同,则φ为( )A.π6 B .-π6C.π3D .-π35.(2020·河南中原名校联盟联考)已知函数f (x )=4sin(ωx +φ)(ω>0).在同一周期内,当x =π6时取最大值,当x =-π3时取最小值,则φ的值可能为( )A.π12B .π3C.13π6 D .7π66.已知函数f (x )=tan2x ,则下列说法不正确的是( )A .y =f (x )的最小正周期是πB .y =f (x )在⎪⎭⎫ ⎝⎛-4,4ππ上单调递增 C .y =f (x )是奇函数D .y =f (x )的对称中心是⎪⎭⎫⎝⎛0,4πk (k ①Z ) 7.(2020·福建六校联考)若函数f (x )=2sin(ωx +φ)对任意x 都有⎪⎭⎫⎝⎛+x f 3π=f (-x ),则⎪⎭⎫⎝⎛6πf =( ) A .2或0 B .0C .-2或0D .-2或25. 已知函数f (x )=cos(x +φ)⎪⎭⎫⎝⎛<<20πϕ,⎪⎭⎫ ⎝⎛+x f 4π是奇函数,则( )A .f (x )在⎪⎭⎫⎝⎛ππ,4上单调递减 B .f (x )在⎪⎭⎫ ⎝⎛4,0π上单调递减C .f (x )在⎪⎭⎫ ⎝⎛ππ,4上单调递增D .f (x )在⎪⎭⎫⎝⎛4,0π上单调递增 9.(2020·衡水联考)函数f (x )=sin ⎪⎭⎫⎝⎛+32πx -13在区间(0,π)内的所有零点之和为( )A.π6 B.π3 C.7π6 D.4π3 10.函数f (x )=sin ⎪⎭⎫⎝⎛+-32πx 的单调递减区间为________. 11.已知函数f (x )=2sin(ωx -π6)+1(x ①R )的图象的一条对称轴为x =π,其中ω为常数,且ω①(1,2),则函数f (x )的最小正周期为________.12.已知函数f (x )=2sin ⎪⎭⎫⎝⎛+3πωx 的图象的一个对称中心为⎪⎭⎫⎝⎛0,3π,其中ω为常数,且ω①(1,3).若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是________.13.已知函数f (x )=sin ωx +3cos ωx (ω>0),f (π6)+f (π2)=0,且f (x )在区间(π6,π2)上递减,则ω=________.14.(2020·江赣十四校第二次联考)如果圆x 2+(y -1)2=m 2至少覆盖函数f (x )=2sin 2⎪⎭⎫⎝⎛+125ππx m- 3 cos⎪⎭⎫⎝⎛+32ππx m(m >0)的一个最大值点和一个最小值点,则m 的取值范围是________. 15.(2020·赣州摸底)已知函数f (x )=sin ⎪⎭⎫ ⎝⎛-6πωx +12,ω>0,x ①R ,且f (α)=-12,f (β)=12.若|α-β|的最小值为3π4,则⎪⎭⎫⎝⎛43πf =________,函数f (x )的单调递增区间为________. 三、解答题 1.已知函数f (x )=(sin x +cos x )2+2cos 2x -2. (1)求f (x )的单调递增区间;(2)当x ①⎥⎦⎤⎢⎣⎡43,4ππ时,求函数f (x )的最大值和最小值. 2.已知函数f (x )=4sin(x -π3)cos x + 3.(1)求函数f (x )的最小正周期和单调递增区间;(2)若函数g (x )=f (x )-m 在[0,π2]上有两个不同的零点x 1,x 2,求实数m 的取值范围,并计算tan(x 1+x 2)的值.3.已知函数f (x )=2sin ⎪⎭⎫⎝⎛-4πωx (ω>0)的最小正周期为π. (1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎥⎦⎤⎢⎣⎡2,0π上的单调性. 4.已知函数f (x )=2sin 2⎪⎭⎫⎝⎛+x 4π-3cos2x -1,x ①R . (1)求f (x )的最小正周期;(2)若h (x )=f (x +t )的图象关于点⎪⎭⎫⎝⎛-0,6π对称,且t ①(0,π),求t 的值; (3)当x ①⎥⎦⎤⎢⎣⎡2,4ππ时,不等式|f (x )-m |<3恒成立,求实数m 的取值范围. 函数y =A sin(ωx +φ)18.函数y =A sin(ωx +φ)的有关概念19用五点法画函数y =A sin(ωx +φ)一个周期内的简图用五点法画函数y =A sin(ωx +φ)(A >0,ω>0)一个周期内的简图时,要找五个关键点,如下表所示:用“五点法”作函数y =A sin(ωx +φ)的简图,精髄是通过变量代换,设z =ωx +φ,由z 取0,π2,π,3π2,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象,其中相邻两点的横向距离均为T4.20.由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的两种方法联系:两种变换方法都是针对x 而言的,即x 本身加减多少,而不是ωx 加减多少.区别:先平移变换(左右平移)再周期变换(伸缩变换),平移的量是|φ|个单位,而先周期变换(伸缩变换)再平移变换(左右平移),平移的量是⎪⎪⎪⎪φω个单位题型一 函数y =A sin(ωx +φ)的图象及变换【题型要点】(1)y =A sin(ωx +φ)的图象可用“五点法”作简图得到,可通过变量代换z =ωx +φ计算五点坐标. (2)由y =sin ωx 到y =sin(ωx +φ)的变换:向左平移φω(ω>0,φ>0)个单位长度而非φ个单位长度.(3)平移前后两个三角函数的名称如果不一致,应先利用诱导公式化为同名函数,ω为负时应先变成正值.[记结论]1.函数y =A sin(ωx +φ)+k 图象平移的规律:“左加右减,上加下减”.2.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.题型一 函数y =A sin(ωx +φ)的图象及变换1.(2021·全国乙卷)把函数y =f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin ⎝⎛⎭⎫x -π4的图象,则f (x )等于( ) A .sin ⎝⎛⎭⎫x 2-7π12B .sin ⎝⎛⎭⎫x 2+π12C .sin ⎝⎛⎭⎫2x -7π12 D .sin ⎝⎛⎭⎫2x +π12 2.(2022·天津二中模拟)将函数y =sin 2x 的图象向左平移φ⎝⎛⎭⎫0≤φ<π2个单位长度后,得到函数y =cos ⎝⎛⎭⎫2x +π6的图象,则φ等于( )A.π12B.π6C.π3D.5π33.要得到函数y =cos ⎝⎛⎭⎫2x -π6的图象,可以把函数y =sin ⎝⎛⎭⎫2x +π6的图象( ) A .向右平移π6个单位长度B .向右平移π12个单位长度C .向左平移π6个单位长度D .向左平移π12个单位长度4(2022·开封模拟)设ω>0,将函数y =sin ⎝⎛⎭⎫ωx +π6的图象向右平移π6个单位长度后,所得图象与原图象重合,则ω的最小值为( )A .3 B .6 C .9 D .125.将函数的图像沿轴向左平移个单位后,得到一个偶函数的图像,则的一个可能取值为 A .B .C .0D . 6.将函数f (x )=cos 2x 的图象向左平移φ(φ>0)个单位长度,得到函数g (x )的图象.若函数g (x )的图象关于原点对称,则φ的一个取值为________.(答案不唯一)7.设ω>0,函数y=s in(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是8.若将函数()sin 2cos 2f x x x =+图象向右平移ϕ(0ϕ>)个单位,所得图象关于y 轴对称,则ϕ的最小值是 若将函数()sin 2cos 2f x x x =+图象向右平移ϕ(0ϕ>)个单位,所得图象关于原点轴对称,则ϕ的最小值是()sin 2y x ϕ=+x 8πϕ34π4π4π-若将函数()sin 2cos 2f x x x =+图象向右平移ϕ(0ϕ>)个单位,所得图象关于原函数图像重合,则ϕ的最小值是题型二 求函数y =A sin(ωx +φ)的解析式【题型要点】确定y =A sin(ωx +φ)+B (A >0,ω>0)的解析式的步骤(1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m 2,B =M +m2. (2)求ω,确定函数的周期T ,则ω=2πT .“)即图象上升时与x 轴的交点)为ωx +φ=0;“第二零点”⎪⎭⎫⎝⎛-0,ωϕπ(即图象下降时与x 轴的交点)为ωx +φ=π;(3)求φ,常用方法有:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间还是在下降区间)或把图象的最高点或最低点代入;①五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(第一零点”),(0-ωϕ即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(⎪⎭⎫⎝⎛-0,ωϕπ即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”(即图象上升时与x 轴的交点)为ωx +φ=2π.【例1】如图,函数f (x )=A sin(2x +φ)(A >0,|φ|<π2)的图象过点(0,3),则f (x )的函数解析式为( )A .f (x )=2sin(2x -π3)B .f (x )=2sin(2x +π3)C .f (x )=2sin(2x +π6)B . D .f (x )=2sin(2x -π6)【例2】 函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0,0<φ<π2)的部分图象如图所示,则f (-π3)=________.3.知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的表达式为( )A .f (x )=sin ⎝⎛⎭⎫2x +π6B .f (x )=sin ⎝⎛⎭⎫2x -π6C .f (x )=sin ⎝⎛⎭⎫x +π6D .f (x )=sin ⎝⎛⎭⎫x +π3 4.设函数)52sin(2)(ππ+=x x f ,若对任意x ∈R ,都有,f (x 1 )≤f (x )≤f (x 2 )成立,则|x 1—x 2|的最小值为 ( )5.已知函数)sin(2θω+=x y 为偶函数0(<θ<π),其图象与直线y =2的某两个交点横坐标为1x ,2x ,||12x x -的最小值为π,则( ) A.2=ω,2π=θ B.21=ω,2π=θ C.21=ω,4π=θ D.2=ω,4π=θ 6.已知函数()3sin cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是7.已知函数)0(tan >=w wx y 的图像与直线1y =的交点间的最小距离是3π,则w =______。
三角函数的图象与性质6大题型【题型目录】题型一:三角函数的周期性题型二:三角函数对称性题型三:三角函数的奇偶性题型四:三角函数的单调性题型五:三角函数的值域题型六:三角函数的图像【典例例题】题型一:三角函数的周期性【例1】(2022·全国·兴国中学高三阶段练习(文))下列函数中,最小正周期为π的奇函数是().A .tan y x =B .sin 2y x =C .sin cos y x x =D .sin y x=【例2】(2022江西景德镇一中高一期中(文))下列函数中①sin y x =;②sin y x =;③tan y x =;④12cos y x =+,其中是偶函数,且最小正周期为π的函数的个数为()A .1B .2C .3D .4【答案】B【解析】①的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,但不是周期函数,∴排除①;②的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,最小正周期是π,∴②正确;③的图象如下,根据图象可知,图象关于y 轴对称,tan y x =是偶函数,最小正周期为π,∴③正确;④的图象如下,根据图象可知,图象关于y 轴对称,12cos y x =+是偶函数,最小正周期为2π,∴排除④.故选:B.【例3】(2022·全国·高三专题练习)函数ππ()sin 2cos 233f x x x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭的最小正周期是()A .π4B .π2C .πD .2π【例4】设函数()c x b x x f ++=sin 2cos ,则()x f 的最小正周期()A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【答案】B【解析】因x y 2cos =的最小正周期为ππ==22T ,x y sin =的最小正周期为ππ212==T 所以当0≠b 时,()x f 的最小正周期为π2;当0=b 时,()x f 的最小正周期为π;【例5】(2022·全国·高一课时练习)函数22cos 14y x π⎛⎫=+- ⎪⎝⎭的最小正周期为()A .4πB .2πC .πD .2π【例6】(2022·广西桂林·模拟预测(文))函数()2sin6cos6f x x x =+的最小正周期是()A .2πB .3πC .32πD .6π【例7】(2022·全国·高一专题练习)()|sin ||cos |f x x x =+的最小正周期是()A .2πB .πC .2πD .3π【题型专练】1.(2023全国高三题型专练)在函数①cos |2|y x =,②|cos |y x =,③πcos 26y x ⎛⎫=+ ⎪⎝⎭,④πtan 24y x ⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为()A .②④B .①③④C .①②③D .②③④【答案】C【解析】∵cos |2|y x ==cos2x ,∴T =22π=π;|cos |y x =图象是将y =cos x 在x 轴下方的图象对称翻折到x 轴上方得到,所以周期为π,由周期公式知,cos(2)6y x π=+为π,tan(2)4y x π=-为2π,故选:C .2.(2022·河北深州市中学高三阶段练习)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .()()sin cos y x x ππ=+-C .22cos cos 2y x x π⎛⎫=-+ ⎪D .sin 2y x=3.(2022·北京昌平·高一期末)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .sin 2y x =C .sin cos y x x =D .22cos sin y x x=-4.(2022·陕西渭南·高二期末(理))函数()2sin cos f x x x x =+的最小正周期是________.5.(2022·全国·高一专题练习)已知函数()cos f x x x ωω=-(0)ω>的最小正周期为π,则ω=___.6.(2022·浙江·杭十四中高一期末)函数2cos cos cos 2y x x x π⎛⎫=+- ⎪的最小正周期为__________.题型二:三角函数对称性【例1】(江西省“红色十校”2023届高三上学期第一联考数学(文)试题)已知函数π()sin()0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的两个相邻的零点为12,33-,则()f x 的一条对称轴是()A .16x =-B .56x =-C .13x =D .23x =,【例2】(2022全国高一课时练习)函数cos 23y x ⎛⎫=+ ⎪⎝⎭的图象()A .关于点,03π⎛⎫⎪⎝⎭对称B .关于点,06π⎛⎫⎪⎝⎭对称C .关于直线6x π=对称D .关于直线3x π=对称【答案】D【解析】由题设,由余弦函数的对称中心为,2)0(k ππ+,令232x k πππ+=+,得212k x ππ=+,k Z ∈,易知A 、B 错误;由余弦函数的对称轴为x k π=,令23x k ππ+=,得26k x ππ=-,k Z ∈,当1k =时,3x π=,易知C 错误,D 正确;故选:D 【例3】(2022·江西省万载中学高一阶段练习)把函数4πsin 23y x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0ϕϕ>个单位长度,所得图像关于y 轴对称,则ϕ的最小值是()A .5π6B .2π3C .5π12D .π6【例4】(2023福建省福州屏东中学高三开学考试多选题)已知函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线3x π=对称,则()A .函数12f x π⎛⎫+ ⎪⎝⎭为奇函数B .函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递增C .函数()f x 的图像向右平移()0a a >个单位长度得到的函数图像关于6x π=对称,则a 的最小值是3πD .若方程()f x a =在2,63ππ⎡⎤⎢⎥上有2个不同实根12,x x ,则12x x -的最大值为2π故结合正弦函数的性质可知,若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根12,x x ,不妨设12x x <,则12x x -取得最大值时满足1266x ππ-=且25266x ππ-=,所以,12x x -的最大值为3π,故错误.故选:AC【例5】(2023江西省高三月考)若函数y cos 6x πω⎛⎫=+ ⎪⎝⎭(ω∈N +)图象的一个对称中心是,06π⎛⎫⎪⎝⎭,则ω的最小值为()A .1B .2C .4D .8【答案】B 【解析】当6x π=时,0y =,即cos 066πωπ⎛⎫+=⎪⎝⎭,()662k k Z πωπππ∴+=+∈,解得62k ω=+,N ω*∈ ,故当0k =时,ω取最小值2.【例6】【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为()(A )()26k x k Z ππ=-∈(B )()26k x k Z ππ=+∈(C )()212k x k Z ππ=-∈(D )()212k x k Z ππ=+∈【答案】B【解析】由题意,将函数2sin 2y x =的图像向左平移12π个单位得2sin 2()2sin(2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B.【题型专练】1.(2020·四川省泸县第四中学高三开学考试)已知函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭,则函数()f x 的图象的对称轴方程为()A .,4x k k Z ππ=-∈B .+,4x k k Z ππ=∈C .1,2x k k Z π=∈D .1+,24x k k Zππ=∈【答案】C【解析】由已知,()cos 2f x x =,令2,π=∈x k k Z ,得1,2x k k Z π=∈.故选:C.2.【2017·天津卷】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5(28f π=,(08f 11π=,且()f x 的最小正周期大于2π,则A .23ω=,12ϕπ=B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕ<π得12ϕπ=,故选A .3.(2023·全国·高三专题练习)将函数sin 22y x x =的图象沿x 轴向右平移a 个单位(a >0)所得图象关于y 轴对称,则a 的最小值是()A .712πB .4πC .12πD .6π4.【2018·江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ5.(2022·广西南宁·高二开学考试多选题)把函数()sin f x x =的图像向左平移π3个单位长度,再把横坐标变为原来的12倍(纵坐标不变)得到函数()g x 的图像,下列关于函数()g x 的说法正确的是()A .最小正周期为πB .单调递增区间5πππ,π()1212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .图像的一个对移中心为π,03⎛⎫- ⎪⎝⎭D .图像的一条对称轴为直线π12x =题型三:三角函数的奇偶性【例1】(2022·全国·清华附中朝阳学校模拟预测)已知函数()sin 2sin 23f x x x π⎛⎫=++ ⎪⎝⎭向左平移θ个单位后为偶函数,其中0,2π⎡⎤θ∈⎢⎥⎣⎦.则θ的值为()A .2πB .3πC .4πD .6π【例2】(2022·广东·执信中学高一期中)对于四个函数sin y x =,cos y x =,sin y x =,tan y x =,下列说法错误的是()A .sin y x =不是奇函数,最小正周期是π,没有对称中心B .cos y x =是偶函数,最小正周期是π,有无数多条对称轴C .sin y x =不是奇函数,没有周期,只有一条对称轴D .tan y x =是偶函数,最小正周期是π,没有对称中心由图可知,函数sin y x =不是奇函数,最小正周期是π,没有对称中心,A 对;对于B 选项,如下图所示:由图可知,cos y x =是偶函数,最小正周期是π,有无数多条对称轴,B 对;对于C 选项,如下图所示:由图可知,sin y x =不是奇函数,没有周期,只有一条对称轴,C 对;对于D 选项,如下图所示:由图可知,函数tan y x =是偶函数,不是周期函数,没有对称中心,D 错.故选:D.【例3】(2022·陕西师大附中高一期中)已知函数2π()sin ()24f x x =++,若(lg5)a f =,1(lg 5b f =,则()A .0a b +=B .0a b -=C .5a b +=D .5a b -=【例4】(2022·江西省铜鼓中学高二开学考试)将函数()sin 22f x x x =+的图象向左平移()0ϕϕ>个单位长度得到一个偶函数,则ϕ的最小值为()A .12πB .6πC .3πD .56π【例5】(2022·四川成都·模拟预测(理))函数2()ln(2)sin(1)211f x x x x x x -=+--+++在[0,2]上的最大值与最小值的和为()A .-2B .2C .4D .6【例6】(2022·贵州贵阳·高三开学考试(理))已知函数()2cos(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭的图象向右平移3π个单位长度后,得到函数()g x 的图象,若()g x 的图象关于原点对称,则ϕ=()A .3πB .4πC .6πD .12π【例7】(2022·陕西·定边县第四中学高三阶段练习(理))已知函数()sin cos f x a x b x =-在4x π=处取到最大值,则4f x π⎛⎫+ ⎪⎝⎭()A .奇函数B .偶函数C .关于点(),0π中心对称D .关于2x π=轴对称【例8】(2023·全国·高三专题练习)写出一个最小正周期为3的偶函数()f x =___________.【题型专练】1.(2022·全国·高一课时练习)下列函数中,既为偶函数又在,02π⎛⎫- ⎪⎝⎭上单调递增的是()A .cos y x =B .cos y x=C .sin 2y x π⎛⎫=- ⎪D .tan cos y x x=-2.(2022·陕西·武功县普集高级中学高三阶段练习(文))已知函数()e e sin x xf x x a -=-++,若()1ln 1,ln 3f m f m ⎛⎫== ⎪⎝⎭,则=a ()A .1B .2C .1-D .2-3.(2022·湖南·周南中学高二期末)函数为()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭偶函数的一个充分条件是()A .6π=ϕB .3πϕ=C .2ϕπ=D .()3k k πϕπ=+∈Z故选:A4.(2022·贵州黔东南·高二期末(理))已知函数()πcos 2(0)3f x x ωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,将其图象向右平移(0)ϕϕ>个单位长度,得到函数()g x 的图象,若函数()g x 为偶函数,则ϕ的最小值为()A .6πB .π4C .π3D .π25.(2023·全国·高三专题练习)已知函数2()(2)sin(1)1f x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=()A .1B .2C .3D .4可得()h t 的最大值与最小值之和为0,那么()g t 的最大值与最小值之和为2.故选:B .6.(2022辽宁丹东·高一期末)写出一个最小正周期为1的偶函数()f x =______.【答案】cos2πx【解析】因为函数cos y x ω=的周期为2π||ω,所以函数cos 2πy x =的周期为1.故答案为:cos2πx .(答案不唯一)7.(2022·全国·高三专题练习)已知()2sin()cos f x x x α=++是奇函数,则sin α的值为______.8.(2022·河南·高二开学考试)将函数()()cos 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像向左平移4π个单位长度后得到偶函数()g x 的图像,则ω的最小值是______.【答案】1039.(2022·全国·高一单元测试)写出一个同时具有性质①()02f =;②()()πf x f x +=的函数()f x =______(注:()f x 不是常数函数).题型四:三角函数的单调性【例1】(湖南省永州市2023届高三上学期第一次高考适应性考试数学试题)将函数2()cos cos 1f x x x x =+-的图象向右平移6π个单位长度,然后将所得函数图象上所有点的横坐标变为原来的12(纵坐标不变),得到函数()y g x =的图象,则()g x 的单调递增区间是()A .ππππ,(Z)12262k k k ⎡⎤-++∈⎢⎥⎣⎦B .ππ5ππ,(Z)242242k k k ⎡⎤-++∈⎢⎥⎣⎦C .π2π2π,2π(Z)33k k k ⎡⎤-++∈⎢⎥D .π5π2π,2π(Z)66k k k ⎡⎤-++∈⎢⎥故选:A【例2】(2022·陕西师大附中高一期中)sin1,sin 2,sin 3按从小到大排列的顺序为()A .sin3sin2sin1<<B .sin3sin1sin2<<C .sin1sin2sin3<<D .sin2sin1sin3<<【例3】(2022·全国·高一单元测试)下列四个函数中,以π为周期且在π0,2⎛⎫ ⎪⎝⎭上单调递增的偶函数有()A .cos 2y x =B .sin 2y x =C .tan y x =D .lg sin y x=也是以【例4】(2023·全国·高三专题练习)已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为()A .3B .4C .5D .6当ππ,π2u k k ⎡⎤=+⎢⎥⎣⎦,k Z ∈时,函数sin y u =递增.即πππ,π42x k k ⎡⎤+∈+⎢⎥⎣⎦,解得:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈,所以函数sin()4πy x =+的单调递增区间是πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.故答案为:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.【例6】(2023·全国·高三专题练习)函数πsin(2)3y x =-+的单调递减区间是()A .π5π[π,π],Z 1212k k k -+∈B .π5π[2π,2π],Z 1212k k k -+∈C .π5π[π,πZ66k k k -+∈D .π5π[2π,2πZ66k k k -+∈【题型专练】1.(2022·辽宁·新民市第一高级中学高一阶段练习)已知函数2sin()y x ωθ=+为偶函数(0)θπ<<,其图像与直线2y =的两个交点的横坐标分别为12x x 、,若21||x x -的最小值为π,则该函数的一个单调递增区间为()A .ππ,24⎛⎫-- ⎪B .ππ,44⎛⎫- ⎪C .π0,2⎛⎫ ⎪⎝⎭D .π3π,44⎛⎫⎪⎝⎭2.(2022·四川省成都市新都一中高二开学考试(理))已知函数()sin(),022f x x ππωϕϕω⎛⎫=+-<<> ⎪⎝⎭,若()00166f x f x ππ⎛⎫⎛⎫==≠ ⎪ ⎪⎝⎭⎝⎭,0min6x ππ-=,则函数()f x 的单调递减区间为()A .2,()63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z B .22,2()63Z k k k ππππ⎛⎫++∈ ⎪⎝⎭C .,()36Z k k k ππππ⎛⎫-++∈ ⎪D .2,2()36Z k k k ππππ⎛⎫-++∈ ⎪3.(2022六盘山高级中学)函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为()A .5,()212212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭C .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭【答案】B【解析】因为函数tan y x =的单调递增区间为,()22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,所以2()223,k k k x Z πππππ-<-<+∈,解得5,()212212k k x k Z ππππ-<<+∈,所以函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭.故选:B 4.(2023·全国·高三专题练习)已知函数()()sin 2f x x ϕ=+,其中()0,2πϕ∈,若()6f x f π⎛⎫≤ ⎪⎝⎭对于一切R x ∈恒成立,则()f x 的单调递增区间是()A .,2k k πππ⎡⎤+⎢⎥⎣⎦()k ∈Z B .,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z C .2,63k k ππππ⎡⎤++⎢⎥()k ∈Z D .,2k k πππ⎡⎤-⎢⎥()k ∈Z 5.(2022·全国·高二单元测试)已知函数()cos f x x x =,()()g x f x '=,则().A .()g x 的图像关于点π,06⎛⎫⎪⎝⎭对称B .()g x 图像的一条对称轴是π6x =C .()g x 在5π5π,66⎛⎫- ⎪上递减D .()g x 在ππ,33⎛⎫- ⎪的值域为(0,1)6.(2022天津市静海区大邱庄中学高三月考)设函数()cos 26f x x π⎛⎫=- ⎪⎝⎭,给出下列结论:①()f x 的一个周期为π②()y f x =的图象关于直线12x π=对称③()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称④()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减其中所有正确结论的编号是()A .①④B .②③C .①②③D .②③④【答案】C【解析】对于①,2T ππω==,故①正确;对于②,12x π=时,(112f π=,函数取得最大值,故②正确;对于③,6x π=-时,()06f π-=,故③正确;对于④,2,63x ππ⎡⎤∈⎢⎥⎣⎦ ,当712x π=时,7112f π⎛⎫=- ⎪⎝⎭,函数取得最小值,()f x ∴在2,63ππ⎡⎤⎢⎥⎣⎦有增有减,故④不正确.故选:C .7.(2022·全国·高一课时练习)关于函数1()sin sin f x x x=+,下列说法正确的是()A .()f x 的一个周期是πB .()f x 的最小值为2C .()f x 在π(0,2上单调递增D .()f x 的图象关于直线π2x =对称上单调递减,而8.(2022·内蒙古包头·高三开学考试(文))若()sin cos f x x x =+在[]0,a 是增函数,则a 的最大值是()A .4πB .2πC .34πD .π9.(2022·全国·高一专题练习)若函数()sin 23f x x ⎛⎫=- ⎪⎝⎭与()cos 4g x x ⎛⎫=+ ⎪⎝⎭都在区间()(),0πa b a b <<<上单调递减,则b a -的最大值为()A .π3B .π2C .6πD .π10.(2022·全国·高三专题练习)将函数()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象,若()y g x =在[,64ππ-上为增函数,则ω最大值为()A .32B .2C .3D .11.(2022·全国·高一课时练习多选题)已知直线8x =是函数()sin(2)(0π)f x x ϕϕ=+<<图象的一条对称轴,则()A .π8f x ⎛⎫+ ⎪⎝⎭是偶函数B .3π8x =是()f x 图象的一条对称轴C .()f x 在ππ,82⎡⎤⎢⎥⎣⎦上单调递减D .当π2x =时,函数()f x 取得最小值题型五:三角函数的值域【例1】(2022·陕西·安康市教学研究室高三阶段练习(文))下列函数中,最大值是1的函数是()A .|sin ||cos |=+y x xB .2cos 4sin 4y x x =+-C .cos tan y x x =⋅D .y =【例2】(2022·全国·高三专题练习)函数1ππ()sin()cos()363f x x x =++-的最大值是()A .43B .23C .1D .13【答案】8【解析】【分析】由题意可得()22sin sin 1f x x x =-++,令[]sin 0,1x t ∈=,可得[]221,0,1y t t t =-++∈,利用二次函数的性质可求f (x )的最大值.【详解】解:()22cos 2sin 2sin sin 12sin sin 1f x x x x x x x =+=-++=-++,令[]sin 0,1x t ∈=,可得[]2219212,0,148y t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,当14t =时,y 取得最大值为98,故答案为:98.【例4】(2022·江西·高三开学考试(文))已知函数()()2πsin sin 022f x x x x ωωωω⎛⎫+--> ⎪⎝⎭的最小正周期为π,则()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的值域为()A .11,22⎡⎤-⎢⎥⎣⎦B .22⎡-⎢⎥⎣⎦C .⎡⎤⎢⎥⎣⎦D .⎡-⎢⎣⎦【例5】(2022·湖北·襄阳五中模拟预测)已知函数()sin()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在区间,33ππ⎛⎫⎪⎝⎭上单调,且对任意实数x 均有4()33f f x f ππ⎛⎫⎛⎫≤≤⎪ ⎪⎝⎭⎝⎭成立,则ϕ=()A .12πB .6πC .4πD .3π【例6】(2023·全国·高三专题练习)已知函数()22sin s ()3in f x x x π+=+,则()f x 的最小值为()A .12B .14C .D .2【例7】(2022·全国·高三专题练习)函数2()cos 2f x x x =+-0,2x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是__________.【答案】14-##-0.25【解析】【详解】22()1sin 2sin 1f x x x x x =--=--=21sin24x ⎛⎫-- ⎪ ⎪⎝⎭,所以当sin x =时,有最大值14-.故答案为14-.【例8】(2022·全国·高三专题练习)已知函数()sin cos 2sin cos 2f x x x x x =+++,则()A .()f x 的最大值为3,最小值为1B .()f x 的最大值为3,最小值为-1C .()f x的最大值为3,最小值为34D .()f x的最大值为33【例9】(2022·全国·高一课时练习)已知关于x 的方程2cos sin 20x x a -+=在02π⎛⎤⎥⎝⎦,内有解,那么实数a 的取值范围()A .58a -≤B .102a -≤≤C .1122a -<≤D .12a -<≤0【题型专练】1.(2022·江西九江·高一期末)函数()193sin cos 2R 24y x x x =+-∈的最小值是()A .14B .12C .234-D .414-2.(2022·河南焦作·高一期末)函数2cos22cos y x x =+的最小值为()A .3-B .2-C .1-D .0【答案】C【分析】利用二倍角的降幂公式化简函数解析式,利用余弦型函数的有界性可求得结果.【详解】2cos 22cos cos 2cos 212cos 21y x x x x x =+=++=+ ,min 211y ∴=-+=-.故选:C.3.【2018·北京卷】设函数f (x )=πcos(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω,因为0>ω,所以当0k =时,ω取最小值为23.4.(2022·广西南宁·高二开学考试)已知函数ππ()sin ,0,36f x x x ⎛⎫⎡⎤=+∈ ⎪⎢,则函数()f x 的最大值为__________.5.(2022·全国·高一课时练习)函数()1sin cos =++f x x x的值域为_____________.6.(2022·全国·高一专题练习)若奇函数()f x 在其定义域R 上是单调减函数,且对任意的R x ∈,不等式2(cos 3sin )(sin )0f x x f x a -+-≤恒成立,则a 取值范围是_________.【答案】(,2]-∞-【分析】根据给定条件,脱去法则“f ”,再利用含sin x 的二次函数求解作答.【详解】因奇函数()f x 在R 上单调递减,则R x ∀∈,2(cos 3sin )(sin )0f x x f x a -+-≤2(cos 3sin )(sin )f x x f a x ⇔-≤-22cos 3sin sin cos 2sin x x a x a x x ⇔-≥-⇔≤-,令222cos 2sin sin 2sin 1(sin 1)2y x x x x x =-=--+=-++,而1sin 1x -≤≤,因此当sin 1x =时,min 2y =-,即有2a ≤-,所以a 取值范围是(,2]-∞-.故答案为:(,2]-∞-【点睛】思路点睛:涉及求含正(余)的二次式的最值问题,可以换元或整体思想转化为二次函数在区间[-1,1]或其子区间上的最值求解.7.【2018·全国Ⅲ】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤ ,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.8.(2022·上海市第十中学高一期末)已知函数()2cos 2cos 1f x x x x =+-(R x ∈).求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥上的最大值和最小值.9.(2022·湖南·雅礼中学高一期末)已知函数()2cos sin 4f x x a x a =-++-,[]0,x π∈.(1)求()f x 的最小值()g a ;(2)若()f x 在[]0,π上有零点,求a 的取值范围,并求所有零点之和.题型六:三角函数的图像【例1】(2022·陕西师大附中高三开学考试(理))函数()sin()(0,0,0)f x A x A ωϕωπϕ=+>>-<<的部分图象如图所示,为了得到()sin g x A x ω=的图象,只需将函数()y f x =的图象()A .向左平移6π个单位长度B .向左平移12π个单位长度C .向右平移6π个单位长度D .向右平移12π个单位长度【例2】(2022·陕西·延安市第一中学高一期中)函数()()sin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则()2f π的值为()A .B .C .D .1-的部分图象知,【例3】(2022·湖南·宁乡市教育研究中心模拟预测)如图表示电流强度I 与时间t 的关系()()()sin 0,0I A x A ωϕω=+>>在一个周期内的图像,则下列说法正确得是()A .50πω=B .π6ϕ=C .0=t 时,I =D .1300100t I ==时,【例4】(2022·江苏·沭阳如东中学高三阶段练习多选题)已知函数()()sin f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的部分图象如图所示,则()A .2ω=B .()f x 的图象关于直线23x π=对称C .()2cos 26f x x π⎛⎫=- ⎪⎝⎭D .()f x 在5[,63ππ--上的值域为[2,1]-【例5】(2022·河北·沧县风化店中学高二开学考试多选题)函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,且满足223f π⎛⎫=- ⎪⎝⎭,现将()f x 图象沿x 轴向左平移4π个单位,得到函数()y g x =的图象.下列说法正确的是()A .()g x 在,126ππ⎡⎤-⎢⎥⎣⎦上是增函数B .()g x 的图象关于56x π=对称C .()g x 是奇函数D .()g x 的最小正周期为23π【例6】(2022·福建·高三阶段练习多选题)函数()sin()(0,0,02π)f x A x A ωϕωϕ=+>><<的部分图像如图所示,则()A .3π2ωϕ+=B .(2)2f -=-C .()f x 在区间()0,2022上存在506个零点D .将()f x 的图像向右平移3个单位长度后,得到函数π()cos 4g x x ⎛⎫=- ⎪的图像【例7】(2022·江苏南通·高三开学考试多选题)已知函数()()sin 20,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是()A .()f x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称B .()f x 的图象向右平移π12个单位后得到sin2y x =的图象C .()f x 在区间π,2π⎡⎤--⎢⎥⎣⎦上单调递増D .π6f x ⎛⎫+ ⎪为偶函数【例8】(2022·全国·高一单元测试多选题)已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示,下列说法错误的是()A .()f x 的图象关于直线23x π=-对称B .()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称C .将函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移2π个单位长度得到函数()f x 的图象D .若方程()f x m =在,02π⎡⎤-⎢⎥上有两个不相等的实数根,则m 的取值范围是(2,-【题型专练】1.(2022·广东·仲元中学高三阶段练习多选题)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()f x 的图象向右平移316π个单位长度,再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,则()A .()2sin 24x f x π⎛⎫=+ ⎪⎝⎭B .()g x 的图象关于直线8x π=-对称C .()g x 的图象关于点,08π⎛⎫⎪⎝⎭对称D .函数()()f x g x +的最小值为4-2.(2022·湖北·襄阳市襄州区第一高级中学高二阶段练习多选题)函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图像如图所示,则下列结论正确的是()A .()12sin 33f x x π⎛⎫=- ⎪⎝⎭B .若把()f x 图像上的所有点的横坐标变为原来的23倍,纵坐标不变,得到函数()g x 的图像,则函数()g x 在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位长度,得到函数()h x 的图像,则函数()h x 是奇函数D .,33x ππ⎡⎤∀∈-⎢⎥,若()332f x a f π⎛⎫+≥ ⎪恒成立,则a 的取值范围为)2,+∞3.(2022·安徽·高三开学考试)已知函数π()2sin()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,其中ππ,2,,0123A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则下列说法错误的是()A .()f x 的最小正周期为πB .将()f x 的图象向右平移6π个单位长度后关于原点对称C .()f x 在2ππ,3⎡⎤--⎢⎣⎦上单调递减D .直线7π12x =为()f x 图象的一条对称轴4.(2022·天津·南开中学高三阶段练习)已知函数π()sin()(R,0,0,)2f x A x x A ωϕωϕ=+∈>><的部分图象如图所示,则下列说法正确的是()A .直线πx =是()f x 图象的一条对称轴B .()f x 图象的对称中心为π(π,0)12k -+,Z k ∈C .()f x 在区间ππ,36⎡⎤-⎢⎥⎣⎦上单调递增D .将()f x 的图象向左平移π12个单位长度后,可得到一个奇函数的图象5.(2022·江苏省如皋中学高三开学考试多选题)函数()()sin 0,0,0πy A x A ωϕωϕ=+>><<在一个周期内的图象如图所示,则().A .该函数的解析式为2π2sin 33y x ⎛⎫=+ ⎪⎝⎭B .该函数图象的对称中心为ππ,03k ⎛⎫- ⎪⎝⎭,Zk ∈C .该函数的单调递增区间是5ππ3π,3π44k k ⎛⎫-+ ⎪⎝⎭,Zk ∈D .把函数π2sin 3y x ⎛⎫=+ ⎪的图象上所有点的横坐标伸长为原来的32倍,纵坐标不变,可得到该函数图象6.(2021·福建·福州十八中高三开学考试多选题)已知函数()sin()(010f x x ωϕω=+<<,0π)ϕ<<的部分图象。
三角函数的基本性质与像知识点总结三角函数是数学中的重要概念,在几何图形、物理问题等领域都有广泛应用。
本文将对三角函数的基本性质和像知识点进行总结和归纳。
一、正弦函数与余弦函数的基本性质1. 周期性:正弦函数和余弦函数都是周期函数,其周期为2π(或360°)。
即在一个完整的周期内,函数的图像会重复出现。
2. 奇偶性:正弦函数是奇函数,即满足f(-x)=-f(x);余弦函数是偶函数,即满足f(-x)=f(x)。
这意味着函数图像关于y轴对称。
3. 定义域和值域:正弦函数和余弦函数的定义域为实数集,值域为[-1, 1]。
函数图像在y轴上下波动,最大值为1,最小值为-1。
4. 单调性:正弦函数和余弦函数都是周期函数,其在一个周期内具有相同的单调性特点。
在0到2π(或0°到360°)的区间内,正弦函数在0到π(或0°到180°)单调递增,余弦函数在0到π/2(或0°到90°)单调递减。
二、正切函数与余切函数的基本性质1. 周期性:正切函数和余切函数都是周期函数,其周期为π(或180°)。
即在一个完整的周期内,函数的图像会重复出现。
2. 奇偶性:正切函数是奇函数,即满足f(-x)=-f(x);余切函数是奇函数,即满足f(-x)=-f(x)。
这意味着函数图像关于原点对称。
3. 定义域和值域:正切函数和余切函数的定义域为实数集,但由于存在奇点,即函数在某些角度上无定义,因此需注意避开这些奇点。
值域为全体实数。
4. 单调性:正切函数和余切函数都是周期函数,其在一个周期内具有相同的单调性特点。
在0到π/2(或0°到90°)的区间内,正切函数和余切函数均单调递增。
三、三角函数的诱导公式1. 正弦函数的诱导公式:sin(x+π)=-sin(x),sin(x+2π) = sin(x)。
2. 余弦函数的诱导公式:cos(x+π)=-cos(x),cos(x+2π) = cos(x)。
三角函数的图像与性质题型归纳总结题型归纳及思路提示题型1 已知函数解析式确定函数性质【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。
一、函数的奇偶性例1 f (x )=sin ()x ϕ+(0≤ϕ<π)是R 上的偶函数,则ϕ等于( )A.0 B .4πC .2πD .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()();y A x k k Z ϕϕπ=+=∈(1)若是奇函数,则sin()+();2y A x k k Z πϕϕπ=+=∈(2)若是偶函数,则 cos()();2y A x k k Z πϕϕπ=+=+∈(3)若是奇函数,则cos()();y A x k k Z ϕϕπ=+=∈(4)若是偶函数,则tan()().2k y A x k Z πϕϕ=+=∈(5)若是奇函数,则.()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( )A.0 B .1 C .1-D .1±2.0()cos()()R f x x x R ϕϕϕ∈==+∈变式设,则“”是“为偶函数”的( )A 充分不必要条件B .必要不充分条C .充要条件D .无关条件3.()sin()0()f x x f x ωϕω=+>变式设,其中,则是偶函数的充要条件是( )A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0f =2.()sin(2)()()2f x x x R f x π=-∈例设,则是( )A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π最小正周期为的奇函数D .2π最小正周期为的偶函数2()sin 1()()f x x x R f x =-∈变式1.若,则是( )A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数2.(0,)2ππ变式下列函数中,既在递增,又是以为周期的偶函数的是( )A.cos 2y x =B .|sin 2|y x =C .|cos 2|y x =D .|sin |y x =二、函数的周期性3.sin(2)cos(2)66y x x ππ=++例函数的最小正周期为( )A.2πB .4πC .2πD .π【评注】关于三角函数周期的几个重要结论:sin()b,cos()b,tan()b22,,.||||||y A x y A x y A x ωϕωϕωϕπππωωω=++=++=++(1)函数的周期分别为|sin()|,|cos()|,|tan()|.||y A x y A x y A x πωϕωϕωϕω=+=+=+(2)函数的周期均为2|sin()b |(b 0),|cos()b |(b 0).||y A x y A x πωϕωϕω=++≠=++≠(3)函数的周期均为1.sin(2)cos(2)63y x x ππ=+++变式函数的最小正周期和最大值分别为( )A.,1πB.π.2,1πD.2π()sin (sin cos ),()f x x x x f x =-变式2.若则的最小正周期是________.()sin 3|sin 3|()f x x x f x =+变式3.若则是( )A.3π最小正周期为的周期函数 B .23π最小正周期为的周期函数 C .π最小正周期为2的周期函数D .非周期函数三、函数的单调性.sin(2)([0,])6y x x ππ=-∈例4函数的递增区间是( )A.[0,]3πB .7[,]1212ππC .5[,]36ππD .5[,]6ππ【评注】求三角函数的单调区间:sin()(0,0)y A x A ωϕω=+>>若函数则22()22322()22(3)sin()0,0sin()sin()(4)cos()tan()k x k k Z k x k k Z y A x A y A x y A x y A x y A x πππωϕππππωϕπωϕωωϕωϕωϕωϕ-≤+≤+∈+≤+≤+∈=+><=---=--=+=+(1)函数的递增区间由决定;(2)函数的递减区间由决定;若函数中,可将函数变为则的增区间为原函数的减区间,减区间为原函数的增区间;对于函数和单调性的讨论同上。
31.sin ()[()44y x f x f x ππ=+-变式函数在,]内单调递增,则可以是( )A.1B .cos x C .sin x D .cos x-()sin()(0)(42f x x ππωωπω=+>变式2.若在,)上单调递增,则的取值范围是( )A.15[,]24B .13[,]24C .1(0,]2D .(0,2]3.()cos()cos()(0)33(1)()(2)(),[0,]()22f x x x x f x f x x f x ππωωωωππ=+++->∈变式已知函数求的值域;若的最小正周期为,的单调递减区间.四、函数的对称性(对称轴、对称中心).sin(2)3y x π=+例5函数图象的对称轴方程可能是( )A.6x π=-B .12x π=-C .6x π=D .12x π=【评注】关于三角函数对称性的几个重要结论:sin (),(,0)();2cos (),(,0)();2tan (,0)();22sin()(),=();2:y x x k k Z k k Z y x x k k Z k k Z k y x k Z k y A x b x k k Z x k Z x k πππππππππϕπωϕωϕπωωϕπ==+∈∈==∈+∈=∈+-=+++=+∈∈+=(1)函数的对称轴为对称中心(2)函数的对称轴为对称中心(3)函数无对称轴,对称中心(4)函数的对称轴的求法:令得对称中心的求法令()=(),(,)()cos()(),=();22:()=(),(,)()2k k k Z x k Z b k Z k y A x b x k k Z x k Z k k x k k Z x k Z b k Z πϕπϕωωπϕωϕωϕπωπππϕπϕπωϕπωω--∈∈∈-=+++=∈∈+-+-+=+∈∈∈得对称中心为;(5)函数的对称轴的求法:令得对称中心的求法令得对称中心为1.sin()(0)()3y x f x πωωπ=+>变式已知函数的最小正周期为,则的图象( )A.(,0)3π关于点对称 B .4x π=关于直线对称C .(,0)4π关于点对称D .3x π=关于直线对称.sin()4y x π=-变式2函数的图象的一个对称中心是( )A.(,0)π- B .3(,0)4π- C .3(,0)4πD .(,0)2π 223.()sin cos .55x xf x =+变式函数的图象中,相邻两条对称轴之间的距离是__________.sin 0x x a a a =>变式4若函数y 的图象向右平移个单位()后的图象关于y 轴对称,则的最小值是( )A.76πB .2πC .6πD .3π五、三角函数性质的综合【思路提示】三角函数的性质(奇偶性、周期性、单调性、对称性)中,对称性尤为重要;121()()()()(2)224(3)()()sin(),00()[,]f x y f x f x f x T T Tf x f x A x A f x ωωθθ⇒⇒⇒=>>()对称性奇偶性:若函数的图象关于轴对称,则是偶函数;若函数的图象关于原点对称,则是奇函数;对称性周期性:相邻两条对称轴之间的距离为;相邻两个对称中心的距离为;相邻的对称中心与对称轴之间的距离为;对称性单调性:在相邻的对称轴之间,函数单调;特殊的,若,函数在上单调12120[,]{||,}4Tmax θθθθθθ∈=≥,且设,则。
6.()sin 2cos 2,0,()(),6117(1)()0;(2)()();(3)()121052()[,]()63(5)(,)().f x a x b x ab f x f x R f f f f x f x k k k Z a b f x ππππππππ=+≠≤∈=<++∈例设若对任成立则不具奇偶性;(4)的单调递增区间是;存在经过点的直线与函数的图象不相交.以上结论中正确的是__________________7.()4cos()sin cos(2)(0)63(1)()(2)()[,].22f x x x x f x f x πωωωπωππω=--+>-例已知函数求的值域;若在区间为增函数,求的最大值21.()2sin (0),()[,].43f x x f x ππωωω=>-变式已知函数若在上递增,求的取值范围8.()sin()(0),()()(,)=______.36363f x x f f πππππωωω=+>=例若且在上有最小值无最大值,则题型2 根据条件确定解析式方向一:“知图求式”,即已知三角函数的部分图象,求函数解析式。
【思路提示】由图象求得y =A sin(ωx +φ) (A >0,ω>0)的解析式一般不唯一,只有限定φ的取值范围,才能得到唯一解。
依据五点法原理,点的序号与式子的关系是:第一点(即图象上升时与横轴的交点)为0x ωϕ+=,第二点(即图象最高点)为2x πωϕ+=,第三点(即图象下降时与横轴的交点)为x ωϕπ+=,第四点(即图象最低点)为32x πωϕ+=,第五点(即图象上升时与横轴的交点)为2.x ωϕπ+=。
.()sin(2)(,)(0)f x A x A R f ϕϕ=+∈=例9函数部分图象如下图所示,则( )A.12-B .1-C .32-D .31.()sin()(0,0)(0)________.f x A x A f ωϕω=+>>=变式函数部分图象如下图所示,则2.()cos()()(0)________.23f x A x f f πωϕ=+=-=变式2部分图象如下图所示,,则.()sin()(0,0,||)()f x A x A f x ωϕωϕπ=+>><例10已知函数部分图象如下图所示,求的解析式。
变式1.已知)(cos )(2ϕω+=x x f (ω,ϕ为常数),如果存在正整数ω和实数ϕ使得函数()f x 的图象如图所示(图象经过点(1,0)),求ω的值.112yOx方向二:知性质(如奇偶性、单调性、对称性、最值)求函数解析式。