习题四群与子群
- 格式:doc
- 大小:104.50 KB
- 文档页数:2
第二章群论复习题一、填空题1、集合A 的元间的关系~叫做等价关系,如果~适合下列三个条件: 。
2、设~是集合A 的元间的一个等价关系,它决定A 的一个分类:[][]b a ,是两个等价类。
则[][]⇔=b a 。
3、设G 是一个n 阶交换群,a 是G 的一个m (n m ≤)阶元,则商群()a G 的阶等于 。
4、设G =()a 是12阶循环群,则G 的生成元是 。
5、3S 的子群()()(){}132,123,1=H 的一切右陪集 。
6、设H 是群G 的子群,G b a ∈,,则⇔=Hb Ha 。
7、设G =()a 是循环群,则G 与模n 的剩余类加群同构的充要条件是 。
8、设G =)(a 是10阶循环群,则G 的子群的个数为_________.9、在5次对称群5S 中,.______)15423(_____,)125)(13(1==-10、设G =)(a 是15阶循环群,则G 的子群的个数为_________.11、整数加群Z 是一个循环群,它有且仅有两个生成元是______和_____.二、判断题1、( )若B A ,都是群G 的子群,则B A 也是G 的子群。
2、( )交换群的子群是循环群。
3、( )循环群的同态象是循环群。
4、( )一个阶是11的群只有两个子群。
5、( )有单位元且满足消去律的有限半群是群。
6、( )交换群的子群是不变子群。
7、( )全体整数的集合对于普通减法构成一个群8、( )群G 的指数是2的子群一定是不变子群。
三、计算题1:将置换(456)(567)(761)σ=写成不相交循环置换的乘积,并求σ的阶; 2:求三次对称群3S 的所有子群。
3:计算置换1211n n n σ⎛⎫= ⎪-⎝⎭的奇偶性。
4、求解模20剩余类20Z 的所有子群。
四、证明题1:令G 是实数对(,),0a b a ≠的集合,在G 上定义(,)(,)(,)a b c d ac ad bc =+,证明G 是群2:设(),,,,1a b ax b G f x a b c d R c d cx d ⎧⎫+⎪⎪==∈=⎨⎬+⎪⎪⎩⎭,证明G 关于变换的乘法构成群。
§3.2 正规子群与商群对一般的群G 及N G ≤,左、右陪集不一定相等,即一般aN Na ≠, (见上一章例子,3,{(1),(12)}G S N ==,(13)(13)N N ≠)。
但对某些群G 及其子群N G ≤,总有性质:,a G aN Na ∀∈=。
例如,取3,G S = 3{(1),(123),(132)},N A G ==≤ 则当a 取3(1),(123),(132)A ∈时,总有aN Na =。
而当a 取(12),(13),(23)时, (12){(12),(23),(13)}(12)N N ==,(13){(13),(23),(12)}(13)N N ==,(23){(23),(13),(12)}(23)N N ==,所以3a G S ∀∈=,都有aN Na =。
再比如,交换群的子群总满足上述性质。
设G 是群,N G ≤,若,a G aN Na ∀∈=有,则 称N 是G 的正规子群(Normal subgroup ),记作N G 。
由前面,3A 是3S 的正规子群:33.A S交换群的子群都是正规子群; ()C G G 。
{}e 和G 总是G 的正规子群,称为平凡正规子群,其余的正规子 群称为非平凡正规子群。
定理1. 设N G ≤,则 1,NG a G aNa N -⇔∀∈⊆有; ⇔,,a G x N ∀∈∀∈ 都有1.axa N -∈例1 证明n n A S 。
例2. 设(){|(),||0}n n G GL R A A M R A =∈≠且,(){|||1}n N SL R A A R A =∈=,且, 证明:N G 。
证明:,X G A N ∀∈∀∈,则111||||||||||||||||1,X AX X A X X A X A ---==== 从而,1X AX N -∈,所以N G 。
例3 证明:{}44(1),(12)(34),(13)(24),(14)(23)K S =。
《群论》部分习题解答版权所有人:Wu TS,2006年4月第一章.预备知识(Chapter1.Preliminary) 4.(Page28)Let S be the set of all n×n symmetric real matrices and in S we define a binary relation∼in the followingA∼B if and only if there exists an invertible matrix C such that B=C AC,where C is the transpose matrix of C.Prove that∼defines an equivalent relation in pute|S/∼|.解答:(1)直接验证∼是S的一个等价关系。
(2)根据线性代数理论,对于任意实对称矩阵A,存在可逆矩阵Q 使得Q AQ是对角矩阵diag{1,1,···,−1,···,−1,0,···,0},简记为Q AQ=E r000−E s0000=Dr,s,其中r+s=r(A).根据惯性定理,其中的r也是由A唯一确定的。
因此,两个n阶实对称矩阵A与B合同的充分必要条件是r(A)=r(B)且正惯性指数相同。
所以我们得到S/∼={D r,s|0≤r,s and r+s≤n},其中,D r,s={P D r,s P|P∈GL n(R)}.下面计算|S/∼|.(1)满足r=0的D r,s共有n+1个,它们分别是D0,0,D0,1,D0,2,···,D0,n.(2)满足r=1的D r,s共有n个,它们分别是D1,0,D1,1,D1,2,···,D1,n−1.···(n+1)满足r=n的D r,s共有1个,即为D n,0.因此,|S/∼|=n+1j=1j=(n+1)(n+2)2.1第二章.群论(Chapter2.Group Theory)1.(Page49)Prove that both G1={(a ij)n×n|a ij∈Z,det(A)=1}and G2= {(a ij)n×n|a ij∈Q,det(A)=1}are groups under the matrix multiplication.证明:只证明G1是子群。
第十章 群、环和域简介10.1 群1. 判断以下集合对于所给的运算来说哪些作成群,哪些不作成群: (1) 某一数域F 上全体n n ⨯矩阵的加法; (2) 全体正整数对于数的乘法;(3) {}2xx Z ∈对于数的乘法;(4){}01x R x ∈<≤对于数的乘法;(5) {}1,1-对于数的乘法. 解:(1) 设数域F 上全体n n ⨯矩阵的集合为()n M F ,对于矩阵的加法来说()n M F 作成一个加群.因为对任意,,()n A B C M F ∈,有1°()A B C ++=()A B C ++(加法结合律)2°()n M F 中存在零矩阵O ,使得对任意的A ∈()n M F ,有A O O A A +=+=3°对于A ∈()n M F ,有A -∈()n M F .使得()()A A A A O +-=-+=4°对于,A B ∈()n M F ,有A B B A +=+. (2) 全体正整数对于数的乘法不作成群.因为对于数的乘法来说,单位元是1,但是对于正整数a =2来说不存在正整数b 使得a ×b =1.(3) 集合{}2x M x Z =∈对于数的乘法作成阿贝尔群.因为1°对于12x ,22x,32x ∈M ,123,,x x x Z ∈,有312(22)2x x x ⨯⨯=1232x x x ++=3122(22)x x x ⨯⨯2°在M 中有021=,使得2x M ∈,有022x ⨯=022x ⨯=2x .3°对于2x M ∈,存在2xM -∈使得22x x -⨯=22x x -⨯=02=14°对于2,2x y M ∈,有22x y =2x y +=22y x.(4) 集合{}101M x R x =∈<≤对于数的乘法来说不作成群.因为1M 中的单位元是1,而对于12a =不存在1b M ∈,使得1a b ⨯=.(5) 集合{}1,1G =-对于数的乘法作成群〔阿贝尔群〕.因为对于G 任三个元素来说,结合律显然成立.再者G 有单位元1.对于G 中元素来说1(1)⨯-=(1)1-⨯=1-,并且1的逆元是1,1-的逆元是1-.2. 证明群中的指数规那么〔1〕、〔2〕.证明:设G 是一个群,a G ∈,那么1a G -∈,对于,m n ∈Z,如果0(0)m n <<或,设m m '=-, ()n n '=-或,并且注意当0n <时,对于a G ∈,有1()n na a '-=.于是1°当0,0m n >>时,mnm na a aa aa ==m n a +;2°当0,0m n >=时,0mmn a a aa a ==m a e =m a =m n a +,当0,0m n =>时,同理可证.;3°当0,0m n ><时,11n mm na a aa a a '--==111,,()(()),m n m n n mm n m n m n a a m n a a a a m n '-+'''------+'⎧=≥⎨'===<⎩; 4°当0,0m n <<时,1111m n m n a a a a a a ''----==1()m n a ''-+=11(())m n a --+=m na +.所以对任意,m n ∈Z ,a G ∈都有m na a =m n a +,即〔1〕式成立.其次我们先证对于任意的m ∈Z ,a G ∈,都有1()m a -=1()ma -.∵1()m m a a -=1()m a a -=0()m a =m e =e再由定义1()m m a a -=e ,根据G 中每一个元素的逆元的唯一性,∴1()m a -=1()ma -.以下证明等式〔2〕成立.1°当0,0m n >>时,()m n a =()()()nmmma a a a a a =mn a2°当0,0m n ><时,()m n a =1[()]m n a '-=1[()]m n a '-=1()mn a '-=11[()]mn a --=mn a当0,0m n <>时,()m n a =1[()]m n a '-=1()m n a '-=11[()]mn a --=mn a .3°当0,0m n <<时,()m n a =1[()]m n a '-=11{[()]}m n a ''--=()m n a ''=m n a ''=mn a .综上所述所证,群G 中指数规那么〔1〕、〔2〕成立. 3. 设{,,}G a b c =,G 的乘法由下面的表给出:ab c a a b c b b c a c cab证明G 对于所给的乘法作成一个群.证明:根据G 的乘法表可知ab b ba ==,ac c ca ==,bc a cb ==,所以G 的乘法是可换的,以下证明G 对于乘法作成一个群.1°结合律成立.由于G 对于所给的乘法是可换的,对于结合律我们只要验证也容易验证以下的情况即可.()()ab c a bc =;()()aa b a ab =;()()aa c a ac =; ()()bb a b ba =;()()bb c b bc =;()()cc a c ca =; ()()cc b c cb =.其它情况由G 的乘法可换性,立即可以证得.2°G 中有单位元a ,使得对于G 中任意元素,,a b c ,都有aa a =,ab ba b ==,ac ca c ==3°G 中每一个元素都有逆元,a 的逆元是a ,〔因为aa a =〕,而b 的逆元是c ,c 的逆元是b ,〔因为bc cb a ==〕.所以G 对于所给的乘法作成一个〔可换〕群.4. 证明,一个群G 是阿贝尔群的充要条件是:对任意的,a b G ∈和任意的整数n ,都有()n n n ab a b =. 证明:必要性,群G 对乘法运算可换,且对结合律成立.设,a b G ∈,而n 是任意的整数,因为G 对指数规那么〔1〕、〔2〕成立.故有()n ab =()()()ab ab ab =abab ab =22a b ab ab =…=n n a b .充分性,设,a b G ∈,而n 是整数,有()n n n ab a b =,令2n =,那么有222()ab a b =,即()()ab ab =()a ba b =()()aa bb =()a ab b ,所以()a ba b =()a ab b ,在此等式两边左乘1a -以并右乘以1b -,得11()()()a a ba bb --=11()()()a a ab bb --,所以 ()e ba e =()e ab e ,即 ba =ab . 所以G 是一个阿贝尔群.5. 证明,群G 的两个子群的交还是G 的一个子群. 证明:设1H ,2H 是群G 的两个子群,那么12H H ≠∅〔至少有一个单位元e 〕.1°对于12,a b H H ∈那么1,a b H ∈且2,a b H ∈,因为1H ,2H 是子群,所以1ab H ∈且2ab H ∈,所以12ab H H ∈;2°设12c H H ∈,那么1c H ∈且2c H ∈因为1H ,2H 是子群,所以11c H -∈且12c H -∈,所以112c H H -∈,所以,由子群的定义可知,12H H 是G 的一个子群.6. 证明,n 维欧氏空间V 的全体正交变换作成V 上一般线性群()GL V 的一个子群,这个群称为V 上的正交群,用记号()O V 表示.证明:一般线性群()GL V 是指n 维欧氏空间V 上全体可逆线性变换的集合对V 上的线性变换与线性变换的乘法来说作成的群.因为正交变换是可逆的线性变换,且单位变换也是正交变换.所以()O V 是()GL V 的非空子集.任意两个正交变换的乘积也是正交变换,即乘法封闭. 正交变换的逆变换也是正交变换.所以,n 维欧氏空间V 的全体正交变换的集合()O V 是一般线性群()GL V 的一个子群.7. 令a 是群G 中的一个元素,令{}n a a n 〈〉=∈,证明a 〈〉是G 的一个子群,称为由a生成的循环子群.特别,如果a 〈〉=G ,就称G 是由a 生成的循环子群.试各举出一个无限循环子群和有限循环子群的例子.证明:显然a a ∈〈〉,故a 〈〉非空,设,n m a a a ∈〈〉,,n m Z ∈,那么n m n ma a a a +=∈〈〉;设na ∈a 〈〉,那么11()()n n n a a a a ---==∈〈〉,所以a 〈〉是G 的一个子群.例1:设G Z =,运算是加法运算,那么1G =〈〉是无限循环群. 例2:设{}70,1,2,3,4,5,6G Z ==运算是剩余类的“加法〞,那么1G =〈〉是由1生成的有限循环群,它只有7个元素.8. 令σ=1212n n i ii ⎛⎫ ⎪⎝⎭,设()A Mn F ∈,定义 ()A σ=111222121212n n n i i i n i i i n i i i n a a a a a a a a a ⎛⎫⎪ ⎪ ⎪⎪ ⎪⎝⎭就是对A 的行作置换σ所得的矩阵,令n ∑={}()n I S σσ∈,其中I 是n n ⨯单位矩阵,证明n∑作成(,)GL n F 的一个与n S 同构的子群. 证明:首先注意以下的几个事实: 1°设1(1,0,,0)ε=,2(0,1,,0)ε=,……,(0,0,,1)n ε=,由矩阵的乘法可知i jεε'=1,,0,i j i j=⎧⎨≠⎩〔,1,2,,i j n =〕2°集合n ∑={}()n I S σσ∈中的任一元素()I σ都是由n 阶单位矩阵I 的各行所给的假设干次的置换而得到,所以,每一个()I σ的每一行和每一列都是只有一个位置上的元素为1,其余位置上的元素全为0,并且||1I =.而()I σ都是由I 的各行经过对换而得到的所以|()|I σ=1±.3°容易计算,集合n∑={}()n I S σσ∈共有!n 个不同的元素,不妨设为:n∑={}12!,,,n I I I ;所以n ∑是群(,)GL n F 的一个非空子集.现在证明n ∑与n S 同构,由于n S 是一个群,所以n S 是(,)GL n F 的一个子群.(1) 集合n∑对(,)GL n F 的运算〔即矩阵乘法〕是封闭的.设1212n n i i i σ⎛⎫=⎪⎝⎭,1212n n j j j τ⎛⎫=⎪⎝⎭∈nS ,那么()I σ和()I τ是n ∑的两个元素〔矩阵〕.因为I 的第1,2,…,n 行分别是n 维向量1ε,2ε,…,n ε,所以()I σ的第1,2,…,n 行分别是n 维向量1i ε,2i ε,…,niε,而()I τ的第1,2,…,n 行分别是n 维向量1jε,2jε,…,njε,由上述的事实2°可知()I τ的各列也是由一些单位向量所组成.设其在第1,2,…,n 列分别是n 维向量1k ε,2k ε,…,nkε,此处1k ,2k ,…,n k 是1,2,…,n 的某一个排列.设()I σ()I τ=A 〔A 是n n ⨯矩阵〕由矩阵的乘法可知A 的第s 行的各个元素分别是1si kεε',2si kεε',…,sni kεε',由上述事实1°可知,这n 个数中只有一个t s k i =时才等于1,其余各数均为0,〔因为s i 是1,2,…,n 的某一个排列〕,这样矩阵A 的第s 行只有一个位置的元素是1,而其余位置的元素均为0,并且当s i 不同时,1的位置不同,令s =1,2,…,n 可知矩阵A 的各行各列的元素都只有一个位置的1,而其余位置的元素均为0,并且||A =|()()|I I στ=1±,所以nA ∈∑,即()I σ()I τn ∈∑.(2) 存在着n ∑到n S 的一个同构映射f . 如上所述,n ∑={}12!,,,n I I I ,设i I 是n ∑的任意一个矩阵,用i I 右乘n ∑的各个元素,得1i I I ,2i I I ,…,!i n I I ,因为n ∑对乘法是封闭的,所以它们仍是n ∑中!n 个不同的元素〔因为假设i k I I =i i I I ,由i I 的可逆性那么有k I =i I 〕,这样我们得到一个n ∑元素之间的一个置换,i I τ=12!12!n i i n i I I I I I I I I I ⎛⎫⎪⎝⎭,所以我们定义n ∑到n S 的一个映射:ii I f I τ→.a ) f 是n ∑到n S 的一个双射. 它显然是满射,现证是单射.设,i j nI I ∈∑,且i jI I ≠,那么i I τ=12!12!n i i n i I I I I I I I I I ⎛⎫⎪⎝⎭≠j I τ=12!12!n j j n j I I I I I I I I I ⎛⎫⎪ ⎪⎝⎭,因为假设i t I I =j tI I ,t =1,2,…,n ,由n ∑中元素的可逆性,那么有i I =jI 这与i jI I ≠矛盾,所以f 是n ∑到n S 的一个一一映射;b ) f 是n ∑到n S 的一个同构映射,设,i j n I I ∈∑,依f 的对应法那么()i f I =i I τ,()j f I =j I τ,设i j kI I I =,那么有:()i j f I I =()k f I =k I τ=12!12!n k k n k I I I I I I I I I ⎛⎫⎪⎝⎭=12!12!n i j j i j n i I I I I I I I I I I I I ⎛⎫⎪ ⎪⎝⎭=i j I I τ=()i f I ()j f I所以f 是n ∑到n S 的一个同构映射.所以n ∑和n S 同构,又由于n S 是群,因而n ∑也是群.且n ∑⊆(,)GL n F . 9. 设G 是一个群,a G ∈,映射:a x ax λ,x G ∈叫做G 的一个左平移.证明:(1) 左平移是G 到自身的一个双射;(2) 设,a b G ∈,定义a b a b λλλλ=〔映射的合成〕,那么G 的全体左平移{}a a G λ∈对于这样的定义的乘法作成一个群G ';(3) G G '≅. 证明:(1) :a xax λ,x G ∈是G 到G 的一个双射.首先a λ是一个满射,因为对于任意的y G ∈,总存在一个1x a y G -=∈,使得ax y =,其次a λ的一个单射,因为12,x x G ∈,并且12x x ≠那么12ax ax ≠.(2) G '是一个群.因为G '对映射的乘法是封闭的,且G '对映射的乘法满足结合律.另外,设e 是G 的单位元,那么e λ是G '的单位元,对于a G λ'∈都有a λe λ=e λa λ=a λ.最后,设a G λ'∈,因为a G ∈,1a G -∈,所以存在一个映射1a G λ-'∈,使a λ1a λ-=1a λ-a λ=e λ,即G '中每一个元素a λ都有逆元1aλ-,所以G '是一个群.(3) G G '≅,作G 到G 的一个映射f :a a λ.容易证明f 是双射.且假设,a b G ∈,()f ab =ab λ=a λb λ=a b λλ=()f a ()f b .所以f 是G 到G 的一个同构映射,即G G '≅.10. 找出三次对称群3S 的一切子群.〔注意:要求证明你找出3S 的子群已经穷尽了的一切子群〕解:三次对称群3S ={}(1),(12),(13),(23),(123),(132)共六个元素.现在设H 是3S 的一个非空子集,如果H 要做3S 的子群,那么H 必须对3S 的运算是封闭的;同时H 有(1)作为单位元,并且假设a H ∈那么1a H -∈,而(1,2)的逆元是(1,2),(1,3)的逆元是(1,3),(2,3)的逆元是(2,3),(1,2,3)的逆元是(1,3,2).在3S 的一切非空子集中,可能构成3S 的子群的非空子集只有以下情况:1H ={}(1),2H =3S ,3H ={}(1),(12),4H ={}(1),(13),5H ={}(1),(23),6H ={}(1),(123),(132),7H ={}(1),(12),(123),(132),8H ={}(1),(13),(123),(132),9H ={}(1),(23),(123),(132),10H ={}(1),(12),(13),(123),(132),11H ={}(1),(12),(23),(123),(132), 12H ={}(1),(13),(23),(123),(132),13H ={}(1),(12),(13),14H ={}(1),(12),(23),15H ={}(1),(23),(13),16H ={}(1),(12),(13),(23),经检验,除1H ,2H ,3H ,4H ,5H ,6H ,可构成3S 的子群外,其余的子集都对乘法不封闭,所以不构成3S 的子群.10.2 剩余类加群1. 写出6Z 的加法表.解:略.2. 证明:n Z 是循环群,并与n 次单位根群n U 同构.证明:设{},n Z +是模n 的剩余类加群,其元素有n 个:0,1,2,,,,1k n -,因为1111k k =+++=,这就是说n Z 中任意元k 皆是1的倍数,所以n Z 可由1生成,即n Z =1〈〉,故n Z 是循环群.又设n U 是n 次单位根群,那么n U 是n 阶群,以ε表示n U 的一个单位原根,那么n U ε=〈〉={}0121,,,,n εεεε-,作n Z 到n U 的一个映射:k f k ε,那么f 显然是n Z 到n U 的一个双射.并且对于,n k l Z ∈都有()()()f k l f k f l +=+.1°假设k l n +<,那么()()f k l f k l +=+=k l ε+=k lεε=()()f k f l ;2°假设k l n +≥,那么(0)k l n s s n +=+≤≤,故有()()f k l f k l +=+=()f s =s ε=1s ε=n s εε=n s ε+=()()f k f l .所以f 是n Z 到n U 的一个同构映射,即n Z 与n U 同构. 3. 找到6Z 的所有子群. 解:{}60,1,2,3,4,5Z =,依习题10.1习题10的方法,在加群6Z 中,0是单位元,1与5互为逆元,2与4互为逆元,3与3互为逆元.所以,可能构成6Z 的子群的集合有以下几个:{}10H =,2H =6Z ,{}30,3H =,{}40,2,4H =,{}50,2,3,4H =,{}60,1,5H =,{}70,1,3,5H =,经检验,1H ,2H ,3H ,4H 是6Z 的子群,其余子集均对运算不封闭,不能构成子群.因此,6Z 的一切子群有{}10H =,2H =6Z ,{}30,3H =,{}40,2,4H =.4. 证明,每一个有限群含有一个子群与某一个n Z 同构.证明:设G 是n 元有限群,e 是G 的单位元,a e ≠是G 中任意的元,作元素a 的非负整数幂:e =012,,,,,,,n k a a a a a ,因为G 是群,故上列这些元均是G 中的元素,又因为G是n 阶群,故上列元必有相同的.设s ka a =,且s k ≠,不妨设k s >,而k s m -=,所以0k s a a -==e ,即m a e =.我们把满足这一条件的最小正整数m 称为元a 的阶,显然,假设a的周期为m ,那么m n ≤,〔否那么G 有多于n 个元素,这与G 是n 阶群〕.令{}2,,,m H a a a e ==,因为m n ≤,所以H 是群G 的非空子集,现证H 是G 的子群,且m H Z ≅.1°H 是G 的子群.首先H 的元互不相同.因为假设1,l t m ≤≤,且l t ≠那么l ta a ≠,〔假设l ta a =,设l t >,那么l t a e -=,而l t m -<.这与m 是a 的阶矛盾〕.同时,H 对G 的乘法封闭.设,i j a a H ∈那么有i j i j a a a +=,假设i j m +≤,那么i j i j a a a H +=∈,假设i j m +>,那么i j m p +=+,0p m <≤,那么i j i j a a a +=m pp aa +==H ∈,其次H 有单位元m a e =,最后设k a H ∈,那么1k m ≤≤.那么必有正整数m k -,使得m ka H -∈,这时k m k m a a a e -==.所以H 中任意一元k a H ∈都有逆元m k a H -∈.2°m H Z ≅.为了方便我们记0m a e a ==.作H 到n Z 的一个映射:k f ka ,显然f 是双射.设,m k l Z ∈,假设k l m +≤,那么 ()()()()k l k lf k l f k l a a a f k f l ++=+===,假设k l m +>那么设(0)k l m r r m +=+<<,那么()()()r rf k l f k l f r a e a +=+===()()m r k l a a a f k f l +===所以f 是H 到n Z 的一个同构映射,即m H Z ≅.5. 设G 、H 是群,在{}(,),G H g h g G h H ⨯=∈∈中定义乘法:(,)(,)(,)g h g h gg hh ''''=,(,),(,)g h g h G H ''∈⨯.证明,G H ⨯按照这样的乘法来说作成一个群.证明:因为{}(,),G H g h g G h H ⨯=∈∈,G 、H 是两个群.1°G H ⨯对乘法封闭.设(,),(,)g h g h G H ''∈⨯,因G 、H 是群,故gg G '∈,hh H '∈,故(,)(,)(,)g h g h gg hh ''''=G H ∈⨯2°G H ⨯的乘法适合结合律,设11(,)g h G H ∈⨯,22(,)g h G H ∈⨯,33(,)g h G H ∈⨯,那么123g g g G ∈,123h h h H ∈,又G 、H 是群,故123g g g G ∈,123h h h H ∈适合结合律.因此112233(,)[(,)(,)]g h g h g h=112323(,)(,)g h g g h h =123123(,)g g g h h h =121233(,)(,)g g h h g h =112233[(,)(,)](,)g h g h g h3°G H ⨯中有单位元12(,)e e ,其中设1e ,2e 分别是G 、H 的单位元.因为对于(,)g h G H ∈⨯,12(,)e e (,)g h •=12(,)e g e h =(,)g h ,12(,)(,)g h e e =12(,)ge he =(,)g h .4°G H ⨯中每个元(,)g h 都有逆元11(,)g h --,其中1g -,1h -分别是g G ∈,h H ∈的逆元.因为(,)g h 11(,)g h --=11(,)gg hh --= 12(,)e e ,11(,)g h --(,)g h =11(,)g g h h --=12(,)e e 综上所证,{}(,),G H g h g G h H ⨯=∈∈对所定义的乘法(,)(,)(,)g h g h gg hh ''''=作成一个群.6. 写出22Z Z ⨯和23Z Z ⨯,证明,23Z Z ⨯6Z ≅ 证明:{}20,1Z =,{}30,1,2Z =,{}60,1,2,3,4,5Z =,22Z Z ⨯={}(0,0),(0,1),(1,0),(1,1),23Z Z ⨯={}(0,0),(0,1),(0,2),(1,0),(1,1),(1,2).以下证明23Z Z ⨯6Z ≅,因为6Z 是一个6阶循环群,而元素1的阶是6,故1可作为6Z 的生成元,在23Z Z ⨯中(1,1)的阶也是6,故(1,1)可以作为23Z Z ⨯的生成元,即23Z Z ⨯=(1,1)〈〉.所以23Z Z ⨯是6阶循环群.作6Z 到23Z Z ⨯的映射::1(1,1)0,1,2,3,4,5f k k k =,那么在f 下,我们有:f 1(1,1),2(0,2),3(1,0),4(0,1),5(1,2),60(0,0)=,显然f 是双射.再对f 的(66)2⨯÷=16种情况逐一验证,知f 是一个同态映射,因而f 是6Z 到23Z Z ⨯同构映射,即23Z Z ⨯6Z ≅.7. 任何一个四阶循环群或者与4Z 同构,或者与22Z Z ⨯同构. 证明:设G 是任一四阶群,以下分两种情况讨论:(1) 假设G 是任一四阶循环群,那么{}023,,,G a a e a a a =〈〉==,而{}40,1,2,3Z =.做4Z 到G 的映射:0,1,2,3kf ka k =,显然f 是双射,现设0,3k l ≤≤,假设3k l +≤,那么()f k l +=()f k l +=k l a +=k l a a =()f k ()f l ,假设4k l +≥,那么4(04)k l r r +=+≤<,那么 ()f k l +=()f k l +=()f r =r a =r e a =4r a a =4r a +=k l a +=k la a =()f k ()f l .所以f是同构映射,即4G Z ≅(2) 假设{},,,G e a b c =不是循环群,那么G 作为一个群,其乘法表为e a b c e e a b c a a e c b b b c e a c c b a e显然,{},,,G e a b c =非循环群,G 的非单位元的阶都是2,即2a e =,2b e =,2c e =,而22Z Z ⨯={}(0,0),(0,1),(1,0),(1,1),由2Z的运算性质可知,22Z Z ⨯的每个非单位元的阶也都是2.做G 到22Z Z ⨯的映射:(0,0)e ϕ,(0,1)a ,(1,0)b ,(1,1)c ,容易看出,映射ϕ是双射,再对ϕ的(44)2⨯÷=8种情况逐一验证,知ϕ是一个同态映射,所以映射ϕ是同构映射,即22G Z Z ≅⨯.10.3 环和域1. 证明,在一个交换环R 里,二项式定理()n a b +=11222n n n n n n a C a b C a b b --++++对于任意的,a b R ∈和正整数n 成立.证明:设,a b R ∈,我们对于正整数n 用数学归纳法来证明1°当n=1时,1()a b +=a b +,命题成立;2°当n=2时,2()a b +=()()a b a b ++=22a ab ab b +++=222a ab b ++,命题成立;3°假定当n=k 时,命题成立,即有()k a b +=11222k k k k k k a C a b C a b b --++++成立,对于n=k+1时,我们有:1()k a b ++=()()k a b a b ++=11222()()k k k k k k a C a b C a b b a b --+++++=11212()k k k k k k a C a b C a b ab +-++++1122231()k k k k k k a b C a b C a b b --++++++=11212111()k k k k k k a C a b C ab b +-+++++++,故结论成立.2. 设R 是一个环,并且对于加法来说R 作成一个循环群,证明R 是一个交换环. 证明:由题设存在元a 生成,使得{}R a na n Z =〈〉=∈.设12,a a R ∈,那么11a n a =,22a n a =,12,n n Z ∈,有12a a =1()n a 2()n a =212n n a ,21a a =2()n a 1()n a =212n n a所以12a a =21a a ,即R 对乘法满足交换律,故R 是一个交换环.3. 证明,对于有单位元的环来说,加法适合交换律是环定义里其它条件是结果.〔提示:用两种方式展示()(11)a b ++〕证明:R 是一个有单位元1环,那么由环定义中条件〔3〕可知()(11)a b ++=()1()1a b a b +++=a b a b +++=()a b a b+++,而()(11)a b ++=(11)(11)a b +++=a ab b+++=()a a b b+++,因此()a b a b +++=()a a b b +++,所以 b a +=a b +.4. 写出2Z 和7Z 的加法和乘法表. 解:略.5. 设R 是一个只有有限多个元的交换环,且R 没有零因子,证明R 是一个域. 证明:因为R 是一个只有有限多个元素的交换环,故可设12,,,n a a a R ∈是R 的全部非零元,这意味着这n 个元互不相同.设i a 是{}12,,,n G a a a =中之一,以i a 乘以{}12,,,n G a a a =的所有元得12,,,i i i n a a a a a a ,由于R 没有零因子,故这n 个元素仍是R 的非零元,且各不相同〔因为假设()i s i k a a a a s k =≠,由于R 没有零因子,故消去律成立,得到s k a a =与{}12,,,n G a a a =元素各不相同矛盾〕,所以12,,,i i i n a a a a a a 除去次序不同和12,,,n a a a 必完全相同.因此,对于这个i a ,必有一个k 存在〔1k n ≤≤〕使i k i a a a =〔因为如果不是这样,那么12,,,i i i n a a a a a a 中没有一个等于i a ,这与12,,,i i i n a a a a a a 与12,,,n a a a 完全相同矛盾〕,因为R 是一个交换环,所以k i i k i a a a a a ==.1°以下我们证明k a 是单位元.设.j a是G 的任一元,由以上证明知12,,,i i i n a a a a a a 除去次序不同和12,,,n a a a 必完全相同,所以必有i s a a =j a ,k j a a =k a ()i s a a =i s a a =j a ,再由R是一个交换环,知j k ja a a =,所以k a 是G 的单位元,记为k e a =是G 的单位元.2°以下证明G 中的元素都有逆元,为此我们对G 重新排序记为{}121,,,,n G e a a a -=,设r a 是G 任意元,以r a 乘以{}121,,,,n G e a a a -=中每一个元,得121,,,,r r r r n a e a a a a a a -,那么由以上证明知121,,,,r r r r n a e a a a a a a -除去次序不同和12,,,n a a a 必完全相同,因而必有r t t r a a e a a ==.所以G 是一个可换群,所以R 是一个域.6. 设R 是一个环,a R ∈,如果存在一个正整数n ,使得0na =,就说a 是一个幂零元.证明,在一个交换环里,两个幂零元的和还是幂零元.证明:设,a b R ∈是两个幂零元,那么有n,m 是正整数,使得0n a =,0ma =,由本习题1,在交换环中二项式定理成立,故有()n m a b ++=11222n m n m n m n m n m n m a C a b C ab b ++-+-+++++++因为00n k n k k a a a a +===,00s m s m sb b b b +===,所以()n ma b ++=0,所以a b +是幂零元.7. 证明,在一个环R 中,以下两个条件等价: (i ) R 没有非零的幂零元;(ii )如果a R ∈,且20a =那么0a =.证明:设〔ⅰ〕成立我们证明〔ⅱ〕成立.因为20a =,但是R 中没有非零幂零元,所以0a =.反之,设〔ⅱ〕成立我们证明〔ⅰ〕成立.设a R ∈是任一幂零元,那么存在一个正整数n,使得0na =,以下证明0a =,假设0a ≠,由〔ⅱ〕成立,那么有20a ≠〔否那么由假设20a =那么0a =,矛盾〕,同理22()0a ≠,即40a ≠,如此继续下去,那么有20ka ≠,1,2,k =,而当2k n >时,由有220kknn a aa -==,矛盾.所以,假设不成立,即〔ⅰ〕成立.8. 设R 与R '是环,:f R R '→是一个同态映射,证明, (i ) {}Im()()()f f R f a a R ==∈是R '的一个子环; (ii ){}()()0I Ker f a R f a ==∈=是R 的一个子环,并且对任意的r R ∈,a I ∈都有ra I ∈,如果R 与R '都有单位元,能不能断定(1)R f 是R '的单位元1R '?当f 是满射时,(1)R f 是R '的单位元1R '?证明:(i) 因为R 与R '是环,:f R R '→是一个同态映射,所以(0)0f '=〔此处0是R 的零元,0'是R '的零元〕,所以0Im()f '∈,又Im()()f f R R '=⊆,即Im()f 是R '的非空子集.所以对于(),()Im()f a f b f ∈,,a b R ∈,有()()()f a f b f a b -=-∈ Im()f .〔因为R 是环,,a b R ∈,所以a b R -∈〕,并且()()()Im()f a f b f ab f =∈.所以{}Im()()()f f R f a a R ==∈是R '的一个子环;(ii) 因为R 与R '是环,:f R R '→是一个同态映射,所以(0)0f R ''=∈,所以()Ker f ≠∅,设,()a b Ker f ∈,那么()()0f a f b '==,于是()()()000f a b f a f b '''-=-=-=,所以()a b Ker f -∈,且()()()000f ab f a f b '''===,故()ab Ker f ∈,因此,{}()()0I Ker f a R f a ==∈=是R 的一个子环.对于r R ∈,a I ∈()Ker f =,那么()()()()00f ra f r f a f r ''===,所以ra I ∈ ()Ker f =.如果R 与R '都有单位元,:f R R'→是一个同态映射,那么(1)R f 不一定是R '的单位元1R ',例如{}20,1R Z ==,{}20,1R Z '==,作R R '→的映射:00,10f ,那么显然:f R R '→是一个同态映射,但(1)0f =不是R '的单位元.如果f 是满射,(1)R f 是R '的单位元1R '.9. 设F 和F '是域,:f F F '→是同态映射,证明,或者()0f F =,或者f 是个单射,〔提示:利用第8题〔ⅱ〕证明()Ker f 或者等于零,或者等于F 〕.证明:因为F 和F '是域,:f F F '→是同态映射,所以F 和F '是环,由上题〔ⅱ〕知{}()()0Ker f a R f a =∈=是F 的一个子环〔域〕,以下分两种情况讨论:(i ) 假设{}()0Ker f =,那么对于任意的,()a b Ker f ∈,有()()0f a f b '==,于是 ()()()000f a b f a f b '''-=-=-=,所以()a b Ker f -∈,但{}()0Ker f =,所以a b =,所以f 是个单射;(ii )假设{}()0Ker f ≠,那么()Ker f 必有非零元素,设()a Ker f ∈并且0a ≠,又因为F 是域,所以a 在F 中必有逆元1a F -∈,由上题〔ⅱ〕知1()a a Ker f -∈,即1()e a a Ker f -=∈,设x 是F 中任意元素,再由〔ⅱ〕的结果可知:()xe x Ker f =∈,所以()F Ker f ⊆,而()Ker f F ⊆,所以()Ker f F =,当()Ker f F =时,Im()()0f f F ==.10. 证明,2阶实矩阵2()M R 的子集F =,a b a b R b a ⎧⎫⎛⎫⎪⎪∈⎨⎬ ⎪-⎪⎪⎝⎭⎩⎭作成一个与复数域同构的域.证明:首先证明F 是环2()M R 的一个子域.设a b A b a ⎛⎫= ⎪-⎝⎭,c d B d c ⎛⎫=⎪-⎝⎭是F 任意两个元素,其中a,b,c,d R ∈,那么a b cd A B b a d c ⎛⎫⎛⎫-=- ⎪⎪--⎝⎭⎝⎭=a c b d b d a c --⎛⎫ ⎪-+-⎝⎭F ∈,又当0B ≠时,c,d 不全为零,那么22cd B c d dc ==+-0≠,所以1B -存在,且11cd B d c B --⎛⎫= ⎪⎝⎭,所以1B F -∈,于是11a b c d AB b a d c B--⎛⎫⎛⎫=⎪⎪-⎝⎭⎝⎭=1ac bd bc ad ad bc ac bd B+-⎛⎫ ⎪-+⎝⎭F ∈,所以F 是环2()M R 的一个子域,现在作复数域{}2,,1C a bi a b R i =+∈=-到F 的一个映射:a b f a bib a ⎛⎫+ ⎪-⎝⎭,显然,f 是C 到F 的一个双射.现在设()a b f a bi b a ⎛⎫+= ⎪-⎝⎭,()cd f c di dc ⎛⎫+=⎪-⎝⎭,那么[()()]f a bi c di +++=[()()]f a c b d i +++=()a cb d b d ac ++⎛⎫ ⎪-++⎝⎭a b c d b a d c ⎛⎫⎛⎫=+ ⎪ ⎪--⎝⎭⎝⎭=()()f a bi f c di +++. 又[()()]f a bi c di ++=[()()]f ac bd ad bc i -++=ac bd bc ad ad bc ac bd +-⎛⎫ ⎪-+⎝⎭ =a b c d b a d c ⎛⎫⎛⎫⎪⎪--⎝⎭⎝⎭.所以f 是C 到F 的同构映射,即F 作成一个与C 同构的域.11. 令Q 是有理数域,R 是一个环,而f ,g 都是Q 到环R 的环同态,证明,假设对任意整数n ,都有()()f n g n =那么f g =.证明:由,来证明11()()f g nn =,假设11()()f g n n ≠,那么 11()()()()f n f g n g n n ≠这与(1)(1)f g =,所以假设不成立,有11()()f g n n =.再证明f g =.对于任意有理数mQn ∈,我们有 11()()()()()()m mf f m fg m g g n n n n ===,所以f g =.12. 证明,一切形如,,a bi c di a b R c di a bi ++⎛⎫∈ ⎪-+-⎝⎭的二阶复矩阵所成的集合作成一个环K ,这个环的每一个非零元素都有逆元,K 是不是域?证明:1°集合K 对于矩阵的加法和乘法都是封闭的. 设11111111a b i c d i A c d i a b i ++⎛⎫= ⎪-+-⎝⎭,22222222a b i c d i B c d i a b i ++⎛⎫= ⎪-+-⎝⎭K ∈, 那么1212121212121212()()()()()()()()a a b b i c c d d i A B c c d d i a a b b i ++++++⎛⎫+= ⎪-++++-+⎝⎭K ∈,记11111111a b i c d i A c d i a b i ++⎛⎫= ⎪-+-⎝⎭=αββα⎛⎫⎪-⎝⎭,22222222a b i c d i B c d i a b i ++⎛⎫= ⎪-+-⎝⎭=ξηηξ⎛⎫⎪-⎝⎭,那么AB αβξηβαηξ⎛⎫⎛⎫=⎪⎪--⎝⎭⎝⎭=αξβηαηβξβξαηβηαξ⎛⎫-+⎪---+⎝⎭=()αξβηαηβξαηβξαξβη⎛⎫-+ ⎪ ⎪-+-⎝⎭K ∈; 2°零矩阵00000000i i O i i ++⎛⎫= ⎪-+-⎝⎭K ∈,且A O O A A +=+=; 3°设11111111a b i c d i A c d i a b i ++⎛⎫= ⎪-+-⎝⎭=αββα⎛⎫⎪-⎝⎭K ∈,那么有逆元A -=αββα--⎛⎫ ⎪-⎝⎭K∈,且()()A A A A O +-=-+=,4°所以K 作成一个环.且K 有单位元I .设A =αββα⎛⎫ ⎪-⎝⎭是任何一个非零元,那么A=αββα-=ααββ+=22αβ+0≠.从而1A -=1Aαββα-⎛⎫ ⎪⎝⎭存在,但矩阵乘法不满足交换律,故K 不是域.13. 在15Z 中,找出适合方程21x =的一切元素.解:在15Z ={}0,1,2,3,4,5,6,7,8,9,10,11,12,13,14中,211(mod15)=,24161(mod15)==, 2111211(mod15)==,2141961(mod15)==.故在15Z 中, 适合方程21x =的元有1,4,11,14.14. 证明,一个特征为0的域一定含有一个与有理数域同构的子域;一个特征为0p >的域一定含有一个与pZ 同构的子域.证明:(i)设F 是特征为0的域,那么F 含有单位元e ,所以对于任意整数n 来说,都有ne F ∈,令1{|}F ne n Z =∈,因为当且仅当0n =时,0ne =,所以,:n Z nne σ∀∈是Z 到1F 的双射,且显然是同构映射,令12{()()|,,0}F me ne m n Z n -=∈≠,那么12F F F ⊆⊆.对mQ n ∀∈,规定1:()()m me ne nτ-,那么τ是Q 到2F 的双射,且1212,m m Q n n ∀∈,1212()m m n n τ+=121212()m n n m n n τ+=1121212()()m n n m e n n e -+111122()()()()m e n e m e n e --=+=11()m n τ+22()mn τ11212121212121112112212()()()()()()()()()()m m m mm m e n n e n n n n m m m e n e m e n e n n ττττ---====所以2Q F ≅,所以2F 是域,且是F 的子域.(ii)设F 是一个特征为p >0的域, e 是F 的单位元,令1{0F =,,2,,(1)},ppe e e p e i Z =-∀∈,规定:iie σ,且是p Z 到的一个双射. ,p i j Z ∀∈且,0,,0j i kp r r p ij lp s s p +=+≤<=+≤<,故,i j r ij s +==那么()()()i j r re kpe re i j e ie je σσ+==+=+=+()()()()ij s se lpe se ije ie je σσ===+==.所以,σ是pZ 到1F 的同构映射.因为p 是素数,pZ 是域,所以1F 是的一个F 与pZ 同构的子域.15. 令2F Z =是仅含两个元素的域.[]F x 是F 上一元多项式环.(i)证明,21x x ++是[]F x 中唯一的二次不可约多项式.(ii)找出[]F x 中一切三次不可约多项式.解: (i)在[]F x 中二次多项式有222,1,x x x x ++,21x x ++,其中前三个多项式可约.因为0,1不是21x x ++的根,所以21x x ++是[]F x 中唯一的二次不可约.(ii) []F x 中三次多项式有3323332,,,1,x x x x x x x x x +++++,323321,1,1x x x x x x x +++++++.其中不可约多项式只有321x x ++和31x x ++。
68、设G 是一个群,H 是G 的一个子群,a 是G 中的一个n 阶元素。
证明:存在最小正整数m 使H a m ∈且m |n 。
证:由于|a|=n ,故.a H e n ∈=从而存在最小正整数m 使H a m ∈。
又令r,+=mq n m ≤≤r 0,则由于,G H ≤和H a m ∈,得.)()(H a a a a a q m q m n mq n r ∈=•==−−−但m 是使H a m ∈的最小正整数,故必r=0,从而m |n 。
75、设H ,K 是群G 的两个子群。
证明:.KH HK G HK =⇔≤证:设,KH HK =则任取,HK x ∈令),(,H h K k kh x ∈∈=由于,,G K G H ≤≤故,,11K k H h ∈∈−−从而.)(1111HK k h kh x ∈==−−−−又由于,,K KK H HH ==故,))(()()())((HK KK HH K HK H K KH H HK HK ====即HK 中任二元素之积仍属于HK 。
故.G HK ≤反之,设.G HK ≤任取,HK x ∈则,1HK x ∈−令),(,1K k H h hk x ∈∈=−于是,)(111KH h k hk x ∈==−−−故.KH HK ⊆同理可证,HK KH ⊆因此,。
KH HK =57、证明:交换群中所有有限价元素作成子群。
对非交换群如何?证:设H 是由交换群G 中所有有限阶元作成的集合。
显然,H e ∈故H 非空。
又若,,H b a ∈设|a|=m ,|b|=n 。
因G 可交换,故,)a (,m e b n =】【从而。
H ab ∈又因|1−a |=|a|,故.1H a ∈−因此,.G H ≤对非交换群一般不成立。
例如,Q 上全体2阶可逆方阵八成的乘群中,易知⎟⎟⎠⎞⎜⎜⎝⎛−=1021a ,⎟⎟⎠⎞⎜⎜⎝⎛−=1031b 的阶有限,都是2,但易知其乘积b a 的阶却无限。
近世代数复习思考题一、基本概念与基本常识的记忆(一)填空题1.剩余类加群Z 12有_________个生成元.2、设群G 的元a 的阶是n ,则a k 的阶是________.3. 6阶循环群有_________个子群.4、设群G 中元素a 的阶为m ,如果e an =,那么m 与n 存在整除关系为———。
5. 模8的剩余类环Z 8的子环有_________个.6.整数环Z 的理想有_________个.7、n 次对称群Sn 的阶是——————。
8、9-置换⎪⎪⎭⎫ ⎝⎛728169345987654321分解为互不相交的循环之积是————。
9.剩余类环Z 6的子环S={[0],[2],[4]},则S 的单位元是____________. 10. 24Z 中的所有可逆元是:__________________________.11、凯莱定理的内容是:任一个子群都同一个________同构。
12. 设()G a =为循环群,那么(1)若a 的阶为无限,则G 同构于___________,(2)若a 的阶为n ,则G 同构于____________。
13. 在整数环Z 中,23+=__________________;14、n 次对称群S n 的阶是_____.15. 设12,A A 为群G 的子群,则21A A 是群G 的子群的充分必要条件为___________。
16、除环的理想共有____________个。
17. 剩余类环Z 5的零因子个数等于__________.18、在整数环Z 中,由{2,3}生成的理想是_________.19. 剩余类环Z 7的可逆元有__________个.20、设Z 11是整数模11的剩余类环,则Z 11的特征是_________.21. 整环I={所有复数a+bi(a,b 是整数)},则I 的单位是__________.22. 剩余类环Z n 是域⇔n 是_________.23、设Z 7 ={0,1,2,3,4,5,6}是整数模7的剩余类环,在Z 7 [x]中, (5x-4)(3x+2)=________.24. 设G 为群,a G ∈,若12a =,则8a =_______________。
习题四:群与子群
1.设1,0RX,在X上定义6个函数如下:
对于任意Xx,
xxfxxfxxf1)(;)(;)(
3121
161514)1()(;)1()(;)1()(
xxxfxxxfxxf
试证明,F是一个群。其中,,,,,,654321ffffffF是函数的复合运算。
2.设,A是半群,e是左幺元且对每一个Ax,存在,ˆAx使得exxˆ。
a)证明:对于任意的Acba,,,如果caba,则b=c。
b)通过证明e是A中的幺元,证明,A是群。
3.设,G是群,对于任一Ga,令GyyaayyH,|,试证明,H是
,G
的子群。
4.设,H和,K都是群,G的子群,令
KkHhkhHK,|
证明:,HK是,G的子群的充要条件是KHHK。
5.设,A是群,且InnA,2。证明:在A中至少存在ea,使得eaa。
其中e是幺元。
6.根据下列集合G及集合上的运算,问它们是否构成半群、含幺半群、群。如果是含幺
半群或群,指出它们的单位元是什么?
(1)yxyxNG,min,。
(2)2,yxyxRG。
(3)NaaG2,*是普通乘法。
(4)ZbabaG,2,*是普通乘法。
(5)ZxxG101,*是矩阵乘法。
7.设代数系统,A是一个有限的半群,证明A中必存在某个元素a,使得aaa。
8. 设G是一有限集合。在G上定义了乘法运算,对Gcba,,,满足
(1)cabbca。
(2)cbacab。
(3)babcac。
证明G在这个乘法下为一群。
9.试证:设为集合X中可结合的二元运算,若Xa对可逆,则a可约,反之不成立。
10. 在偶阶数的有限群中必存在ea,使得ea2,其中e是群的单位元。
11. 证明有限群中阶大于2的元素的个数必定是偶数。