2004级微积分上(A)试题及其参考答案
- 格式:pdf
- 大小:122.54 KB
- 文档页数:5
⎢ ⎥ x∞∞∞2004 年全国硕士研究生入学统一考试数学一真题一、填空题(本题共 6 小题,每小题 4 分,满分 24 分. 把答案填在题中横线上)(1)曲线 y=lnx 上与直线 x + y = 1 垂直的切线方程为.(2)已知 f '(e x ) = xe- x,且 f(1)=0, 则 f(x)=.(3)设 L 为正向圆周 x 2+ y 2= 2 在第一象限中的部分,则曲线积分 Lxdy - 2 ydx 的值为.(4)欧拉方程 d 2y x dx 2+ 4x dy dx + 2 y = 0(x > 0) 的通解为. .⎡2 (5)设矩阵 A = ⎢1 ⎢⎣0 1 0⎤2 0⎥ ,矩阵 B 满足 ABA * = 2BA * + E ,其中 A *为 A 的伴随矩阵,E 是单位0 1⎥⎦矩阵,则 B = .(6)设随机变量 X 服从参数为λ 的指数分布,则 P {X > DX }=.二、选择题(本题共 8 小题,每小题 4 分,满分 32 分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把 x → 0+时的无穷小量α = ⎰0 cos t 2dt , β = ⎰0tan tdt ,γ = ⎰0 xsin t 3 dt ,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)α , β ,γ . (B) α ,γ , β . (C) β ,α ,γ . (D) β ,γ ,α .[](8) 设函数 f(x)连续,且 f '(0) > 0, 则存在δ > 0 ,使得(A) f(x)在(0, δ ) 内单调增加. (B )f(x)在(-δ ,0) 内单调减少.(C) 对任意的 x ∈ (0,δ ) 有 f(x)>f(0) . (D) 对任意的 x ∈ (-δ ,0) 有 f(x)>f(0) .[](9) 设∑an 为正项级数,下列结论中正确的是n =1(A) 若lim na n =0,则级数∑an 收敛.n →∞n =1(B ) 若存在非零常数λ ,使得lim na n = λ ,则级数∑an 发散.n →∞n =1⎰x2 2∞∞1 ⎥⎥ 1 ⎥⎥ n 1y⎢ ⎢ 1 2(C ) 若级数∑a 收敛,则lim n 2a= 0 .n n =1n →∞n(D )若级数∑an 发散, 则存在非零常数λ ,使得lim na n = λ .[ ]n =1n →∞(10) 设 f(x)为连续函数, F (t ) =⎰t dy ⎰tf (x )dx ,则 F '(2) 等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ ] (11) 设 A 是 3 阶方阵,将 A 的第 1 列与第 2 列交换得 B,再把 B 的第 2 列加到第 3 列得 C, 则满足 AQ=C 的可逆矩阵 Q 为(A) ⎡0 1 ⎢ 0 ⎢⎣1 0 0⎤ 0⎥ . (B) 1⎥⎦ ⎡0 ⎢ ⎢ ⎢⎣0 1 0⎤ 0 1⎥ . (C) 0 1⎥⎦ ⎡0 1 ⎢ 0 ⎢⎣0 1 0⎤0⎥ . (D) 1⎥⎦ ⎡0 ⎢ ⎢ ⎢⎣0 1 1⎤0 0⎥ . 0 1⎥⎦[](12) 设 A,B 为满足 AB=O 的任意两个非零矩阵,则必有(A)A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关. (C) A 的行向量组线性相关,B 的行向量组线性相关. (D)A 的行向量组线性相关,B 的列向量组线性相关.[](13) 设随机变量 X 服从正态分布 N(0,1),对给定的α (0 < α < 1) ,数u α 满足 P {X> u α } = α ,若P { X < x } = α ,则 x 等于(A) u α .(B) 2u α .(C) 1- 2u 1-α 2.(D) u 1-α .[ ]n2(14) 设随机变量 X 1 , X 2 , , X n (n > 1) 独立同分布,且其方差为σ > 0. 令Y = ∑ X i ,则 i =1ο 2(A) Cov( X 1 ,Y ) = n.(B) Cov ( X 1 ,Y ) = σ .(C)D ( X 1 + Y ) =n + 2 σ 2.(D)nD ( X 1 - Y ) =n + 1σ 2 .[ ]n(15)(本题满分 12 分)设e < a < b < e 2, 证明ln 2b - ln 2a >(16)(本题满分 11 分)(b - a ) .e 2某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为 9000kg 的飞机,着陆时的水平速度为 700km/h. 经测试,减速伞打开后,飞机所受的总 阻力与飞机的速度成正比(比例系数为 k = 6.0 ⨯106).问从着陆点算起,飞机滑行的最长距离是多少?1 1 4n 数∑ x 收敛.⎪ ⎢ ⎥ = ⎨注 kg 表示千克,km/h 表示千米/小时. (17)(本题满分 12 分)计算曲面积分I = ⎰⎰2x 3dydz + 2 y 3dzdx + 3(z 2 -1)dxdy ,∑其中∑ 是曲面 z = 1 - x 2 - y 2(z ≥ 0) 的上侧.(18)(本题满分 11 分)设有方程 x n+ nx -1 = 0 ,其中 n 为正整数. 证明此方程存在惟一正实根 x ,并证明当α > 1时,级∞αn n =1(19)(本题满分 12 分)设 z=z(x,y)是由 x 2- 6xy + 10 y 2- 2 yz - z 2+ 18 = 0 确定的函数,求 z = z (x , y ) 的极值点和极值. (20)(本题满分 9 分)设有齐次线性方程组⎧ (1 + a )x 1 + x 2 + + x n = 0, ⎪2x 1+ (2 + a )x 2 + + 2x n = 0, ⎨(n ≥ 2)⎪⎪⎩nx 1 + nx 2 + + (n + a )x n = 0,试问 a 取何值时,该方程组有非零解,并求出其通解. (21)(本题满分 9 分)⎡ 1 2 设矩阵 A = ⎢- 1 4 ⎢⎣ 1 a - 3⎤ - 3⎥ 的特征方程有一个二重根,求 a 的值,并讨论 A 是否可相似对角化.5 ⎥⎦(22)(本题满分 9 分)设 A,B 为随机事件,且 P ( A ) =1, P (B A ) = 41 , P ( A B ) = 1,令 3 2⎧1, X ⎨A 发生,Y = ⎧1, B 发生, ⎩0, A 不发生;⎩0, B 不发生.求:(I )二维随机变量(X,Y)的概率分布; (II )X 和 Y 的相关系数 ρ XY . (23)(本题满分 9 分)设总体 X 的分布函数为F (x , β ) = ⎧⎪1 - 1 , ⎨ x β⎪⎩ 0,x > 1,x ≤ 1,其中未知参数β> 1, X 1 , X 2 , , X n 为来自总体X 的简单随机样本,求:(I)β的矩估计量;(II)β的最大似然估计量.⎩ ⎰ ⎰ 2004 年数学一试题分析、详解和评注一、填空题(本题共 6 小题,每小题 4 分,满分 24 分. 把答案填在题中横线上)(1)曲线 y=lnx 上与直线 x + y = 1 垂直的切线方程为 y = x -1 .【分析】 本题为基础题型,相当于已知切线的斜率为 1,由曲线 y=lnx 的导数为 1 可确定切点的坐标. 【详解】 由 y ' = (ln x )' = 1= 1,得 x=1, 可见切点为(1,0) ,于是所求的切线方程为xy - 0 = 1⋅ (x -1) , 即 y = x -1 .【评注】 本题也可先设切点为(x 0 , ln x 0 ) ,曲线 y=lnx 过此切点的导数为 y '= 1x = x 0 x 0= 1,得 x 0 = 1 ,由此可知所求切线方程为 y - 0 = 1⋅ (x -1) , 即 y = x -1 .本题比较简单,类似例题在一般教科书上均可找到.(2)已知 f '(e x) = xe - x,且 f(1)=0, 则 f(x)= 1 (ln x )2. 2【分析】 先求出 f '(x ) 的表达式,再积分即可.【详解】 令e x= t ,则 x = ln t ,于是有f '(t ) =ln t, 即t f '(x ) =ln x.x积分得f (x ) = ⎰ln xdx = 1(ln x )2 + C . 利用初始条件 f(1)=0, 得 C=0 ,故所求函数为 f(x)= x 21(ln x )2 .2【评注】 本题属基础题型,已知导函数求原函数一般用不定积分.(3) 设 L 为正向圆周 x 2+ y 2= 2 在第一象限中的部分,则曲线积分 Lxdy - 2 ydx 的值为 3π . 2【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分. 【详解】 正向圆周 x 2 + y 2= 2 在第一象限中的部分,可表示为⎧x = ⎨y = 2 cos θ ,2 sin θ ,πθ : 0 → π.2于是⎰Lxdy - 2 ydx = 2 [ 02 cos θ ⋅ π 2 cos θ + 2 3π2 sin θ ⋅ 2 sin θ ]d θ = π + 22 sin 2 θd θ = .0 2【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参⎰⎢ ⎥ 数法化为定积分计算即可.2d 2 ydyc c(4) 欧拉方程 x+ 4x + 2 y = 0(x > 0) 的通解为 y = 1 + 2 . dx 2 dx x x 2【分析】 欧拉方程的求解有固定方法,作变量代换 x = e t化为常系数线性齐次微分方程即可.【详解】 令 x = e t ,则 dy = dy ⋅ dt = e -t dy = 1 dy ,dx dt dxdtx dtd 2 y= - 1dy + 1 d 2 y ⋅ dt = 1d 2 y - dydx 2 代入原方程,整理得d 2 y +x 2 dt x dt 2 dxdyx 2[ dt 2 dt ] ,dt 23 + 2 y = 0 , dt解此方程,得通解为y = c e -t + c e -2t = c 1 + c2 .1 2x x 2【评注】 本题属基础题型,也可直接套用公式,令 x = e t,则欧拉方程d 2 y ax dx 2+ bx dy dx + cy = f (x ) ,可化为d 2 y a [ dt 2- dy dt] + b dy dt + cy = f (e t ).⎡2 (5) 设矩阵 A = ⎢1 ⎢⎣0 1 0⎤2 0⎥ ,矩阵 B 满足 ABA * = 2BA * + E ,其中 A *为 A 的伴随矩阵,E 是单位0 1⎥⎦矩阵,则 B =1 .9【分析】 可先用公式 A *A = A E 进行化简【详解】 已知等式两边同时右乘 A ,得ABA * A = 2BA * A + A , 而 A = 3 ,于是有3AB = 6B + A , 即(3A - 6E )B = A ,再两边取行列式,有3A - 6E B = A = 3 ,1而 3A - 6E = 27 ,故所求行列式为 B = .92λ 1 e1xx+【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵 A *,一般均应先利用公式A * A = AA * = A E 进行化简.(6) 设随机变量 X 服从参数为λ 的指数分布,则 P {X > DX }=1 .e【分析】 已知连续型随机变量 X 的分布,求其满足一定条件的概率,转化为定积分计算即可.1【详解】 由题设,知 DX =λ2,于是P {X >DX }= P {X > 1} = ⎰+∞ λe -λx dxλ= - e-λx+∞ = 1 . λ【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.二、选择题(本题共 8 小题,每小题 4 分,满分 32 分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内)(7)把 x → 0+时的无穷小量α = ⎰0 cos t 2dt , β = ⎰0tan tdt ,γ = ⎰0 xsin t 3 dt ,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)α , β ,γ . (B) α ,γ , β . (C) β ,α ,γ . (D) β ,γ ,α .[ B ]【分析】 先两两进行比较,再排出次序即可.x 2【详解】 lim β= lim⎰tan tdt = lim tan x ⋅ 2x = 0 ,可排除(C),(D)选项,x →0+α x →0+x cos t 2 dt 0x →0+cos x 23 又lim γ= limxsin t 3 dt 0 x 2=x →0+βx →0+1 2⎰0tan x tdt x →0+2x tan x = lim 4 x →0 x= ∞ ,可见 是比 β 低阶的无穷小量,故应选(B). 【评注】 本题是无穷小量的比较问题,也可先将α , β ,γ 分别与 x n进行比较,再确定相互的高低次序.(8) 设函数 f(x)连续,且 f '(0) > 0, 则存在δ > 0 ,使得(A) f(x)在(0, δ ) 内单调增加.(B )f(x)在(-δ ,0) 内单调减少.(C)对 任意的 x ∈ (0,δ ) 有 f(x)>f(0) .(D) 对任意 的 x ∈ (-δ ,0) 有 f(x)>f(0) .[ C ]x⎰2⎰n n∞∞∞∞∞ ∞1y∞【分析】 函数 f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可.【详解】 由导数的定义,知f '(0) = lim f (x ) - f (0)> 0 ,x →0 x根据保号性,知存在δ > 0 ,当 x ∈ (-δ ,0) (0,δ ) 时,有f (x ) - f (0) > 0x即当 x ∈ (-δ ,0) 时,f(x)<f(0); 而当 x ∈ (0,δ ) 时,有 f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论.(9) 设∑ an 为正项级数,下列结论中正确的是n =1(A) 若lim na n =0,则级数∑ an收敛.n →∞n =1(B ) 若存在非零常数λ ,使得lim na n = λ ,则级数∑ an 发散.n →∞n =1(C) 若级数∑ a 收敛,则lim n 2a= 0 .n n =1n →∞n(E) 若级数∑ an发散, 则存在非零常数λ ,使得lim na n = λ .[ B ]n =1n →∞【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项. 1∞ ∞1【详解】 取 a n =,则lim na n =0,但∑ a n = ∑发散,排除(A),(D);n ln n1 ∞n →∞ n =12n =1n ln n又取 a n =,则级数∑ an 收敛,但lim n a n = ∞ ,排除(C), 故应选(B).n =1n →∞【评注】 本题也可用比较判别法的极限形式,lim na n = lim = λ ≠ 0 ,而级数∑ 1 发散,因此级数∑ a n 也发散,故应选(B).n →∞ n →∞ 1 nn =1 n n =1(10) 设 f(x)为连续函数, F (t ) =⎰t dy ⎰tf (x )dx ,则 F '(2) 等于(A) 2f(2). (B) f(2). (C) –f(2).(D) 0.[ B ]【分析】 先求导,再代入 t=2 求 F '(2) 即可.关键是求导前应先交换积分次序,使得被积函数中不含有a n⎰⎥ ⎥ 1 ⎥⎥ ⎢ ⎥ ⎢ ⎥ ⎢ 变量 t.【详解】 交换积分次序,得 ttt x tF (t ) = ⎰1 dy ⎰y f (x )dx = ⎰1 [⎰1 f (x )dy ]dx = ⎰1f (x )(x - 1)dx于是, F '(t ) = f (t )(t -1) ,从而有 F '(2) = f (2) ,故应选(B).【评注】 在应用变限的积分对变量 x 求导时,应注意被积函数中不能含有变量 x:[b ( x )f (t )dt ]' = a ( x )f [b (x )]b '(x ) - f [a (x )]a '(x )否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量 x 换到积分号外或积分线上.(11) 设 A 是 3 阶方阵,将 A 的第 1 列与第 2 列交换得 B,再把 B 的第 2 列加到第 3 列得 C, 则满足 AQ=C 的可逆矩阵 Q 为(A) ⎡0 ⎢ ⎢ ⎢⎣1 1 0⎤ 0 0⎥ . (B) 0 1⎥⎦ ⎡0 ⎢ ⎢ ⎢⎣0 1 0⎤ 0 1⎥ . (C) 0 1⎥⎦ ⎡0 1 ⎢ 0 ⎢⎣0 1 0⎤0⎥ . (D) 1⎥⎦ ⎡0 ⎢ ⎢ ⎢⎣0 1 1⎤0 0⎥ . 0 1⎥⎦[ D ]【分析】 本题考查初等矩阵的的概念与性质,对 A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而 Q 即为此两个初等矩阵的乘积.【详解】由题设,有⎡0 1 A ⎢1 0 ⎢⎣0 0 0⎤ 0⎥ = B , 1⎥⎦ ⎡1 B ⎢0 ⎢⎣0 0 0⎤1 1⎥ = C , 0 1⎥⎦⎡0 1 0⎤⎡1 0 0⎤ ⎡0 1 1⎤ 于是,A ⎢1 0 0⎥⎢0 1 1⎥ = A ⎢1 0 0⎥ = C . ⎢ ⎢⎣0 可见,应选(D).⎥⎢ 0 1⎥⎦⎢⎣0 ⎥ 0 1⎥⎦ ⎢ ⎢⎣0 ⎥ 0 1⎥⎦【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系. (12) 设 A,B 为满足 AB=O 的任意两个非零矩阵,则必有 (D) A 的列向量组线性相关,B 的行向量组线性相关. (E) A 的列向量组线性相关,B 的列向量组线性相关. (F) A 的行向量组线性相关,B 的行向量组线性相关. (D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ]【分析】A,B 的行列向量组是否线性相关,可从 A,B 是否行(或列)满秩或 Ax=0(Bx=0)是否有非零解进行分析讨论.【详解 1】 设 A 为 m ⨯ n 矩阵,B 为n ⨯ s 矩阵,则由 AB=O 知,r ( A ) + r (B ) < n .又 A,B 为非零矩阵,必有 r(A)>0,r(B)>0. 可见 r(A)<n, r(B)<n, 即 A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解 2】 由 AB=O 知,B 的每一列均为 Ax=0 的解,而 B 为非零矩阵,即 Ax=0 存在非零解,可见 A 的列向量组线性相关.1 1 1n 1 2同理,由 AB=O 知, B T A T = O ,于是有 B T的列向量组,从而 B 的行向量组线性相关,故应选(A). 【评注】 AB=O 是常考关系式,一般来说,与此相关的两个结论是应记住的: 1) AB=O ⇒ r ( A ) + r (B ) < n ; 2) AB=O ⇒ B 的每列均为 Ax=0 的解.(13) 设随机变量 X 服从正态分布 N(0,1),对给定的α (0 < α < 1) ,数u α 满足 P {X> u α } = α ,若P { X < x } = α ,则 x 等于(A) u α .(B) 2u α .(C) 1- 2u 1-α 2.(D) u 1-α .[ C ]【分析】 此类问题的求解,可通过u α 的定义进行分析,也可通过画出草图,直观地得到结论.【详解】 由标准正态分布概率密度函数的对称性知, P {X < -u α } = α ,于是1 - α = 1 - P { X < x } = P { X ≥ x } = P {X ≥ x } + P {X ≤ -x } = 2P {X ≥ x }即有 P {X ≥ x } =1 - α2 ,可见根据定义有 x = u 1-α ,故应选(C). 2【评注】 本题u α 相当于分位数,直观地有1-α2n2(14) 设随机变量 X 1 , X 2 , , X n (n > 1) 独立同分布,且其方差为σ > 0. 令Y = ∑ X i ,则i =1ο 2(A) Cov( X 1 ,Y ) = n .(B) Cov ( X 1 ,Y ) = σ .(C)D ( X 1 + Y ) =n + 2 σ 2 .(D)nD ( X 1 - Y ) =n + 1σ 2 .[ A ]n【 分析 】 本题用 方差和协 方差的运 算性质直 接计算即 可,注意 利用独立 性有:Cov ( X 1 , X i ) = 0, i = 2,3, n .1 n1 1 n【详解】 Cov( X 1 ,Y ) = Cov ( X 1 , n ∑ X i ) = n Cov ( X 1 , X 1 ) + n ∑Cov ( X 1 , X i )i =1 i =2ασ σ 2 1 = DX n1 = 1σ 2 .n【评注】 本题(C),(D) 两个选项的方差也可直接计算得到:如1 + n 1 1 (1 + n )2 2 n - 1 2D ( X 1 + Y ) = D ( n X 1 + n X 2 + + nX n ) = ο + σ n 2n 2n 2 + 3n 2=n 2=n + 3 σ 2 ,nn - 1 1 1 (n - 1)2 2 n - 1 2D ( X 1 - Y ) = D ( n X 1 - n X 2 - - nX n ) = ο + σ n 2n 2n 2 - 2n 2=n 2=n - 2 σ 2 .n(15)(本题满分 12 分)设e < a < b < e 2, 证明ln 2b - ln 2a >(b - a ) .e 2【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明. 【证法 1】 对函数ln 2x 在[a,b]上应用拉格朗日中值定理,得ln 2 b - ln 2 a =2 ln ξ(b - a ), a < ξ < b .ξ设ϕ(t ) =ln t ,则ϕ '(t ) =1 - ln t ,tt 2当 t>e 时, ϕ '(t ) < 0, 所以ϕ(t ) 单调减少,从而ϕ(ξ ) > ϕ(e 2) ,即ln ξξ> ln e 2e 2 = e 2 ,故 ln 2b - ln 2a >(b - a ) . e 2【证法 2】 设ϕ(x ) = ln 2x - 4 e2x ,则ϕ '(x ) = 2 ln x - 4, x e 2 ϕ ' (x ) = 21 - ln x ,x2所以当 x>e 时, ϕ ' (x ) < 0, 故ϕ '(x ) 单调减少,从而当e < x < e 2时,ϕ '(x ) > ϕ '(e 2) = 4 - 4 e 2 e 2= 0 ,即当e < x < e 2时, ϕ(x ) 单调增加.4 4因此当e <x <e2 时,ϕ(b) >ϕ(a) ,即ln 2 b - 4b > ln 2 a -4a ,e2 e2故ln 2 b - ln 2 a > (b -a) .e2【评注】 本题也可设辅助函数为ϕ(x) = ln 2 x - ln 2 a - 4(x -a), e <a <x <e2 或e2ϕ(x) = ln 2 b - ln 2 x - 4(b -x), e <x <b <e2 ,再用单调性进行证明即可. e2(16)(本题满分11 分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为 k = 6.0 ⨯106 ).注kg 表示千克,km/h 表示千米/小时.问从着陆点算起,飞机滑行的最长距离是多少?【分析】本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.【详解1】由题设,飞机的质量m=9000kg,着陆时的水平速度v0 = 700km / h . 从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得dvmdt dv dv =-kv .dx dv又=⋅dt dx dt =v ,dx由以上两式得dx =-mkm dv ,m积分得x(t) =-v +C.k 由于v(0) =v0 , x(0) = 0 ,故得C =kv,从而x(t) =m(vk 0-v(t)).当v(t) → 0 时,x(t) →mvk=9000 ⨯ 700= 1.05(km).6.0 ⨯106所以,飞机滑行的最长距离为 1.05km.dv【详解2】根据牛顿第二定律,得m =-kv ,dt所以dv=-kv mdt.-kt两端积分得通解v =Ce m ,代入初始条件vt =0 =v解得C =v0 ,4故v (t ) = v 0 e - ktm .飞机滑行的最长距离为+∞mv- k t+∞mv x = ⎰0v (t )dt = - 0 e mk= 0 = 1.05(km ). 0 kdx - k t t- kt kv - k t或由 dt= v 0 e,知 x (t ) = ⎰0v 0 e mdt = - 0(e mm - 1) ,故最 长 距离为 当 t → ∞ 时,x (t ) →kv 0m= 1.05(km ).【详解 3】 根据牛顿第二定律,得 d 2 x m dt 2= -k dx , dtd 2 x + k dx =dt 20 , m dt其特征方程为 λ2 + k λ = 0 ,解之得λ = 0, λ = - k ,故x = C 1 + C 2 em- ktm .1 2mkC- k t 由 xt =0 = 0, v= t =0 t =0= - 2 e m mt =0 = v 0 ,得C 1 = -C 2= mv0 , 于 是kx (t ) = mv 0 (1 - e k- ktm).当t → +∞ 时, x (t ) →mv 0k= 1.05(km ).所以,飞机滑行的最长距离为 1.05km.【评注】 本题求飞机滑行的最长距离,可理解为t → +∞ 或v (t ) → 0 的极限值,这种条件应引起注意. (17)(本题满分 12 分)计算曲面积分I = ⎰⎰2x 3dydz + 2 y 3dzdx + 3(z 2 -1)dxdy ,∑其中∑ 是曲面 z = 1 - x 2 - y 2(z ≥ 0) 的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取∑1 为 xoy 平面上被圆 x 2+ y 2= 1 所围部分的下侧,记Ω 为由∑ 与∑1 围成的空间闭区域,dx dtmn 数∑ x 收敛. n n nn 则I = ⎰⎰2x 3 dydz + 2 y 3 dzdx + 3(z 2 - 1)dxdy∑ + ∑1- ⎰⎰2x 3 dydz + 2 y 3 dzdx + 3(z 2 - 1)dxdy .∑1由高斯公式知⎰⎰2x 3dydz + 2 y 3dzdx + 3(z2- 1)dxdy = ⎰⎰⎰6(x 2 + y 2 + z )dxdydz∑ + ∑1Ω2π11-r22= 6⎰0 d θ ⎰0 dr ⎰0 (z + r )rdz =12π ⎰1[ 1r (1 - r 2 )2 + r 3 (1 - r 2 )]dr = 2π .0 2而⎰⎰2x 3dydz + 2 y 3dzdx + 3(z2- 1)dxdy = -∑1故 I = 2π - 3π = -π .⎰⎰- 3dxdy = 3π ,x 2+ y 2 ≤1【评注】 本题选择∑1 时应注意其侧与∑ 围成封闭曲面后同为外侧(或内侧),再就是在∑1 上直接投影积分时,应注意符号( ∑1 取下侧,与 z 轴正向相反,所以取负号).(18)(本题满分 11 分)设有方程 x n+ nx -1 = 0 ,其中 n 为正整数. 证明此方程存在惟一正实根 x ,并证明当α > 1时,级∞αn n =1【分析】 利用介值定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定.【证】 记f (x ) = x n + nx - 1. 由 f n (0) = -1 < 0 , f n (1) = n > 0 ,及连续函数的介值定理知,方程 x n+ nx -1 = 0 存在正实数根 x ∈ (0,1).当 x>0 时, f '(x ) = nx n -1+ n > 0 ,可见 f(x ) 在[0,+∞) 上单调增加, 故方程 x n + nx -1 = 0 存在惟一正实数根 x n .由 x n+ nx -1 = 0 与 x > 0 知0 < x n1 - x n = n <n 1 ,故当α > 1时, 0 < x α nn < ( 1 )α. n∞1∞α而正项级数∑ n α 收敛,所以当α > 1时,级数∑ xn收敛.n =1n =1【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要n⎪⎩⎩ ⎩⎨ ⎩ ⎨ ⎩1基本概念清楚,应该可以轻松求证.(19)(本题满分12 分)设z=z(x,y)是由x 2 - 6xy + 10 y 2 - 2 yz -z 2 + 18 = 0 确定的函数,求z =z(x, y) 的极值点和极值.【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】因为x 2 - 6xy + 10 y 2 - 2 yz -z 2 + 18 = 0 ,所以∂z ∂z2x - 6 y - 2 y∂x - 2z∂x= 0 ,- 6x + 20 y - 2z - 2 y ∂z- 2z∂z= 0 .⎧∂z= 0, ∂x∂y ∂y⎧x - 3y = 0,令⎨∂z⎪∂y = 0得 ⎨- 3x + 10 y -z = 0,⎧x = 3y,故⎨z =y.将上式代入x 2 - 6xy + 10 y 2 - 2 yz -z 2 + 18 = 0 ,可得⎧x = 9,⎪y = 3, 或⎪z = 3 ⎧x =-9,⎪y =-3, ⎪z =-3.由于 2 - 2 y ∂2 z∂x 2- 2(∂z)2∂x -2z ∂2 z∂x 2= 0 ,-∂z ∂2 z ∂z ∂z ∂2 z6 - 2∂x- 2 y∂x∂y- 2∂y⋅∂x- 2z∂x∂y= 0,20 - 2∂z∂y - 2∂z∂y -2 y ∂2 z∂y 2- 2(∂z)2∂y -2z ∂2 z∂y 2= 0 ,所以 A = =(9,3,3) 1,B =6 (9,3,3)=-12,C = =5,(9,3,3) 3故 AC -B 2 =136> 0 ,又A => 0 ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3.6类似地,由A =(-9,-3,-3)=-16,B ==( -9,-3,-3)1,C =2 ( -9,-3,-3)=-5,3∂2 z ∂x 2∂2 z∂x∂y∂2 z∂y 2∂2 z ∂x 2∂2 z∂x∂y∂2 z∂y 21 ⎪ ⎦ ⎣ a 12 n -1 ⎣ 1 1 n n n ⎣ ⎦ ⎦ ⎢⎣ - n⎦ 可知 AC - B 2= 136 z(-9, -3)= -3.> 0 ,又 A = - < 0 ,从而点(-9, -3)是 z(x,y)的极大值点,极大值为6【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意 x,y,z 满足原方 程.(20)(本题满分 9 分)设有齐次线性方程组⎧ (1 + a )x 1 + x 2 + + x n = 0, ⎪2x 1+ (2 + a )x 2 + + 2x n = 0, ⎨(n ≥ 2)⎪⎪⎩nx 1 + nx 2 + + (n + a )x n = 0,试问 a 取何值时,该方程组有非零解,并求出其通解.【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于 n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数 a 的可能取值进行讨论即可.【详解 1】 对方程组的系数矩阵 A 作初等行变换,有⎡1 + a 1 1 1 ⎤ ⎡1 + a1 1 1 ⎤ ⎢2 2 + a 22 ⎥ ⎢- 2a a0 0 ⎥A = ⎢⎥ → ⎢⎥ = B .⎢ ⎥ ⎢⎥⎢n + a ⎥ ⎢- na0 0 ⎥当 a=0 时, r(A)=1<n ,故方程组有非零解,其同解方程组为x 1 + x 2 + + x n = 0,由此得基础解系为η = (-1,1,0, ,0)T , 于是方程组的通解为η = (-1,0,1, ,0)T , ,η = (-1,0,0, ,1)T,x = k 1η1 + + k n -1ηn -1 , 其中k 1 , , k n -1 为任意常数.当 a ≠ 0 时,对矩阵 B 作初等行变换,有⎡1 + a 1 1 1 ⎤ ⎡a + n (n + 1) 0 0 0 ⎤ ⎢ - 2 1 0 0 ⎥ ⎢ 2 ⎥ B → ⎢ ⎥ →⎢ - 2 1 0 0 ⎥ ⎢ ⎢ - n n (n + 1)⎥ ⎢ 0 0 ⎥ ⎢ ⎥. ⎥ 0 0 ⎥ 可知 a = - 2时, r ( A ) = n - 1 < n ,故方程组也有非零解,其同解方程组为n n 0 0 1 2 n -1 ⎦ ⎣ a n 0 n n n ⎣ ⎦⎧- 2x 1 + x 2 = 0, ⎪- 3x + x = 0, ⎪ 1 3 ⎨⎪ ⎪⎩- nx 1 + x n = 0,由此得基础解系为η = (1,2, , n )T ,于是方程组的通解为x = k η ,其中 k 为任意常数.【详解 2】 方程组的系数行列式为A == (a + n (n + 1))a n -1 . 2当 A = 0 ,即 a=0 或 a = - n (n + 1)2时,方程组有非零解.当 a=0 时,对系数矩阵 A 作初等行变换,有⎡ 1 1 ⎢ 2 2 1 1 ⎤ 2 2 ⎥ ⎡ 1 1 ⎢ 0 0 1 1 ⎤0 0 ⎥A = ⎢ ⎥ → ⎢⎥ ,⎢ ⎥ ⎢ ⎥ ⎣ n ⎦⎢ ⎢⎣ 0 ⎥⎥ 0 ⎦故方程组的同解方程组为x 1 + x 2 + + x n = 0,由此得基础解系为η = (-1,1,0, ,0)T , 于是方程组的通解为η = (-1,0,1, ,0)T , ,η = (-1,0,0, ,1)T,x = k 1η1 + + k n -1ηn -1 , n (n + 1) 其中k 1 , , k n -1 为任意常数.当 a = - 2时,对系数矩阵 A 作初等行变换,有⎡1 + a 1 1 1 ⎤ ⎡1 + a 1 1 1 ⎤⎢ 2 2 + a 2 2 ⎥ ⎢- 2a a 0 0 ⎥ A = ⎢ ⎥ → ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ n + a ⎥ ⎢- na 0 0 ⎥ 1 + a 11 12 2 + a 2 2n n n n + a⎣ 1 ⎣1 ⎦ n n n n ⎢ ⎥ ⎦ ⎦ n n n ⎣ n n n n ⎡1 + a 1⎢ - 2 11 1 ⎤ 0 0 ⎥⎡ 0 0 ⎢- 2 10 0 ⎤ 0 0 ⎥→ ⎢ ⎥ → ⎢⎥ ,⎢ ⎢ - n⎥ 0 0 ⎥ ⎢⎢- n ⎥0 0 ⎥故方程组的同解方程组为⎧- 2x 1 + x 2 = 0, ⎪- 3x + x = 0, ⎪ 1 3 ⎨⎪ ⎪⎩- nx 1 + x n = 0,由此得基础解系为η = (1,2, , n )T ,于是方程组的通解为x = k η ,其中 k 为任意常数.【评注】 矩阵 A 的行列式 A 也可这样计算:⎡1 + a 1 1 1 ⎤ ⎡ 1 1 1 1 ⎤ ⎡ 1 1 1 1 ⎤ ⎢ 2 2 + a 2 2 ⎥ ⎢ 2 2 2 2 ⎥ ⎢ 2 2 2 2 ⎥A = ⎢⎥ = aE + ⎢ ⎥ ,矩阵⎢ ⎥ 的 ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ n + a ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥ ⎣ ⎦特征值为0, ,0, n (n + 1) 2 ,从而 A 的特征值为 a,a, , a + n (n + 1)2, 故行列式 A = (a +n (n + 1))a 2 n -1. (21)(本题满分 9 分)⎡ 1 2 设矩阵 A = ⎢- 1 4 ⎢⎣ 1 a - 3⎤- 3⎥ 的特征方程有一个二重根,求 a 的值,并讨论 A 是否可相似对角化.5 ⎥⎦【分析】 先求出 A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定 A 是否可相似对角化即可.【详解】 A 的特征多项式为λE - A = λ - 1 1 - 1- 2λ - 4- a 13 3 λ - 5 - 1λ - 2 = 1 - 1 0- (λ - 2) λ - 4 - a 0 3 λ - 5= (λ - 2) 1 - 1 λ - 4- a 3 λ - 5= (λ - 2)(λ2 - 8λ + 18 + 3a ).当λ = 2 是特征方程的二重根,则有22- 16 + 18 + 3a = 0, 解得a= -2.⎢ ⎥ 3 ⎥= ⎨⎤1 ⎡ 1 -2 当 a= -2 时,A 的特征值为 2,2,6, 矩阵 2E-A= ⎢ 1 - 2 ⎢⎣- 1 23 ⎤ 3 ⎥ 的秩为 1,故λ = 2 对应的线性无关的特 - 3⎥⎦征向量有两个,从而 A 可相似对角化.若λ = 2 不是特征方程的二重根,则λ2- 8λ + 18 + 3a 为完全平方,从而 18+3a=16,解得a = - 2. 3当 a = - 2⎡ ⎢ 时,A 的特征值为 2,4,4,矩阵 4E-A= ⎢ 1 - 2 ⎥ 0 3 ⎥ 秩为 2,故λ = 4 对应的线性无关3的特征向量只有一个,从而 A 不可相似对角化.⎢- 1 2 - ⎥ ⎣ 3 ⎦【评注】 n 阶矩阵 A 可对角化的充要条件是:对于 A 的任意 k i 重特征根λi ,恒有n - r (λi E - A ) = k i . 而单根一定只有一个线性无关的特征向量.(22)(本题满分 9 分)设 A,B 为随机事件,且 P ( A ) = 1, P (B A ) = 4 1 , P ( A B ) = 1,令 3 2⎧1,X ⎨ A 发生,Y = ⎧1, B 发生, ⎩0, A 不发生;⎩0, B 不发生.求:(I )二维随机变量(X,Y)的概率分布; (II )X 和 Y 的相关系数 ρ XY .【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】 (I ) 由于 P ( AB ) = P ( A )P (B A ) =1,12P (B ) =P ( AB ) P ( A B ) = 1 ,61所以, P {X = 1,Y = 1} = P ( AB ) =,121P {X = 1,Y = 0} = P ( AB ) = P ( A ) - P ( AB ) = ,6 P {XP {X = 0,Y = 1} = P ( AB ) = P (B ) - P ( AB ) = 1, 12 = 0,Y = 0} = P ( AB ) = 1 - P ( A + B )3 ⎢YX 0 123111121=1 -P( A) -P(B) +P( AB) =23(或P{X = 0,Y = 0} = 1 -112 -1-1=2),6 12 3故(X,Y)的概率分布为6 12(II) X, Y 的概率分布分别为X 0 1 Y 0 1则EXP=1, EY =43 14 41, DX =36 165,DY=3615 1P6 61, E(XY)= ,12故 Cov( X ,Y ) =E( XY ) -EX ⋅EY = ,从而24ρ=Cov( X ,Y ) =15 .XY DX ⋅DY 15【评注】本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.(23)(本题满分9 分)设总体X 的分布函数为F (x, β) = ⎧⎪1 -1,⎨x β⎪⎩0,x > 1,x ≤ 1,其中未知参数β> 1, X 1 , X 2 , , X n 为来自总体X 的简单随机样本,求:(I)β的矩估计量;(II)β的最大似然估计量.【分析】先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.【详解】X 的概率密度为⎧⎪β, x > 1,f (x, β) =⎨x β+1x ≤ 1.(I)由于⎩⎪0,梅花香自苦寒来,岁月共理想,人生齐高飞!第 - 21 - 页 共 21 页 +∞ n nEX = xf (x ; β )dx = +∞ x ⋅ β dx = β ,⎰-∞ β ⎰1 x β +1 X β - 1令 β - 1= X ,解得 β = ,所以参数 β 的矩估计量为 X - 1βˆ =X . X - 1 (II ) 似然函数为 n ⎧ β n ⎪, x > 1(i = 1,2, , n ), L (β ) = ∏ f (x i ; β ) = ⎨(x 1 x 2 x n ) β +1 ii =1 ⎪⎩0, 其他当 x i > 1(i = 1,2, , n ) 时, L (β ) > 0 ,取对数得ln L (β ) = n ln β - (β + 1)∑ln x i ,i =1两边对 β 求导,得d ln L (β ) = n - ∑n ln x , d β d ln L (β )i i =1n 令 = 0 ,可得 d β β = ∑ i =1 , ln xi故 β 的最大似然估计量为βˆ =n . ∑ln X ii =1 【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.n β。
微积分(上)期末试卷一、填空题(本题共10小题,每小题2分,共20分) 1. 函数y =x -1+arccos21+x 的定义域是 2.已知2)3(='f ,则=--→xf x f x 2)3()3(lim 03.)sin 11sin(lim x xx x x -+∞→ = 4.设32)2(2+-=+x x x f , 则f [ f (2) ]= 5.设xex f 111)(+=, 则)(lim )(lim 0x f x f x x -+→→+=6.已知11+=x y ,n 为自然数,则=)(n y 7.设xy cos 2=, 则y '=8.曲线x y ln =上经过点(1,0)的切线方程是:9.⎰-)x cos 1(d = 10.='⎰dx xf )2( 二、单项选择题(本题共5小题,每小题2分,共10分) 11. 当0→x 时,)1(2-x e是关于x 的( )A.同阶无穷小B.低阶无穷小C.高阶无穷小D.等价无穷小12. 设函数⎩⎨⎧>+≤=1;1;)(2x b ax x x x f 在x = 1处可导,则( )A.1,0==b aB.1,2-==b aC.2,3-==b aD.2,1=-=b a13. 设⎩⎨⎧≤<-≤<-=21;210;1)(x x x x x f 在1=x 处为( )A. 连续点B. 可去型间断点C. 跳跃型间断点D. 无穷型间断点14. 下列函数在给定区间满足拉格朗日中值定理条件的是( ) A.x y =,[-1,1] B. 21x x y -=,[-2,2] C.32x y =,[-1,1] D.xy 1=,[1,2]15. 函数xx f 2)(=及其图形在区间(1,+∞)上( ). A.单调减少下凸 B.单调增加下凸 C.单调减少上凸 D.单调增加上凸三、计算题(本题共4小题,每小题6分,共24分)16. )1)1ln(1(lim 0xx x -+→ . 17. 32)21(lim +∞→++x x x x 18.3log )1ln(2a x x y +++=,求dxdy及dy . 19. )(xe f y -= ,其中f 具有二阶导数,求22dxyd . 四、计算题(本题共3小题,每小题8分,共24分) 20. 设函数)(x f y =由方程e e xy y=+确定,求0=x dxdy .21. ⎰+dxx x )1ln(222.⎰+x dx 21五、应用题(本题共2小题,每小题8分,共16分) 24. 已知销售量Q 与价格P 的函数关系为Pe Q 23-=,求(1) 销售量Q 关于价格P 的弹性函数p e . (2) 推导)1(p e Q dpdR+=,其中R 为收益. 25. 设某工厂生产某产品的产量为x 件时的固定成本10000=C 元,可变成本21100110)(x x x C -=元,产品销售后的收益250120)(x x x R -=元,国家对每件产品征税2元, 问该工厂生产该产品的产量为多少件时才能获得最大利润?最大利润是多少?六、证明题(本题满分6分)26. 设函数)(x f 在闭区间[0,1]上连续,在开区间(0,1)内可导,且0)1()0(==f f , 试证:存在∈ξ(0,1),使得)(2004)(ξξf f ='.微积分(上)模拟试卷答案一、 填空题(本题共10小题,每小题2分,共20分) 1. -3≤x ≤1 2. -1 3. 1 4. 25. 16. 1)1(!)1(++-n n x n7. 2ln sin 2cos x x- 8. y =1-x9.c x +-cos 10. c x f +)2(2二、 单项选择题(本题共5小题,每小题2分,共10分) 11. C 12. B 13. C 14. D 15.A三、计算题(本题共4小题,每小题6分,共24分) 16.解 )1)1ln(1(lim 0x x x -+→=])1ln()1ln([lim 0++-→x x x x x --------------------------------(2分)=20)1ln(limx x x x +-→----------------------------------(3分)=xx x 2111lim 0+-→---------------------------------------(4分) =2)1(1lim 20x x +→---------------------------------------(5分) =21.-----------------------------------------------------(6分) 17.解32)21(lim +∞→++x x x x =x x x x 2)21(lim ++∞→3)21(lim ++∞→x x x ----------------------------(2分)=x x x x 2)21(lim ++∞→=422])21[(])11[(lim x x x x x ++∞→--------------------------------(4分) =242-=e ee --------------------------------(6分) 18.解1122122++++=x x x xdx dy ----------------------------------------------(3分)11122++++=x x x x ---------------------------------------------------(4分)=112+x ,-----------------------------------------------------------------(5分)dx x dy 112+=-------------------------------------------------------------(6分)19.解))((''=--x x e e f dxdy,--------------------------------------------------------(1分) )()('-'=--x e e f x x --------------------------------------------------------(2分)x x e e f --'-=)(--------------------------------------------------------(3分)))(())((22''-'''-=-----x x x x x e e f e e e f dxyd -------------------------------------(4分) x x xxe ef ee f 2)()(----''+'= .-------------------------------------(6分)四、计算题(本题共3小题,每小题8分,共24分) 20.解各项关于x 求导,得,0=++dxdy e dx dy xy y ,----------------------------(3分) yex ydx dy +-=,-------------------------------------------------------------(5分) 又当0=x 时1=y ,-------------------------------------------------------(6分)∴edxdy x 1-==.-------------------------------------------------------------------(8分)21.解⎰⎰++=+)1()1ln(21)1ln(222x d x dx x x ---------------------------------(2分) =)1ln()1(21)1ln(212222++-++⎰x d x x x -----------(4分)=dx x xx x x ⎰++-++12)1(21)1ln(212222---------------(6分) =C x x x +-++22221)1ln(21--------------------------------(8分) 22.解令x t 2=则tdt dx t x ==,22,-----------------------------------------(2分)dt t tx dx ⎰⎰+=+121----------------------------------------------------------(3分)=dt t )111(⎰+-------------------------------------------- ------(5分) =C t t ++-1ln ------------------------------------ ------------(7分) =C x x +++21ln 2.--------------------------------------(8分)五、应用题(本题共2小题,每小题8分,共16分) 24.(1)解p QQ EP EQ e p '==-------------------------------------------------------------(2分) =p ep e pp 23)2(322=------------------------------------------------------------------(4分) (2)由pQ R =---------------------------------------------------------------(5分)Q p Q dp dR'+=---------------------------------------------------(6分) )1()1(p e Q QQ pQ +='+=---------------------------------------------------(8分) 25.解利润1000100182)100110(1000)50120()(222--=-----=x x x x x x x x L ------------(2分) 令05018)(=-='x x L ,得,400=x ,---------------------------------(4分)又0501)(<-=''x L , 所以利润函数L (x )在400=x 时取极大值,又唯一的极值点往往就是最值点--------------------------------------------------------(6分) ∴当400=x 时,获得最大利润600)400(=L .--------------------------(8分) 六、证明题(本题满分6分) 证明:设)()(2004x f ex F x-=,---------------------------------------------------------(2分)则)(x F 闭区间[0,1]上连续,在开区间(0,1)内可导,且0)1()0(==F F , 由罗尔定理)1,0(∈∀ξ,使得0)(='ξF ,----------------------------------(4分) 即0)(2004)(20042004=-'--ξξξξf e f e,∴)(2004)(ξξf f ='.---------------------------------------------------------(6分)。
《考研数学试卷》2004高数部份一、填空题[2004.三.1.4][2004.四.1.4]若()0sin limcos 5xx x x b e a→-=-,则a =1,b=4-[2004.二.1.4]设()()21lim1n n xf x nx →∞-=+,则()f x 的间断点为x =0[2004.一.1.4]曲线ln y x =上与直线1x y +=垂直的切线方程为1y x =-[2004.二.2.4]设函数()y x 由参数方程333131x t t y t t ⎧=++⎪⎨=-+⎪⎩确定,则曲线()y y x =向上凸的x 取值范围为(,1]-∞[2004.四.3.4]设arctan lnxy e =-1x dy dx==211e e -+[2004.一.2.4]已知()x x f e xe -'=,且()10f =,则()f x =()21ln 2x[2004.三.3.4][2004.四.2.4]设()211,2211,2x xe x f x x ⎧-≤<⎪⎪=⎨⎪-≥⎪⎩,则()2121f x dx -=⎰12-[2004.二.3.4]1+∞=⎰2π[2004.三.2.4]函数(),f u v 由关系式()(),f xg y y x g y =+⎡⎤⎣⎦确定,其中函数()g y 可微,且()0g y ≠,则2f u v∂=∂∂()()2g v g v '-⎡⎤⎣⎦[2004.二.4.4]设函数(,)z z x y =由方程232x zz ey -=+确定,则3z z xy∂∂+=∂∂2[2004.一.3.4]设L 为正向圆周222x y +=在第一象限中的部分,则曲线积分2Lxdy ydx -⎰的值为32π[2004.一.4.4]欧拉方程()2224200d y dy xxy x dxdx++=>的通解为122c c yxx=+[2004.二.5.4]微分方程()320y x dx xdy +-=满足()615y =的解为315y x =+二、单项选择题[2004.三.7.4][2004.四.7.4]函数()()()()2sin 212x x f x x x x -=--在下列那个区间内有界(A )A.(1,0)-B.()0,1C.()1,2D. ()2,3 [2004.三.8.4][2004.四.8.4]设()f x 在(),-∞+∞内有定义,且()()1,0lim ,0,0x f x f x a g x x x →∞⎧⎛⎫≠⎪ ⎪==⎝⎭⎨⎪=⎩,则(D ) A.0x =必是()g x 的第一类间断点 B. 0x =必是()g x 的第二类间断点 C. 0x =必是()g x 的连续点 D. ()g x 在点0x =处的连续性与a 的取值有关 [2004.一.7.4][2004.二.7.4]把0x +→时的无穷小量223cos ,tan,sin xxtdt tdt αβγ===⎰⎰⎰排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(B )A ,,αβγB ,,αγβC ,,βαγD ,,βγα[2004.一.8.4][2004.二.10.4]设()f x 连续,且()00f '>,则存在0δ>,使得(C ) A. ()f x 在()0,δ内单调增加 B. ()f x 在(),0δ-内单调减少 C. 对任意()0,x δ∈有()()0f x f > D. 对任意(),0x δ∈-有()()0f x f >[2004.三.11.4][2004.四.11.4]设()f x '在[],a b 上连续,且()()0,0f a f b ''><,则下列结论种错误的是(D )A. 至少存在一点()0,x a b ∈,使得()()0f x f a >B. 至少存在一点()0,x a b ∈,使得()()0f x f b >C. 至少存在一点()0,x a b ∈,使得()00f x '=D. 至少存在一点()0,x a b ∈,使得()00f x =[2004.二.8.4][2004.三.9.4][2004.四.9.4]设()()1f x x x =-,则(C )A. 0x =是()f x 的极值点,但()0,0不是曲线()y f x =的拐点B. 0x =不是()f x 的极值点,但()0,0是曲线()y f x =的拐点C. 0x =是()f x 的极值点,且()0,0不是曲线()y f x =的拐点D. 0x =不是()f x 的极值点,()0,0也不是曲线()y f x =的拐点[2004.二.9.4]lim lnn →∞=(B )A.221ln xdx ⎰ B.212ln xdx ⎰ C.212ln(1)x dx +⎰ D.221ln (1)x dx +⎰[2004.四.10.4]设()()()01,00,0,1,0xx f x x F x f t dt x >⎧⎪===⎨⎪-<⎩⎰,则(B )A.()F x 在0x =点不连续。
共4页 第1页东 南 大 学 考 试 卷(A 卷)课程名称 工科数学分析 考试学期 04-05-2(期末) 得分适用专业 上课各专业 考试形式 闭考试时间长度 150分钟一.填空题(每小题4分,共20分) 1.设121-=x y ,则)10(y (1)= 。
2.设⎰⎰⎥⎦⎤⎢⎣⎡+x t dt du u 0sin 141,则='')0(f 。
3.设⎰>+=x xx dt tx f 23)0(11)(,则当=x 时,)(x f 取得最大值。
4.设)(x f 满足1)(1)(-=+'x f xx f ,则)(x f = 。
5.已知)(x F 是)(x f 的一个原函数,且21)()(x x xF x f +=,则=)(x f 。
二.选择题(每小题4分,共16分)1.设,sin )(3xxx x f π-=则)(x f [ ] (A)有无穷多个第一类间断点 (B)只有一个可去间断点 (C )有两个跳跃间断点 ( D)有三个可去间断点2.设当0x x →时,)(),(x x βα都是无穷小量(0)(≠x β),则当0x x →时,下列 表达式不一定是无穷小量的是 [ ](A))()(2x x βα (B)xx x 1sin )()(22βα+ (C)))()(1ln(x x βα+ (D)|)(||)(|x x βα+3.下列反常积分发散的是 [ ] (A)⎰-11sin 1dx x(B)⎰--11211dx x (C)⎰∞+-02dx e x (D) ⎰∞+22ln 1dx x x共4页 第2页4.下列结论正确的是 [ ] (A) 若],[],[d c b a ⊇,则必有⎰⎰≥badcdx x f dx x f )()((B) 若|)(|x f 在区间],[b a 上可积,则)(x f 在区间],[b a 上可积 (C)若)(x f 是周期为T 的连续函数,则对任意常数a 都有⎰⎰+=TTa adx x f dx x f 0)()((D)若)(x f 在区间],[b a 上可积,则)(x f 在),(b a 内必定有原函数. 三.(每小题7分,共35分) 1. 设)(x y y =满足222=-+xyye y x ,求曲线)(x y y =在点)2,0(处的切线方程.2. 计算积分⎰-⎥⎦⎤⎢⎣⎡-++116|)2ln(|1sin dx x x x3.计算积分⎰-dx x x 2224.计算反常积分⎰∞+13arctan dx x x共4页 第3页5.设⎰-=221)(x t dt e x f ,求⎰1)(dx x xf .四.(7分) 求微分方程初值问题⎪⎩⎪⎨⎧-='=+=+''21)0(,1)0(sin y y x x y y 的解.五.(8分)在区间],1[e 上求一点ξ,使得图中所示阴影部分绕x 轴旋转所得旋转体的体积最小。
2004年数学(二)试题评注一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = 0 .【分析】本题属于确定由极限定义的函数的连续性与间断点.对不同的x ,先用求极限的方法得出()f x 的表达式, 再讨论()f x 的间断点.【详解】显然当0x =时,()0f x =;当0x ≠时, 2221(1)(1)1()lim lim 11n n xn x x n f x nx x x x n →∞→∞--====++, 所以 ()f x 0,01,0x x x =⎧⎪=⎨≠⎪⎩,因为 001lim ()lim(0)x x f x f x→→==∞≠ 故 0x =为()f x 的间断点.(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为1-∞∞(,)(或(-,1]).【分析】判别由参数方程定义的曲线的凹凸性,先用由 ()()x x t y y t =⎧⎨=⎩定义的 223()()()()(())d y y t x t x t y t dx x t ''''''-=' 求出二阶导数,再由 220d ydx< 确定x 的取值范围. 【详解】 22222331213311dydy t t dt dx dx t t t dt--====-+++,222223214113(1)3(1)d y d dy dt tdt dx dx dx t t t '⎛⎫⎛⎫==-⋅= ⎪ ⎪+++⎝⎭⎝⎭, 令 220d ydx< ⇒ 0t <.又 331x t t =++ 单调增, 在 0t <时, (,1)x ∈-∞。
(0t =时,1x =⇒x ∈(,1]-∞时,曲线凸.)(3)1+∞=⎰2π.【分析】利用变量代换法和形式上的牛顿莱布尼兹公式可得所求的广义积分值. 【详解1】22100sec tan sec tan 2t t dt dt t t πππ+∞⋅==⋅⎰⎰.【详解2】1120111)arcsin 2dt tt π+∞-===⎰⎰.(4)设函数(,)z z x y =由方程232x z z e y -=+确定, 则3z z x y∂∂+=∂∂2.【分析】此题可利用复合函数求偏导法、公式法或全微分公式求解. 【详解1】在 232x z z e y -=+ 的两边分别对x ,y 求偏导,z 为,x y 的函数. 23(23)x z z z e x x-∂∂=-∂∂,23(3)2x z z ze y y-∂∂=-+∂∂, 从而 2323213x zx zz e x e --∂=∂+,23213x zz y e -∂=∂+ 所以 2323132213x zx zz z e x y e--∂∂++=⋅=∂∂+ 【详解2】令 23(,,)20x z F x y z e y z -=+-= 则232x z F e x -∂=⋅∂, 2F y ∂=∂, 23(3)1x z Fe z-∂=--∂ 2323232322(13)13x z x zx z x z Fz e e x F x e ez----∂∂⋅∂∴=-=-=∂∂-++∂, 232322(13)13x z x z F z y F y e ez--∂∂∂=-=-=∂∂-++∂,从而 232323313221313x z x zx z z z e x y ee ---⎛⎫∂∂+=+= ⎪∂∂++⎝⎭【详解3】利用全微分公式,得23(23)2x z dz e dx dz dy -=-+2323223x z x z e dx dy e dz --=+- 2323(13)22x z x z e dz e dx dy --+=+232323221313x z x z x ze dz dx dy e e ---∴=+++ 即 2323213x z x z z e x e--∂=∂+, 23213x z z y e -∂=∂+ 从而 32z zx y∂∂+=∂∂(5)微分方程3()20y x dx xdy +-=满足165x y ==的特解为315y x =.【分析】此题为一阶线性方程的初值问题.可以利用常数变易法或公式法求出方程的通解,再利用初值条件确定通解中的任意常数而得特解.【详解1】原方程变形为 21122dy y x dx x -=, 先求齐次方程 102dy y dx x-= 的通解:12dy dx y x=积分得 1ln ln ln 2y x c =+ y ⇒=设(y c x =,代入方程得211(((22c x c x c x x x '= 从而 321()2c x x '=,积分得 352211()25c x x dx C x C =+=+⎰,于是非齐次方程的通解为53211()55y x C x =+=1615x yC ==⇒=, 故所求通解为315y x =.【详解2】原方程变形为 21122dy y x dx x -=,由一阶线性方程通解公式得1122212dx dx x xy e x edx C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ 11ln ln 22212x x ex e dx C -⎡⎤=+⎢⎥⎣⎦⎰35221125x dx C x C ⎤⎤=+=+⎥⎢⎥⎦⎦⎰6(1)15y C =⇒=, 从而所求的解为315y x =.(6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵,则B =19.【分析】利用伴随矩阵的性质及矩阵乘积的行列式性质求行列式的值. 【详解1】 2ABA BA E **=+ 2ABA BA E **⇔-=,(2)A E BA E *⇔-=, 21A E B A E *∴-==, 221111010(1)(1)392100001B A E AA *====-⋅---. 【详解2】由1A A A *-=,得11122ABA BA E AB A A B A A AA **---=+⇒=+2A AB A B A ⇒=+ (2)A A E B A ⇒-= 32A A E B A ⇒-=21192B A A E∴==-二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量2cos xt dt α=⎰, 20x β=⎰, 30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα[]B【分析】对与变限积分有关的极限问题,一般可利用洛必塔法则实现对变限积分的求导并结合无穷小代换求解.【详解】3020lim lim cos x x x t dttdt γα++→→=⎰⎰30lim x +→= 320lim lim 02x x x x++→→===, 即o ()γα=.又 2000tan lim limxx x βγ++→→=23002tan 22lim lim 01sin 2x x x x x x x ++→→⋅===, 即 o ()βγ=.从而按要求排列的顺序为αγβ、、, 故选(B ). (8)设()(1)f x x x =-, 则(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点.(B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.[]C【分析】求分段函数的极值点与拐点, 按要求只需讨论0x =两方()f x ', ()f x ''的符号.【详解】 ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩,()f x ''=2,102,01x x -<<⎧⎨-<<⎩,从而10x -<<时, ()f x 凹, 10x >>时, ()f x 凸, 于是(0,0)为拐点. 又(0)0f =, 01x ≠、时, ()0f x >, 从而0x =为极小值点. 所以, 0x =是极值点, (0,0)是曲线()y f x =的拐点, 故选(C ).(9)lim (1)n n→∞+等于(A )221ln xdx ⎰. (B )212ln xdx ⎰.(C )212ln(1)x dx +⎰. (D )221ln (1)x dx +⎰[]B【分析】将原极限变型,使其对应一函数在一区间上的积分和式。
2004年全国硕士研究生入学统一考试数学四试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 若0sin lim(cos )5x x xx b e a→-=-,则a =,b =.(2) 设1ln arctan 22+-=x xxe e e y ,则1x dy dx ==.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 设⎪⎪⎪⎭⎫⎝⎛--=100001010A ,AP P B 1-=,其中P 为三阶可逆矩阵, 则200422B A -=.(5) 设()33⨯=ij a A 是实正交矩阵,且111=a ,Tb )0,0,1(=,则线性方程组b Ax =的解是.(6) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P .二、选择题:本题共8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界( ) (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3).(8) 设f (x )在(,)-∞+∞内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则( )(A)0x =必是()g x 的第一类间断点. (B) 0x =必是()g x 的第二类间断点. (C) 0x =必是()g x 的连续点.(D) ()g x 在点0x =处的连续性与a 的取值有关.(9) 设()(1)f x x x =-, 则 ( )(A) 0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B) 0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C) 0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D) 0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.(10) 设⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,⎰=x dt t f x F 0)()(,则 ( )(A) ()F x 在0x =点不连续.(B) ()F x 在(,)-∞+∞内连续,但在0x =点不可导. (C) ()F x 在(,)-∞+∞内可导,且满足)()(x f x F ='.(D) ()F x 在(,)-∞+∞内可导,但不一定满足)()(x f x F ='.(11) 设)(x f '在[,]a b 上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是( )(A) 至少存在一点0(,)x a b ∈,使得)(0x f >()f a . (B) 至少存在一点),(0b a x ∈,使得)(0x f > ()f b . (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.(12) 设n 阶矩阵A 与B 等价, 则必有( )(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B .(13) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于( ) (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1.(14) 设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则( )(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x和1)1(22=++y x 所围成的平面区域(如图).(17) (本题满分8分)设(,)f u v f (u , v )具有连续偏导数,且满足(,)(,)u v f u v f u v uv ''+=. 求),()(2x x f e x y x -=所满足的一阶微分方程,并求其通解. (18) (本题满分9分) 设某商品的需求函数为1005Q P =-,其中价格(0,20)P ∈,Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加.(19) (本题满分9分)设⎪⎩⎪⎨⎧>≤=-0,0,)(22x ex e x F x x ,S 表示夹在x 轴与曲线()y F x =之间的面积. 对任何0t >,)(1t S 表示矩形t x t -≤≤,0()y F x ≤≤的面积. 求(I) ()S t = S -)(1t S 的表达式; (II) ()S t 的最小值.(20) (本题满分13分)设线性方程组⎪⎩⎪⎨⎧=+++++=+++=+++,14)4()2(3,022,0432143214321x x μx λx x x x x x x μx λx 已知T)1,1,1,1(--是该方程组的一个解,试求(I) 方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (II) 该方程组满足32x x =的全部解. (21) (本题满分13分)设三阶实对称矩阵A 的秩为2,621==λλ是A 的二重特征值.若Tα)0,1,1(1=,T α)1,1,2(2=, T α)3,2,1(3--=, 都是A 的属于特征值6的特征向量.(I) 求A 的另一特征值和对应的特征向量; (II) 求矩阵A .(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求:(I) 二维随机变量),(Y X 的概率分布;(II) X 与Y 的相关系数 XY ρ; (III) 22Y X Z +=的概率分布.(23) (本题满分13分)设随机变量X 在区间)1,0(内服从均匀分布,在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布,求(I) 随机变量X 和Y 的联合概率密度;(II) Y 的概率密度; (III) 概率}1{>+Y X P .2004年全国硕士研究生入学统一考试数学四试题解析一、填空题(1)【答案】1,4a b ==-【详解】本题属于已知极限求参数的反问题. 方法1:根据结论:)()(limx g x f =A ,(1) 若()0g x →,则()0f x →;(2) 若()0f x →,且0A ≠,则()0g x →因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x (否则根据上述结论(2)给极限是0,而不是5),由 0lim()lim lim 10xxx x x e a e a a →→→-=-=-=得a = 1.极限化00sin lim(cos )lim (cos )151x x x x xx b x b b e x→→- -=-=-等价无穷小,得b = -4.因此,a = 1,b = -4.方法2:由极限与无穷小的关系,有sin (cos )5x xx b e aα-=+-,其中0lim 0x α→=,解出 (5)(cos )sin ,5x e x b xa αα+--=+上式两端求极限,000(5)(cos )sin (cos )sin limlim lim 10155x x x x x e x b x x b xa e ααα→→→+---==-=-=++ 把a = 1代入,再求b ,(5)(1)cos sin x e b x xα+-=-,两端同时对0x →取极限,得0(5)(1)lim(cos )sin x x e b x xα→+-=-000(5)(1)(5)limcos lim 1lim 15sin x x x x e x x x xαα→→→+-+=-=-=-4=- 因此,a = 1,b = -4.(2)【答案】211e e -+. 【详解】因为()()()222222111ln ln 12ln 1ln 11222x x xx x x e e e x e x e e ⎡⎤⎡⎤=-+=-+=-+⎣⎦⎣⎦+ 由 1ln arctan 22+-=x x xe e e y ,得 )1ln(21arctan 2++-=xx e x e y ,所以 222222222()1()1211112112111x x x x x xx x x x x xe e e e e e y e e e e e e '''=-+=-+=-+++++++,所以22222221111111111x x x x x x dye e e e e dxe e e e e ==⎛⎫-=-+=-+= ⎪+++++⎝⎭.(3)【答案】12- 【详解】方法1:作积分变换,令1x t -=,则11:2:122x t →⇒-→ 所以211122(1)()f x dx f t dt --=⎰⎰=1121122()(1)f t dt dt -+-⎰⎰22211112222111122221111(1)(1)2222xx xxe dx dx e dx e ---=+-=--=-⎰⎰⎰11022=-=.(也可直接推出212120x xe dx -=⎰,因为21212x xe dx -⎰积分区间对称,被积函数是关于x 是奇函数,则积分值为零) 方法2:先写出的(1)f x -表达式()()21111,122(1)11,12x x e x f x x -⎧--≤-<⎪⎪-=⎨⎪- -≥⎪⎩即:2(1)13(1),22(1)31,2x x e x f x x -⎧-≤<⎪⎪-=⎨⎪-≥⎪⎩所以2322(1)2131222(1)(1)(1)x f x dx x edx dx --=-+-⎰⎰⎰2233(1)2(1)2211221311(1)22222x x e d x e --⎛⎫=---=- ⎪⎝⎭⎰11441111()02222e e =--=-=-.(4)【答案】⎪⎪⎪⎭⎫ ⎝⎛-100030003【详解】因为2A 010010100100001001--⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪--⎝⎭⎝⎭100010001-⎛⎫ ⎪=- ⎪ ⎪⎝⎭,为对角阵,故有422100100()010*********A A E --⎛⎫⎛⎫⎪⎪==--= ⎪⎪ ⎪⎪⎝⎭⎝⎭所以 211B P APP AP --=11()P A PP AP --=12,,P A P -=L200412004B P A P -=()50114P A P -=11P EP P P --==E =所以 200422B A -1002010001E -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭300030001⎛⎫ ⎪= ⎪ ⎪-⎝⎭.(5)【答案】T)0,0,1( 【详解】方法1:设12132122233132331a a A a a a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,是正交矩阵,故的每个行(列)向量都是单位向量 所以有 22121311a a ++=,22213111a a ++=,得121321310,0.a a a a ====故 2223323310000A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,又由正交矩阵的定义T AA E =知A 是可逆矩阵,且1TA A -=. 则b Ax =,有唯一解.1x A b -=T A b =2232233310011000000a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦方法2:同方法1,求得111=a 的正交阵为2223323310000A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 是正交阵,由正交矩阵的性质可知,11A =-或不等于零,故A 22231122233233323310(1)0a a a a a a a a +==-222332330a a a a =≠,即有222332330a a a a ≠,则原方程b Ax =为1222233322333100x a x a x a x a x =⎧⎪+=⎨⎪+=⎩ 解得1231,0x x x ===,即方程组有唯一解. (其中,由222332330a a a a ≠及齐次线性方程组0Ax =只有零解的充要条件是0A ≠,可知,方程组22223332233300a x a x a x a x +=⎧⎨+=⎩ 只有零解,故230x x ==. 进而1222233322333100x a x a x a x a x =⎧⎪+=⎨⎪+=⎩的解为1231,0x x x ===.)(6) 【答案】e1 【详解】本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算. 指数分布的概率密度为,0()00x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若,其方差21λ=DX .于是,由一维概率计算公式,{}()bX aP a X b f x dx ≤≤=⎰,有}{DX X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=11xe eλλ+∞--=二、选择题 (7)【答案】(A) 【详解】方法1:如果()f x 在(,)a b 内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数()f x 在(,)a b 内有界.当x ≠ 0 , 1 , 2时()f x 连续,而2211sin(2)sin(12)sin 3lim ()lim (1)(2)(11)(12)18x x x x f x x x x ++→-→------===-------,220sin(2)sin(02)sin 2lim ()lim (1)(2)(01)(02)4x x x x f x x x x --→→----===-----,22sin(2)sin(02)sin 2lim ()lim (1)(2)(01)(02)4x x x x f x x x x ++→→--===----, 22111sin(2)sin(12)lim ()limlim (1)(2)(1)(12)x x x x x f x x x x x →→→--===∞----,222222sin(2)sin(2)1lim ()limlim lim (1)(2)(2)2x x x x x x x f x x x x x x →→→→--====∞----, 所以,函数f (x )在(-1 , 0)内有界,故选(A).方法2:因为0lim ()x f x -→存在,根据函数极限的局部有界性,所以存在0δ>,在区间[,0)δ-上()f x 有界,又如果函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界,根据题设()f x 在[1,]δ--上连续,故()f x 在区间上有界,所以()f x 在区间(1,0)-上有界,选(A).(8)【答案】 (D) 【详解】考查极限)(lim 0x g x →是否存在,如果存在,是否等于g (0),通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.因为 011lim ()lim ()lim ()x x u g x f u f u x x→→→∞= = = a ,又(0)0g =,所以, 当0a =时,)0()(lim 0g x g x =→,即()g x 在点0x =处连续,当0a ≠时,)0()(lim 0g x g x ≠→,即0x =是()g x 的第一类间断点,因此,()g x 在点0x =处的连续性与a 的取值有关,故选(D).(9) 【答案】C【详解】由于是选择题,可以用图形法解决,也可用分析法讨论.方法1:由于是选择题,可以用图形法解决, 令()(1)x x x ϕ=-,则211()24x x ϕ⎛⎫=-- ⎪⎝⎭,是以直线12x =为对称轴,顶点坐标为11,24⎛⎫- ⎪⎝⎭,开口向上的一条抛物线,与x 轴相交的两点坐标为()()0,0,1,0,()()y f x x ϕ==的图形如图.点0x =是极小值点;又在点(0,0)左侧邻近曲线是凹的,右侧邻近曲线是凸的,所以点(0,0)是拐点,选C.方法2:写出()y f x =的分段表达式: ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,从而()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩, ()f x ''=2,102,01x x -<<⎧⎨-<<⎩,()0lim ()lim 1210x x f x x ++→→'=-=>,所以01x <<时,()f x 单调增, ()00lim ()lim 1210x x f x x --→→'=-+=-<,所以10x -<≤时,()f x 单调减, 所以0x =为极小值点.当10x -<<时, ()20f x ''=>,()f x 为凹函数; 当10x >>时,()20f x ''=-<,()f x 为凸函数, 于是(0,0)为拐点.(10)【答案】 (B)【详解】先求分段函数()f x 的变限积分⎰=xdt t f x F 0)()(,再讨论函数()F x 的连续性与可导性即可.方法1:关于具有跳跃间断点的函数的变限积分,有下述定理:设()f x 在[,]a b 上除点(),c a b ∈ 外连续,且x c =为()f x 的跳跃间断点,又设()()xcF x f t dt =⎰,则(1)()F x 在[],a b 上必连续;(2))()(x f x F =',当[],x a b ∈ ,但x c ≠;(3)()F c '必不存在,并且()(),()()F c f c F c f c +-+-''= =直接利用上述结论,这里的0c =,即可得出选项(B)正确. 方法2:当0x <时,x dt x F x-=-=⎰0)1()(;当0x >时,x dt x F x==⎰01)(,当0x =时,(0)0F =. 即()F x x =,显然,()F x 在(,)-∞+∞内连续,排除选项(A),又0(0)lim 10x x F x ++→-'==-,0(0)lim 10x x F x --→--'==--,所以在0x =点不可导. 故选 (B).(11)【答案】(D) 【详解】利用介值定理与极限的保号性可得到三个正确的选项,或应用举例法找出错误选项. 方法1:举例说明(D)是错误的. 例:2()4,11f x x x =--≤≤,11(1)220,(1)220x x f x f x =-=''-=-=>=-=-<.但在[1,1]-上()30f x ≥>.方法2:证明(A)、(B)、(C)正确.由已知)(x f '在[,]a b 上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ,所以选项(C)正确;另外,由导数的定义0)()(lim)(>--='+→ax a f x f a f a x ,根据极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >,所以选项(A)正确.同理,()()()lim 0x bf b f x f b b x-→-'=<-,根据极限的保号性,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以选项(B)正确,故选(D).(12)【答案】(D ) 【详解】方法1:矩阵等价的充分必要条件:矩阵A 与B 等价⇔A ,B 是同型矩阵且有相同的秩,故由A 与B 等价,知A 与B 有相同的秩.因此,当0||=A 时, n A r <)(, 则有n B r <)(, 即0||=B , 故选(D).方法2:矩阵等价的充分必要条件:A 与B 等价⇔存在可逆,P Q ,使得PAQ B =. 两边取行列式,由矩阵乘积的行列式等于行列式的积,得PAQ P A Q B ==. ,P Q 可逆,由矩阵A 可逆的充分必要条件:0A ≠,故00P Q ≠≠,但不知具体数值.由P A Q B =,知0A ≠时,B 不能确定.但0A =有0B =.故应选(D).方法3:由经过若干次初等变换变为矩阵的初等变换对矩阵的行列式的影响有:(1)A 中某两行(列)互换得B ,则B A =-. (2)A 中某行(列)乘(0)k k ≠得B ,则B k A =. (3)A 中某行倍加到另一行得B ,则B A =.又由A 与B 等价,由矩阵等价的定义:矩阵A 经有限次初等变换变成矩阵B ,则称A 与B 等价,知.B k A =±故当0A ≠时,0B k A =±≠,虽仍不等于0,但数值大、小、正负要改变,但0||=A ,则0B =,故有结论:初等变换后,矩阵的行列式的值要改变,但不改变行列式值的非零性,即若0||=A 0B ⇒=,若0A ≠0B ⇒≠.故应选(D).(13) 【答案】(C)【详解】利用正态分布概率密度函数图形的对称性,对任何0x >有{}{}{}12P X x P X x P X x >=<-=>. 或直接利用图形求解. 方法1:由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据分位点的定义有21α-=u x ,故应选(C). 方法2:图一 图二Oxy()f x{}P X u αα=Oxy{}P X x <=12α- ()f x如图一所示题设条件.图二显示中间阴影部分面积α,{}P X x α<=.两端各余面积12α-,所以12{}P X u αα-<=,答案应选(C).(14)【答案】A.【详解】由于随机变量)1(,,,21>n X X X n Λ独立同分布,所以必有:2, (,)0, i j i jCov X X i j σ⎧==⎨≠⎩又 222111()n n ni i i i i i i i D a X a D X a σ===⎛⎫== ⎪⎝⎭∑∑∑下面求1(,)Cov X Y 和1()D X Y +.而11,ni i Y X n ==∑故本题的关键是将Y 中的1X 分离出来,再用独立性来计算.对于选项(A):1111112111(,)(,)(,)(,)n n i i i i Cov X Y Cov X X Cov X X Cov X X n n n ====+∑∑11DX n =21nσ=所以(A)对,(B)不对.为了熟悉这类问题的快速、正确计算. 可以看本题(C),(D)选项. 因为X 与Y 独立时,有()()()D X Y D X D Y ±=+. 所以,这两个选项的方差也可直接计算得到:22211222111(1)1()()n n n n D X Y D X X X n n n n n σσ++-+=+++=+L =222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n -+-=----=-Λ=.222222σσn n nn n -=- 所以本题选 (A)三、解答题(15)【详解】求“∞-∞”型极限的首要步骤是通分,或者同乘、除以某一式以化简.22201cos lim()sin x x x x →- 通分222220sin cos lim sin x x x x x x →-sin x x :等价22240sin cos lim x x x x x →- 22401sin 24lim x x x x →-=洛()22041sin 24lim x x x x→'⎛⎫- ⎪⎝⎭'3012sin 42lim 4x x x x →-= 洛()0312sin 42lim 4x x x x →'⎛⎫- ⎪⎝⎭'201cos 4lim 6x x x →-=2202sin 2lim 6x x x →=sin 22x x :等2202(2)lim 6x x x →43=.(16)【详解】利用对称性与极坐标计算.方法1:令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,根据二重积分的极坐标变换:()()12{(,)|,}D x y r r r αθβθθ=≤≤≤≤,则:()()()()21,cos ,sin r r Df x y d f r r rdr βθαθσθθ=⎰⎰⎰⎰122D x y d σ+化为极坐标:221{(,)|4}{(,)|02,0D x y x y x y θπ=+≤=≤≤所以122D x y d σ+222220cos sin d r r rdr πθθθ=+⎰⎰2220d r dr πθ=⎰⎰;222D x y d σ+化为极坐标:2223{(,)|(1)1}{(,)|,02cos }22D x y x y x y r ππθθ=++≤=≤≤≤≤-所以222D x y d σ+32cos 222222cos sin d r r rdr πθπθθθ-=+⎰⎰32cos 222d r dr πθπθ-=⎰⎰所以⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d 22cos 33322020033r rd d θπππθθ-=-⎰⎰332288cos 233d ππθπθ-=⋅-⎰()32228821sin sin 33d πππθθ=⋅+-⎰332288sin 2sin 333ππθπθ⎛⎫=⋅+- ⎪⎝⎭16822333π⎛⎫=+-+ ⎪⎝⎭)23(916932316-=-=ππ 区域D 关于x 轴对称,Dyd σ⎰⎰中被积函数y 为y 的奇函数,根据区域对称性与被积函数的奇偶性:设(),f x y 在有界闭区域D 上连续,若D 关于x 轴对称,(),f x y 对y 为奇函数,则(),0Df x y d σ=⎰⎰,所以0=⎰⎰Dyd σ所以22()Dx y y d σ+⎰⎰22DDx y d yd σσ=++⎰⎰16(32)9π=-. 方法2:22()Dx y y d σ++⎰⎰22DDx y d yd σσ=++⎰⎰22D 20x y d σ=++⎰⎰上半极坐标变换22222002cos 22[]d r dr d r dr πππθθθ-+⎰⎰⎰⎰2233202cos 2[]233r r d ππθπθ-=⋅+⎰32888cos 2333d πππθθ⎛⎫=++ ⎪⎝⎭⎰()2288161sin sin 333d ππππθθ=++-⎰ 321616sin sin 333πππθθ⎛⎫=+- ⎪⎝⎭16(32)9π=-.(17)【详解】求复合函数的偏导数,求一阶线性微分方程的解 方法1:由2()(,)xy x ef x x -=,两边对x 求导有,222122(,)(,)(,)x x x y e f x x e f x x e f x x ---'''=-++()22122(,)(,)(,)x x e f x x e f x x f x x --''=-++()2122(,)(,)x y e f x x f x x -''=-++已知uv v u f v u f v u='+'),(),(,即12(,)(,)f u v f u v uv ''+=,则212(,)(,)f x x f x x x ''+=. 因此,()y x 满足下述一阶微分方程为 x e x y y 222-=+'.由一阶线性微分方程()()dyP x y Q x dx+=通解公式:()()()()P x dx P x dx f x e C Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ 这里()()222,x P x Q x x e -= =,代入上式得:2222()dx dxx y e x e e dx C --⎰⎰=+⎰2222()x x x e x e e dx C --=+⎰22()xex dx C -=+⎰323xx eC -⎛⎫=+ ⎪⎝⎭(C 为任意常数). 方法2:由2()(,)xy x ef x x -=有 2(,)()x f x x e y x = (1)已知(,)f u v 满足 (,)(,)u v f u v f u v uv ''+= (2)这是一个偏微分方程,当,u x v x ==时(2)式变为212(,)(,)f x x f x x x ''+=2(,)df x x x dx= 以(1)代入,有 22(())xe y x x '=,即2222()()xxe y x e y x x '+=, 化简得 22()2()xy x y x x e -'+=,由通解公式得x dxx dx e C x C dx e e x e y 232222)31()(---+=+⎰⎰=⎰(C 为任意常数).(18)【详解】(I) 由于需求量对价格的弹性d E > 0,所以dPdQQ P E d =1005Q P =-()10051005P P P '--20P P -=-(0,20)P ∈ 20P P -; (II) 由R PQ =,得dR dP ()d PQ dP =dQ Q P dP =+(1)P dQ Q Q dP =+(1)20PQ P-=+-(1)d Q E =-要说明在什么范围内收益随价格降低反而增加,即收益为价格的减函数,0<dPdR,即证(1)01d d Q E E -<⇒>,换算成P 为120PP>-,解之得:10P >,又已知(0,20)P ∈,所以2010P >>,此时收益随价格降低反而增加.(19)【详解】当0x >时,0x -<,所以()()22()x x F x ee F x ---===,同理:当0x <时,x->,所以()()22()x xF x e e F x---===,所以()y F x=是关于y轴对称的偶函数.又2lim()lim0xx xF x e-→+∞→+∞==,2lim()lim0xx xF x e→-∞→-∞==,所以x轴与曲线()y F x=围成一无界区域,面积S可用广义积分表示.()y F x=图形如下:(I) ()S F x dx+∞-∞=⎰()F x偶函数22xe dx+∞-⎰2(2)xe d x+∞-=--⎰201xe+∞-=-= )(1tS表示矩形t x t-≤≤,0()y F x≤≤的面积,所以ttetS212)(-=,因此21()()12tS t S S t te-=-=-,(0,)t∈+∞.(II) 由于tettS2)21(2)(---=',令()0S t'=,得()S t的唯一驻点为21=t,又()S t''()22(12)tt e-'=--222448t t te e te---=+-28(1)tt e-=-,04)21(>=''eS,所以eS11)21(-=为极小值,它也是最小值.(20)【详解】已知T)1,1,1,1(--是该方程组的一个解,故可将T)1,1,1,1(--代入方程组,有110,21120,3(2)(4)41,λμλμ-+-=⎧⎪-++=⎨⎪-+++-=⎩解得μλ=.代入原方程,并对方程组的增广矩阵A施以初等行变换, 得1102112032441Aλλλλ⎛⎫⎪= ⎪⎪++⎝⎭1101(-2),(-3)0121200230224211λλλλλλ⎛⎫⎪--⎪⎪--⎝⎭u u u u u u u u u u u u u u u u r行乘分别加到,行110110(-1)012120001311 3013110121200λλλλλλλλ⎛⎫⎛⎫⨯ ⎪ ⎪--⎪ ⎪⎪ ⎪--⎝⎭⎝⎭u u u u u u u u u r u u u u u u u r2行2,3行加到行互换1102(21)013113002(21)2121λλλλλλ⎛⎫⨯- ⎪⎪ ⎪---⎝⎭u u u u u u u u u u u u u u r 行加到行 ()I 当21≠λ时,有 A 3(21)λ÷-u u u u u u u u u u u u u u r 行 1100131100211λλ⎛⎫ ⎪ ⎪ ⎪⎝⎭,故43)()(<==A r A r . 定理:设A 是m n ⨯矩阵,方程组Ax b =,则,(1)有唯一解()()r A r A n ⇔==;(2)有无穷多解()()r A r A n ⇔=<;(3)无解:()1()r A r A ⇔+=,故方程组有无穷多解.所以,该方程组有无穷多解,对应的齐次线性方程组同解方程组为1234234343020x x x x x x x x x λλ+++=⎧⎪++=⎨⎪+=⎩ 由于此方程组的系数矩阵的秩为3,则基础解系的个数为43n r -=-=1,故有1个自由未知量.选2x 为自由未知量,取21x =-,得方程组的基础解系为Tη)2,1,1,2(--=,取非齐次方程的一个特解为0(1,0,0,1)Tξ=-,故方程组的全部解为0k ηξ+(k 为任意常数).当21=λ时,有 11110220131100000A ⎛⎫ ⎪⎪→ ⎪ ⎪⎪⎝⎭, 可知,42)()(<==A r A r ,所以该方程组有无穷多解,对应的齐次线性方程组的同解方程组为12342341102230x x x x x x x ⎧+++=⎪⎨⎪++=⎩ 则基础解系的个数为42n r -=-=2,故有2个自由未知量.选34,x x 为自由未知量,将两组值:(1,0),(0,2)代入,得方程组的基础解系为Tη)0,1,3,1(1-=,Tη)2,0,2,1(2--=,取非齐次方程的一个特解为0(1,0,0,1)Tξ=-,故方程组的全部解为0112212(1,0,0,1)(1,3,1,0)(1,2,0,2)T T T k k k k ξξηη=++=-+-+--(21,k k 为任意常数).()II 当21≠λ时,方程组的通解为 0(1,0,0,1)(2,1,1,2)(21,,,21)T T T k k k k k k ξξη=+=-+--=---+若32x x =,即k k =-得0k =,故原方程组满足条件32x x =的全部解为(1,0,0,1)T-.当21=λ时,方程组的通解为 0112212(1,0,0,1)(1,3,1,0)(1,2,0,2)T T T k k k k ξξηη=++=-+-+--=121212(1,32,,21)Tk k k k k k ----+若32x x =,即 12132k k k --=,得212k k =-,代入通解,得满足条件32x x =的全部解为1(3,1,14)(1,0,0,1)T Tk -+-(21)【分析】由矩阵A 的秩为2, 立即可得A 的另一特征值为0. 再由实对称矩阵不同特征值所对应的特征向量正交可得相应的特征向量, 此时矩阵A 也立即可得.【详解】()I A 的秩为2,于是0||=A ,所以|0|0E A A ⋅-==,因此A 的另一特征值03=λ.特征值的性质:若i λ是矩阵A 的k 重特征值,则矩阵A 属于的线性无关的特征向量的个数不超过k 个又621==λλ是A 的二重特征值,故A 的属于特征值6的线性无关的特征向量个数2≤. 因此123,,ααα必线性相关.由题设知T α)0,1,1(1=,T α)1,1,2(2=为A 的属于特征值6的线性无关的两个特征向量.定理:实对称矩阵对应与不同特征值的特征向量是正交的.设03=λ所对应的特征向量为Tx x x α),,(321=,所以,01=ααT,02=ααT,即⎩⎨⎧=++=+,02,032121x x x x x则基础解系的个数为32n r -=-=1,故有1个自由未知量. 选2x 为自由未知量,取21x =得方程组的基础解系为Tα)1,1,1(-=,故A 的属于特征值03=λ全部特征向量为T k αk )1,1,1(-= (k 为任意不为零的常数).()II 令矩阵),,(21αααP =,求1P -121100111010011001-⎛⎫ ⎪ ⎪ ⎪⎝⎭M M M 1211001(1)2012110011001-⎛⎫ ⎪⨯--- ⎪ ⎪⎝⎭MM u u u u u u u u u u u u u u u u u u u r M 行加到行 12110012012110003111-⎛⎫ ⎪-- ⎪ ⎪-⎝⎭M M u u u u u u u u u u u u r M 行加到行1211000121100011/31/31/3-⎛⎫ ⎪÷-- ⎪ ⎪-⎝⎭M M u u u u u u u r M 3行3 1211000101/31/32/30011/31/31/3-⎛⎫ ⎪⨯--- ⎪⎪-⎝⎭M M u u u u u u u u u u u u u u u u r M 3行(-2)+2行10001120101/31/32/30011/31/31/3-⎛⎫ ⎪⨯--- ⎪ ⎪-⎝⎭M Mu u u u u u u u u u u u u u u u u u u u u u u u u u u u u r M 3行,2行依次加到1行, 1000112(1)0101/31/32/30011/31/31/3-⎛⎫ ⎪⨯-- ⎪ ⎪-⎝⎭M M u u u u u u u u u u r M 行则 1P -=011112333111333⎛⎫ ⎪- ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭,⎪⎪⎪⎭⎫ ⎝⎛=-0661AP P ,所以 1066-⎪⎪⎪⎭⎫⎝⎛=P P A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=3131313231311100661********⎪⎪⎪⎭⎫ ⎝⎛--=422242224.(22)【分析】本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意。
命题方式: 教研组命题佛山科学技术学院2004—2005学年第二学期 《高等数学》(经济类)课程期末考试试题(A 卷)专业、班级: 姓名: 学号:一、单项选择题:(每小题3分,共15分. 在每小题给出的选项中,只有一项是符合题目要求的,把所选项前的字母填在该题括号内) 1.下列积分⑴ ⎰50231+x dxx , ⑵⎰11-2-1x xdx, ⑶⎰402235-)(/x xdx, ⑷⎰1ee xx dx/ln中,可直接使用牛顿——莱不尼兹公式的有 ( )A . ⑴B . ⑴⑶C . ⑴⑷D . ⑴⑵⑶⑷2.下面叙述中⑴ 发散级数加括号后所成的级数一定发散;⑵ 发散的正项级数加括号后所成的级数一定发散; ⑶ 交换级数的项的次序不会影响级数的敛散性,正确的有 ( ) A . ⑴ B . ⑵ C . ⑶ D . ⑵⑶3.设∑∞1=n n u 为任意项级数,且∑∞1=n n u || 发散,则 ( )A . 原级数绝对收敛B . 原级数发散C . 原级数敛散性不定D . 原级数条件收敛 4.设 ⎰⎰2=Ddxdy I ,其中}|),({4≤+≤1=22y x y x D ,则=I ( ) A . π B . π2 C . π6 D . π15 5.曲线3=x y 与直线2=x 、0=y 所围成的图形绕y 轴旋转产生立体的体积是( ) A . π7128 B . π596 C . π564D . π32二、填空题:(每小题3分,共12分.) 1.幂级数∑∞1=n nnnx 的收敛区间为 .2.二元函数22---4=y x y x z )(在点( , )处取得极 值 .3.交换二次积分⎰⎰2-21y ydx y x f dy ),(的次序得.共6页第1页4.微分方程 0=3+'4+''y y y 满足初始条件 2=0=x y,6='0=x y 的特解为.三、解答题(每小题6分,共12分):1.设y z z x ln =确定函数),(y x f z =,求xz∂∂.2.设 v e z u sin =,xy u =,y x v +=,求xz∂∂.四、解答题(7分): 计算⎰∞+0-dx e x .共6页第2页五、解答题(7分):试判断下面级数的敛散性:∑∞1=2⋅3nnnn.六、解答题(7分):级数∑∞1=1-1 1-nnn)( 是否收敛?若收敛,指出是条件收敛还是绝对收敛.共6页第3页七、解答题(7分):求微分方程x y y ='-''的通解.八、解答题(7分):求下面微分方程满足初始条件的特解:0=+1-+1dy xy dx y x,0=0=x y.共6页第4页九、解答题(7分):将函数2--=2x x xx f )( 展成 x 的幂级数,并确定其收敛区间.十、解答题(7分): 计算二重积分⎰⎰Dxy d xe σ,其中},|),({1≤≤01≤≤0=y x y x D .共6页第5页十一、解答题(7分):计算二重积分⎰⎰Dxdxdy ,其中D 是由直线 x y = 和圆 1=1-+22)(y x 所围成且在直线x y = 下方的平面区域.十二、解答题(5分):设可微函数)(x y 满足⎰-+=xx dt t y e x y )()(,求)(x y .共6页第6页。
一、填空题(1)【答案】 y =x −1【详解】方法 1:因为直线 x +y =1的斜率k 1 − =1,所以与其垂直的直线的斜率k 2 满足121k k =-,所以21k -=-,即21k =,曲线l n y x =上与直线1=+y x 垂直的切线方程的斜率为1,即11)(ln =='='xx y ,得1x =,把1x =代入l n y x =,得切点坐标为)0,1(,根据点斜式公式得所求切线方程为:)1(10-⋅=-x y ,即1-=x y 方法2:本题也可先设切点为)l n ,(00x x ,曲线l n y x =过此切点的导数为11=='=x y x x ,得10=x ,所以切点为()00(,ln )1,0x x =,由此可知所求切线方程为)1(10-⋅=-x y ,即1-=x y .(2)【答案】2)(ln 21x 【详解】先求出)(x f '的表达式,再积分即可.方法1:令t e x=,则t x l n =,1xet -=,于是有t t t f ln )(=',即.ln )(xx x f ='两边积分得2ln 1()ln ln (ln )2xf x dx xd x x C x ===+⎰⎰.利用初始条件(1)0f =,代入上式:21(1)(ln1)02f C C =+==,即0C =,故所求函数为()f x =2)(ln 21x .方法2:由l n xx e =,所以xx x ee f -=')(l n ln xx xx e e ee-=⋅=,所以.ln )(x x x f ='下同.(3)【答案】23【详解】利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分.2004 年全国硕士研究生入学统一考试数学一试题解析L 为正向圆周222=+y x 在第一象限中的部分,用参数式可表示为.20:,s in 2,cos 2πθθθ→⎩⎨⎧==y x 于是2Lx dy ydx -=⎰202cos 2sin 22sin 2cos d d πθθθθ⎡⎤-⎣⎦⎰20[2cos 2cos 22sin 2sin ]d πθθθθθ=⋅+⋅⎰()22222220[2cos 4sin ][2cos sin 2sin ]d d ππθθθθθθθ=+=++⎰⎰222220[22sin ]22sin d d d πππθθθθθ=+=+⎰⎰⎰()220021cos 2d ππθθθ=+-⎰222000131cos 22sin 2222d πππππθθθθ=+-=-⎰()3133sin sin 002222ππππ=--=-=(4)【答案】221x c x c y +=【详解】欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可.令te x =,有1ln ,dt t x dx x ==,则1dy dy dt dy dx dt dx x dt=⋅=,221d y d dy dx dx x dt ⎛⎫= ⎪⎝⎭()211dy d dy d uv vdu udv x dt x dx dt ⎛⎫=+ -+ ⎪⎝⎭211dy d dy dt x dt x dt dt dx ⎛⎫=-+⋅⎪⎝⎭2222222111dy d y d y dy x dt x dt x dt dt ⎛⎫=-+=- ⎪⎝⎭代入原方程:222211420d y dy dyx x y x dt dt x dt⎛⎫⋅-+⋅+= ⎪⎝⎭,整理得02322=++y dt dy dt y d ,此式为二阶齐次线性微分方程,对应的特征方程为2320r r ++=,所以特征根为:121,2r r =- =- ,12r r ≠ ,所以02322=++y dt dydty d 的通解为1221212r t r t t ty c e c e c e c e --=+=+又因为te x =,所以2211,tt ee x x --= =,代入上式得212122.t t c cy c e c e x x--=+=+(5)【答案】91【详解】方法1:已知等式两边同时右乘A ,得**2ABA A BA A A =+,由伴随矩阵的运算规律:**A A AA A E ==,有2A B A B A A =+,而210120001A =3321(1)12+=-2211=⨯-⨯3=,于是有A B A B +=63,移项、合并有A B E A =-)63(,再两边取行列式,由方阵乘积的行列式的性质:矩阵乘积的行列式等于矩阵行列式的积,有(36)363A E B A E B A -=-==,而36A E -21010031206010001001⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦630600030360060300003006003⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦3303(1)(3)(3)3330+=--=-⨯⨯27=,故所求行列式为B 33627A A E ==-19=方法2:由题设条件**2ABA BA E =+,得**2ABA BA -=*(2)A E BA E-=由方阵乘积行的列式的性质:矩阵乘积的行列式等于矩阵行列式的积,故两边取行列式,有**(2)21A E BA A EB A E -=-==其中210120001A =3321(1)12+=-2211=⨯-⨯3=;由伴随矩阵行列式的公式:若A 是n 阶矩阵,则1n A A-*=.所以,312A A A -*===9;又0102100001A E -=1210(1)01+=-=1.故1192B A E A*==-.(6)【答案】e1【详解】本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.指数分布的概率密度为,0()00x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若,其方差21λ=DX .于是,由一维概率计算公式,{}()bX aP a X b f x dx ≤≤=⎰,有}{D X X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=11xe eλλ+∞--=二、选择题(7)【答案】(B)【详解】方法1:202200tan tan 2lim limlim 0cos cos x xx x x tdt x xxt dtβα+++→→→⋅= =⎰⎰洛必达,则β是α的高阶无穷小,根据题设,排在后面的是前一个的高阶无穷小,所以可排除(C),(D)选项,又23230001sin sin 2lim lim lim 2tan tan xx x x x x t dtx x xtdtγβ+++→→→⋅= ⎰⎰洛必达201lim4x x x +→=∞等价无穷小替换,可见γ是比β低阶的无穷小量,故应选(B).方法2:用kx (当0x →时)去比较.221000cos cos limlimlim ,xkkk x x x t dt x xxkxα+++-→→→=⎰洛欲使上式极限存在但不为0,应取1k =,有220lim cos cos lim lim 1lim x x x x t txxxα++++→→→→===,所以(当+→0x 时)α与x 同阶.211300000tan tan 222lim limlim lim lim xk k k k k x x x x x tdtx x x x x x kx kx kx β+++++---→→→→→⋅⋅===⎰洛欲使上式极限存在但不为0,应取3k =,有3320002tan 2tan 2lim lim lim 333x x x x x x x x β+++-→→→===,所以(当+→0x 时)β与3x 同阶.31313222211100000sin sin lim lim lim lim lim ,222xk kk k k x x x x x t dtx x x x xx x kx kx kx γ+++++-----→→→→→⋅⋅===⎰洛欲使上式极限存在但不为0,应取2k =,有221001lim lim 224x x xx x γ++-→→==⋅,所以(当+→0x 时)γ与2x 同阶.因此,后面一个是前面一个的高阶小的次序是,,αγβ,选(B).(8)【答案】(C)【详解】函数()f x 只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B).由导数的定义,知0)0()(lim)0(0>-='→xf x f f x 根据极限的保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f .即当)0,(δ-∈x 时,0x <,有()(0)f x f <;而当),0(δ∈x 时,0x >有()(0)f x f >.(9)【答案】(B)【详解】对于敛散性的判定问题,若不便直接推证,往往可通过反例排除找到正确选项.方法1:排除法.取()()11ln 1n a n n =++,则n n na ∞→lim =0,又()()1111ln 11pn p n n p ∞= >⎧⎨++ ≤⎩∑收敛,当发散,当,所以()()1111ln 1n n n a n n ∞∞===++∑∑发散,排除A ,D ;又取n n a n 1=,因为p 级数1111p n p n p ∞= >⎧⎨ ≤⎩∑收敛,当发散,当,则级数111n n n a n n ∞∞===∑∑收敛,但221lim lim lim n n n n n a n n n n→∞→∞→∞=⋅==∞,排除(C),故应选(B).方法2:证明(B)正确.l im 0n n na λ→∞=≠,即l im 1nn a nλ→∞=.因为11n n∞=∑发散,由比较判别法的极限形式知,1nn a∞=∑也发散,故应选(B)..(10)【答案】(B)【详解】在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x :⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f 否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.方法1:交换积分次序,使得只有外面这道积分限中才有t ,其他地方不出现t由⎰⎰=t tydx x f dy t F 1)()(知:1y x ty t <<⎧⎨<<⎩,交换积分次序11x t y x <<⎧⎨<<⎩,得⎰⎰=t tydx x f dy t F 1)()(=⎰⎰⎰-=t x tdxx x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有)2()2(f F =',故应选(B).方法2:设()()x f x 'Φ=,于是1()()t t yF t dy f x dx =⎰⎰11()()t t t tyydy x dx dy d x '=Φ=Φ⎰⎰⎰⎰1[()()]t t y dy =Φ-Φ⎰1()(1)()tt t y dy=Φ--Φ⎰所以()()(1)()()()(1),F t t t t t f t t ''=Φ-+Φ-Φ=-所以(2)(2)F f '=,选(B).(11)【答案】(D)【详解】由题设,将A 的第1列与第2列交换,即12010100001AE A B ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,将B 的第2列加到第3列,即100010100011011100011100.001001001001B A A AQ ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦故011100001Q ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,应选(D).(12)【答案】(A)【详解】方法1:由矩阵秩的重要公式:若A 为n m ⨯矩阵,B 为n p ⨯矩阵,如果0A B =,则()()r A r B n+≤设A 为n m ⨯矩阵,B 为s n ⨯矩阵,由0A B =知,()()r A r B n +≤,其中n 是矩阵A 的列数,也是B 的行数因A 为非零矩阵,故()1r A ≥,因()()r A r B n +≤,从而()1r B n n ≤-<,由向量组线性相关的充分必要条件向量组的秩小于向量的个数,知B 的行向量组线性相关.因B 为非零矩阵,故()1r B ≥,因()()r A r B n +≤,从而()1r A n n ≤-<,由向量组线性相关的充分必要条件向量组的秩小于向量的个数,知A 的列向量组线性相关.故应选(A).方法2:设A 为n m ⨯矩阵,B 为s n ⨯矩阵,将B 按列分块,由0A B =得,[]12,,,0,0,1,2,,.s i AB A A i s ββββ==== 因B 是非零矩阵,故存在0i β≠,使得0i A β=.即齐次线性方程组0A x =有非零解.由齐次线性方程组0A x =有非零解的充要条件()r A n <,知()r A n <.所以A 的列向量组线性相关.又()0T T T AB B A ==,将TA 按列分块,得12[,,,]0,0,1,2,,.T T T T T TT T m i B A B B i m αααα==== 因A 是非零矩阵,故存在0T i α≠,使得0TT i Bα=,即齐次线性方程组0Bx =有非零解.由齐次线性方程组0Bx =有非零解的充要条件,知TB 的列向量组线性相关,由TB 是由B 行列互换得到的,从而B 的行向量组线性相关,故应选(A).方法3:设(),i j m n A a ⨯=()i j n s B b ⨯=,将A 按列分块,记()12n A A A A =由0A B =⇒()11121212221212s s n n n ns b b b b bb A A A b b b ⎛⎫⎪⎪ ⎪⋅⋅⋅⎪⎝⎭()111111,,0n n s ns n b A b A b A b A =++++= (1)由于0B ≠,所以至少有一个0i j b ≠(1,1i n j s ≤≤≤≤),又由(1)知,11220j j i j i nj n b A b A b A b A +++++= ,所以12,,,m A A A 线性相关.即A 的列向量组线性相关.(向量组线性相关的定义:如果对m 个向量12,,,nm R ααα∈ ,有m 个不全为零的数12,,,m k k k R ∈,使11220m m k k k ααα++=成立,则称12,,,m ααα 线性相关.)又将B 按行分块,记12n B BB B ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,同样,0A B =⇒11121121222212n n m m mn n a a a B a a a B a a a B ⎛⎫⎛⎫⎪⎪⎪⎪ ⎪⎪⋅⋅⋅⎪⎪⎝⎭⎝⎭ 111122121122221122n n n n m m mn n a B a B a B a B a B a B a B a B a B +++⎛⎫⎪+++ ⎪=⎪ ⎪ ⎪+++⎝⎭ 0=由于0A ≠,则至少存在一个0i j a ≠(1,1i m j n ≤≤≤≤),使11220i i i j j in n a B a B a B a B ++++= ,由向量组线性相关的定义知,12,,,m B B B 线性相关,即B 的行向量组线性相关,故应选(A).方法4:用排除法.取满足题设条件的,A B .取001000,10010001A B ⎡⎤⎡⎤⎢⎥=≠=≠⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,有00100100,10001AB ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A 的行向量组,列向量组均线性相关,但B 的列向量组线性无关,故(B),(D)不成立.又取110100,00000100A B ⎡⎤⎡⎤⎢⎥=≠=≠⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,有1101000000100AB ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,A 的行向量组线性无关,B 的列向量组线性相关,故(C)不成立.由排除法知应选(A).(13)【答案】C【详解】利用正态分布概率密度函数图形的对称性,对任何0x >有{}{}{}12P X x P X x P X x >=<-=>.或直接利用图形求解.方法1:由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有21}{α-=≥x X P ,可见根据分位点的定义有21α-=u x ,故应选(C).方法2:Oxy()f x {}P X u αα>=图1图2如图1所示题设条件.图2显示中间阴影部分面积α,{}P X x α<=.两端各余面积12α-,所以12{}P X u αα-<=,答案应选(C).(14)【答案】A.【详解】由于随机变量)1(,,,21>n X X X n 独立同分布,所以必有:2, (,)0, i j i jCov X X i jσ⎧==⎨≠⎩又222111()n n ni i i i i i i i D a X a D X a σ===⎛⎫== ⎪⎝⎭∑∑∑Oxy{}P X x α<=12α-()f x下面求1(,)Cov X Y 和1()D X Y +.而11,ni i Y X n ==∑故本题的关键是将Y 中的1X 分离出来,再用独立性来计算.对于选项(A):1111112111(,)(,)(,)(,)n n i i i i Cov X Y Cov X X Cov X X Cov X X n n n ====+∑∑11DX n=21n σ=所以(A)对,(B)不对.为了熟悉这类问题的快速、正确计算.可以看本题(C),(D)选项.因为X 与Y 独立时,有()()()D X Y D X D Y ±=+.所以,这两个选项的方差也可直接计算得到:22211222111(1)1()()n n n n D X Y D X X X n n n n nσσ++-+=+++=+ =222233σσn n n n n +=+,222222111)1()111()(σσnn n n X n X n X n n D Y X D n -+-=----=- =.222222σσn n n n n -=-所以本题选(A)三、解答题(15)【详解】根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明.方法1:因为函数()2l n f x x =在()2[,],a b e e ⊂上连续,且在(),a b 内可导,所以满足拉格朗日中值定理的条件,对函数()2ln f x x =在[,]a b 上应用拉格朗日中值定理,得()()()22222ln ln ln ln ,b a b a b a e a b e ξξξξ'-=-=- <<<<下证:22ln 4eξξ>.设t t t ln )(=ϕ,则2ln 1)(ttt -='ϕ,当t e >时,1ln 1ln 0t e -<-=,即,0)(<'t ϕ所以)(t ϕ单调减少,又因为2e ξ<,所以)()(2e ϕξϕ>,即2222ln ln e e e =>ξξ,得22ln 4eξξ>故)(4ln ln 222a b ea b ->-.方法2:利用单调性,设x ex x 224ln )(-=ϕ,证()x ϕ在区间()2,e e 内严格单调增即可.24ln 2)(e x x x -='ϕ,(222222ln 444()20e e e e e eϕ'=-=-=,)2ln 12)(x x x -=''ϕ,当x e >时,1ln 1ln 0x e -<-=,,0)(<''x ϕ故)(x ϕ'单调减少,从而当2e x e <<时,2()()0x e ϕϕ''>=,即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即a e a b e b 22224ln 4ln ->-,故)(4ln ln 222a b ea b ->-.方法3:设2224()ln ln ()x x a x a eϕ=---,则2ln 4()2x x x e ϕ'=-,21ln ()2x x x ϕ-''=,⇒x e >时,1ln 1ln 0x e -<-=,得()0x ϕ''<,⇒()x ϕ'在2(,)e e 上单调减少,从而当2e x e <<时,22244()()0x e e eϕϕ''>=-=,⇒()x ϕ在2(,)e e 上单调增加.从而当2e a x b e <<≤<时,()()0x a ϕϕ>=.⇒()0b ϕ>,即2224ln ln ()b a b a e ->-.(16)【详解】本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.方法1:由题设,飞机质量9000m kg =,着陆时的水平速度h k m v /7000=.从飞机接触跑道开始计时,设t 时刻飞机的滑行距离为()x t ,速度为()v t ,则0)0(,)0(0==x v v .根据牛顿第二定律,得kv dt dv m -=.又dx dv v dt dx dx dv dt dv =⋅=.由以上两式得dv k m dx -=,积分得.)(C v kmt x +-=由于0)0(,)0(0==x v v ,所以0(0)0.mx v C k=-+=故得0v k m C =,从而)).(()(0t v v kmt x -=当0)(→t v 时,).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km.方法2:根据牛顿第二定律,得kv dtdvm-=,分离变量:dv k dt v m =-,两端积分得:1ln kv t C m=-+,通解:t mk C ev -=,代入初始条件00v vt ==,解得0v C =,故.)(0t mk ev t v -=飞机在跑道上滑行得距离相当于滑行到0v →,对应地t →+∞.于是由d x vdt =,有00() 1.05().k k t t mmmv mv x v t dt v edt e km kk+∞--+∞+∞===-==⎰⎰或由()0kt mdx v t v e dt-==,知)1()(000--==--⎰t m kt t m ke m kv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→方法3:由kv dt dv m -=,dx v dt =,化为x 对t 的求导,得dt dxk dtx d m -=22,变形为022=+dtdxm k dt x d ,0(0)(0),(0)0v x v x '===其特征方程为02=+λλm k ,解之得mk-==21,0λλ,故.21t m ke C C x -+=由2000000,kt m t t t t kC dxx v e v dt m-=======-=,得,021km v C C =-=于是).1()(0t m k e kmv t x --=当+∞→t 时,).(05.1)(0km k mv t x =→所以,飞机滑行的最长距离为1.05km .(17)【详解】这是常规题,加、减曲面片高斯公式法,转换投影法,逐个投影法都可用.方法1:加、减曲面片高斯公式.取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdyzdzdx y dydz x I ⎰⎰∑+∑-++=1)1(322233133212223(1)x dydz y dzdx z dxdy I I ∑-++-=-⎰⎰由高斯公式:设空间闭区域Ω是由分段光滑的闭曲面∑所围成,函数()()(),,,,,,,,P x y z Q x y z R x y z 在Ω上具有一阶连续偏导数,则有P Q R Pdydz Qdzdx Rdxd y dv x y z ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 这里3322,2,3(1)P x Q y R z = == -,2226,6,6P QR x y z x y z∂∂∂===∂∂∂,所以2216()I x y z dvΩ=++⎰⎰⎰利用柱面坐标:c os sin ,01,02,x r y r r dv rdrd dz z z θθθπθ=⎧⎪= ≤≤ ≤≤ =⎨⎪=⎩,有:2216()I x y z dxdydz Ω=++⎰⎰⎰=r dzr z dr d r )(620101022⎰⎰⎰-+πθ()()221221123200011212122r r z r r z dr rr r drππ--⎛⎫=+=+- ⎪⎝⎭⎰⎰()13246011124346r r r π⎛⎫- ⎪=-⋅+- ⎪⎝⎭11226ππ=⋅=记D 为1∑在x oy 平面上的投影域(){}22,1D x y xy =+≤,则0z =,0d z =,又1∑为220(1)z x y =+≤的下侧,从而:()13322223(1)301DI x dydz y dzdx z dxdy dxdy ∑=++-=--⎰⎰⎰⎰33Ddxdy π==⎰⎰(其中Ddxdy ⎰⎰为半径为1圆的面积,所以11Ddxdy ππ=⋅=⎰⎰)故1223.I I I πππ=-=-=-方法2:用转换投影法:若(),z z x y =,z 对,x y 具有一阶连续偏导数,则,z zdzdx dxdy dydz dxdy x y∂∂=-=-∂∂.曲面22221:1,(1),2,2z zz x y x y x y x y∂∂=--+≤=-=-∂∂∑,由转换投影公式332223(1)I x dydz y dzdx z dxdy∑=++-⎰⎰332[2()2()3(1)]z zx y z dxdy x y∑∂∂=-+-+-∂∂⎰⎰44222[443(1)3]Dx y x y dxdy=++---⎰⎰利用极坐标变换:c os ,01,02,sin x r r dxdy rdrd y r θθπθθ=⎧ ≤≤ ≤≤ =⎨=⎩,所以214444220[4cos 4sin 3(1)3]I d r r r rdrπθθθ=++--⎰⎰215454530[4cos 4sin 3(2)]d r r r r drπθθθ=++-⎰⎰24404413(cos sin )6622d πθθθ=++-⎰()2222222004cos sin 2cos sin 6d d ππθθθθθθ⎡⎤=+--⎢⎥⎣⎦⎰⎰2220412cos sin 26d πθθθπ⎡⎤=--⎣⎦⎰22220041cos sin 2263d d ππθθθθπ=--⎰⎰()20411cos 4236d ππθθπ=---⎰22004112cos 4sin 433624d πππππθθπθ=---=--⎰0ππ=--=-或244044(cos sin )66d πθθθ+⎰直接利用公式44220031cos sin 422d d πππθθθθ==⋅⋅⎰⎰及224444220cos 4cos 4sin sin d d d d ππππθθθθθθθθ===⎰⎰⎰⎰则244044431(cos sin )24666422d ππθθθπ+=⋅⋅⋅⋅⋅=⎰所以,原式2πππ=-=-(18)【分析】利用零点定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定.零点定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b ⋅<,那么在开区间(),a b 内至少存在一点ξ,使()0f ξ=;单调性:设函数()f x 在闭区间[],a b 上连续,在(),a b 内可导,如果在(),a b 内()0f x '>,那么函数()f x 在[],a b 上单调增加;比较审敛法:设1nn u∞=∑和1nn v∞=∑都是正项级数,且n n u v ≤,若级数1nn v∞=∑收敛,则级数1nn u∞=∑收敛.【证明】记()1nn f x x nx =+-,则()n f x 是连续函数,由01)0(<-=n f ,0)1(>=n f n ,对照连续函数的零点定理知,方程01=-+nx x n 存在正实数根).1,0(∈n x 当0x >时,0)(1>+='-n nxx f n n ,可见)(x f n 在),0[+∞上单调增加,故方程01=-+nx x n 存在惟一正实数根.n x 由01=-+nx x n与0>n x 知nn x x nn n 110<-=<,故当1>α时,函数y x α=单调增,所以αα)1(0n x n <<.而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.(19)【分析】根据极值点存在的充分条件:设函数(,)z f x y =在点()00,x y 的某领域内连续且有一阶及二阶连续偏导数,又0000(,)0,(,)0x y f x y f x y = =,令000000(,),(,),(,)xx xy yy f x y A f x y B f x y C = = =,则(,)z f x y =在()00,x y 处是否取得极值的条件如下:(1)20A C B ->时具有极值,且当0A <时有极大值,当0A >时有极小值;(2)20A C B -<时没有极值;(3)20A C B -=时,可能有极值,也可能没有极值,需另外讨论.所以对照极值点存在的充分性定理,先求出一阶偏导,再令其为零确定极值点,接下来求函数二阶偏导,确定是极大值还是极小值,并求出相应的极值.求二元隐函数的极值与求二元显函数的极值的有关定理是一样,差异仅在于求驻点及极值的充分条件时,用到隐函数求偏导数.【详解】因为0182106222=+--+-z y z y xy x ,所以两边对x 求导:02262=∂∂-∂∂--xz z x z yy x ,①两边对y 求导:0222206=∂∂-∂∂--+-yzz y z yz y x .②根据极值点存在的充分条件,令00zx z y∂⎧=⎪∂⎪⎨∂⎪=∂⎪⎩,得303100x y x y z -=⎧⎨-+-=⎩,故⎩⎨⎧==.,3y z y x 将上式代入0182106222=+--+-z y z y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 对照极值点存在的充分条件,为判别两点是否为极值点,再①分别对,x y 求偏导数,②分别对,x y 求偏导数①式对x 求导:02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,②式对x 求导:,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--y x zz x z y z y x z y x z ①式对y 求导:,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx zz x z y z y x z y x z ②式对y 求导:02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,将⎪⎩⎪⎨⎧===3,3,9z y x ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0y z xz代入,于是61)3,3,9(22=∂∂=x z A ,21)3,3,9(2-=∂∂∂=yx z B ,35)3,3,9(22=∂∂=yz C ,故03612>=-B AC ,又061>=A ,从而点(9,3)是(,)z x y 的极小值点,极小值为(9,3)3z =.类似地,将⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0y z x z 代入,于是22(9,3,3)16z A x ---∂==-∂,2(9,3,3)12zB x y---∂==∂∂,22(9,3,3)53z C y ---∂==-∂,可知03612>=-B AC ,又061<-=A ,从而点(-9,-3)是(,)z x y 的极大值点,极大值为(9,3)3z --=-.(20)【详解】方法1:对方程组的系数矩阵A 作初等行变换,有11112222aa A n n n n a +⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥+⎣⎦1()(2,)i i i n ⨯-+= 行行111120000a a a B na a +⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦对||B 是否为零进行讨论:当0a =时,()1r A n =<,由齐次方程组有非零解的判别定理:设A 是m n ⨯矩阵,齐次方程组0A x =有非零解的充要条件是()r A n <.故此方程组有非零解,把0a =代入原方程组,得其同解方程组为,021=+++n x x x ()*此时,()1r A =,故方程组有1n r n -=-个自由未知量.选23,,,n x x x 为自由未知量,将他们的1n -组值(1,0,,0),(0,1,,0),,(0,0,,1) 分别代入()*式,得基础解系,)0,,0,1,1(1T -=η,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有11112100001a B n +⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥-⎣⎦ (1)12,3i i n ⨯-+= 行()(1)00022100001n n a n +⎡⎤+⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦ ,可知2)1(+-=n n a 时,n n A r <-=1)(,由齐次方程组有非零解的判别定理,知方程组也有非零解,把2)1(+-=n n a 代入原方程组,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x 此时,()1r A n =-,故方程组有(1)1n r n n -=--=个自由未知量.选2x 为自由未量,取21x =,由此得基础解系为Tn ),,2,1( =η,于是方程组的通解为ηk x =,其中k 为任意常数.方法2:计算方程组的系数行列式:11112222aa A n n n n a +⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥+⎣⎦00011110002222000a a a n n n n ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦矩阵加法a E =+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111aE Q ∆ +,下面求矩阵Q 的特征值:11112222E Q n n n n λλλλ---------=---- 11112001(-)(2,3,,)00i i i n n λλλλλ-----⨯+=- 行行(1)1112()1000(2,3,,)000n n i i i n λλλ+----⨯+=列列1(1)2n n n λλ-+⎛⎫=- ⎪⎝⎭则Q 的特征值2)1(,0,,0+n n ,由性质:若A x x λ=,则()(),m m kA x k x A x x λλ==,因此对任意多项式()f x ,()()f A x f x λ=,即()f λ是()f A 的特征值.故,A 的特征值为(1),,,2n n a a a ++,由特征值的乘积等于矩阵行列式的值,得A 行列式.)2)1((1-++=n a n n a A 由齐次方程组有非零解的判别定理:设A 是n 阶矩阵,齐次方程组0Ax =有非零解的充要条件是0=A .可知,当0=A ,即0a =或2)1(+-=n n a 时,方程组有非零解.当0a =时,对系数矩阵A 作初等行变换,有11112222A n n n n ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 1)(2,)i i i n ⨯-+= 行(行1111000000000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,.故方程组的同解方程组为,021=+++n x x x 此时,()1r A =,故方程组有1n r n -=-个自由未知量.选23,,,n x x x 为自由未知量,将他们的1n -组值(1,0,,0),(0,1,,0),,(0,0,,1) 分别代入()*式,由此得基础解系为,)0,,0,1,1(1T -=η,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当2)1(+-=n n a 时,11112100001a B n +⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥-⎣⎦ (1)1(2,3)i i n ⨯-+= 行(1)00022100001n n a n +⎡⎤+⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦,即00002100001n ⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦ ,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x 此时,()1r A n =-,故方程组有(1)1n r n n -=--=个自由未知量.选2x 为自由未量,取21x =,由此得基础解系为Tn ),,2,1( =η,于是方程组的通解为ηk x =,其中k 为任意常数.(21)【详解】A 的特征多项式为12314315E A aλλλλ---=----2(2)021114315aλλλλ---⨯-+----行()行1101(2)14315a λλλ------提出行公因数1101(1)2(2)03315a λλλ-⨯-+-----行行11012(2)033015a λλλ-+-----行行33(2)15a λλλ-=----(2)[(3)(5)3(1)]a λλλ=---++2(2)(8183).a λλλ=--++已知A 有一个二重特征值,有两种情况,(1)2=λ就是二重特征值,(2)若2=λ不是二重根,则28183a λλ-++是一个完全平方(1)若2=λ是特征方程的二重根,则有,03181622=++-a 解得2a =-.由E A λ-2(2)(8183(2))λλλ=--++⨯-2(2)(812)λλλ=--+2(2)(6)0λλ=--=求得A 的特征值为2,2,6,由1232123123E A -⎡⎤⎢⎥-=-⎢⎥⎢⎥--⎣⎦1231(-1)2,000113000-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦行倍加到行行的倍加到行,知()21E A -=秩,故2=λ对应的线性无关的特征向量的个数为312n r -=-=,等于2=λ的重数.由矩阵与对角矩阵相似的充要条件:对矩阵的每个特征值,线性无关的特征向量的个数恰好等于该特征值的重根数,从而A 可相似对角化.(2)若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18316a +=,解得.32-=a 当32-=a 时,由E A λ-=22(2)(8183())3λλλ=--++⨯-2(2)(816)λλλ=--+2(2)(4)0λλ=--=知A 的特征值为2,4,4,由32341032113E A ⎡⎤⎢⎥-⎢⎥-=⎢⎥⎢⎥--⎢⎥⎣⎦1133⨯+ 行行323103000-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦知()42E A -=秩,故4=λ对应的线性无关的特征向量有321n r -=-=,不等于4=λ的重数,则由矩阵与对角矩阵相似的充要条件:对矩阵的每个特征值,线性无关的特征向量的个数恰好等于该特征值的重根数,知A 不可相似对角化.(22)【分析】本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.先确定(,)X Y 的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(,)X Y 的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】(I)由于1()()(|)12P AB P A P B A ==,所以,61)()()(==B A P AB P B P利用条件概率公式和事件间简单的运算关系,有121)(}1,1{====AB P Y X P ,61)()()(}0,1{=-====AB P A P B A P Y X P ,,121)()()(}1,0{=-====AB P B P B A P Y X P )(1)(}0,0{B A P B A P Y X P +-====21()()()3P A P B P AB =--+=(或32121611211}0,0{=---===Y X P ),故(,)X Y 的概率分布为Y X1032121161121(II),X Y 的概率分布分别为213{0}{0,1}{0,0},3124P X P X Y P X Y ====+===+=111{1}{1,1}{1,0},6124P X P X Y P X Y ====+===+=111{1}{0,1}{1,1},12126P Y P X Y P X Y ====+===+=215{0}{0,0}{1,0}.366P Y P X Y P X Y ====+===+=所以,X Y 的概率分布为X 01Y 01P4341P6561由01-分布的数学期望和方差公式,则61,41==EY EX ,1334416DX =⨯=,1566DY =⨯536=,{}{}{}()00111,1E XY P XY P XY P X Y =⋅=+⋅====112=,故241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY (23)【分析】本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.似然函数的定义:121()(,,,;)(;)nn ii L f x x x f x θθθ===∏ 【详解】X 的概率密度为11,,(;) 1.0,x f x xx βββ+⎧>⎪=⎨≤⎪⎩(I)矩估计.由数学期望的定义:1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx xx dx x x f EX ,用样本均值估计期望有E X X =,令X =-1ββ,解得1-=X Xβ,所以参数β的矩估计量为.1ˆ-=X X β其中11nii X X n ==∑(II)最大似然估计.设12,,...,n x x x 是相应于样本12,,...,n X X X 的一组观测值,则似然函数为:⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L in nni i ββββ当),,2,1(1n i x i =>时,0)(>βL ,()L β与l n ()L β在相同的β点取得最大值;所以等式两边取自然对数,得1ln ()ln (1)ln ni i L n x βββ==-+∑,两边对β求导,得∑=-=n i i x nd L d 1ln )(ln βββ,令0)(l n =ββd L d ,可得∑==ni ixn1ln β,解得β的最大似然估计值为: 1ln nii nxβ==∑。
2004年全国硕士研究生入学统一考试数学一真题、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y=lnx上与直线x y 1垂直的切线方程为(2)已知f(e x) xxe ,且f(1)=0,则f(x)=(3)设L为正向圆周x22在第一象限中的部分,则曲线积分L xdy 2ydx的值为(4)欧拉方程x2d2ydx24x d^ 2y 0(x 0)的通解为•dx(5)2 1 设矩阵A 1 2矩阵,则(6)矩阵B满足ABA*2BA E ,其中A为A的伴随矩阵,E是单位设随机变量X服从参数为的指数分布,则P{X DX} =二、选择题(本题共8小题,每小题把所选项前的字母填在题后的括号内)4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,(7)把x 0时的无穷小量X cost2dt,0 '2xtanX 30 si nt dt ,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) (B) (C) (D)(8)设函数f(x)连续,且f (0)0,则存在0,使得(A) f(x)在(0,)内单调增加.(B) f(x)在( ,0)内单调减少•(C) 对任意的x(0,)有f(x)>f(0).(D) 对任意的x(,0)有f(x)>f(0).(9)设a n为正项级数,下列结论中正确的是n 1(A) 若lim na n=0,则级数na n收敛•n 1(B)若存在非零常数,使得lim na nn ,则级数a n发散•n 1阻力与飞机的速度成正比(比例系数为k 6.0 106).问从着陆点算起,飞机滑行的最长距离是多少?t t(10) 设f(x)为连续函数,F(t) 1 dy y f(x)dx ,则F ⑵等于 (A)2f(2).(B) f(2).(C) -(2).(D) 0.[](11) 设A 是3阶方阵,将 A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C,贝U 满足AQ=C 的可逆矩阵Q 为(A) A 的列向量组线性相关, (B) A 的列向量组线性相关, (C) A 的行向量组线性相关, (D) A 的行向量组线性相关,(A) Cov( X 1,Y)2n(B) Cov(X 1,Y)2.(C)D(X 1 Y)n 2 2 (D)D(X 1Y) n 1nn(15) (本题满分 12分)设ea b e 2 ,证明ln 2 bIn 2a —2(b a)e(16) (本题满分 11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使 (C) 若级数2a n 收敛,则lim nn0.(D)若级数a n 发散,则存在非零常数n 1,使得 lim na nn0 1 00 1 00 1 0 0 1 1 (A)1 0 0 . (B)1 0 1 . (C) 1 0 0 .(D)1 0 0 1 0 1 0 0 10 1 10 0 1的任意两个非零矩阵,则必有(12)设A,B 为满足AB=OB 的行向量组线性相关B 的列向量组线性相关 B 的行向量组线性相关 B 的列向量组线性相关1),数u 满足P{X u } ,若P{X x},则x 等于(A) U_.2(B) U .1I(C) u 」. ~2-(D) U 1(14)设随机变量X 1,X 2, 0.令Y 丄 X i ,则n i 1(13)设随机变量 X 服从正态分布 N(0,1),对给定的(0,X n ( n 1)独立同分布,且其方差为飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k 6.0 106).问从着陆点算起,飞机滑行的最长距离是多少?1F(x, )1x0, x 1,x 1,注kg 表示千克,km/h 表示千米/小时. (17)(本题满分12分) 计算曲面积分I2x 3dydz 2y 3dzdx 3(z 2 1)dxdy,数 x n 收敛.n 1(20)(本题满分9分) 设有齐次线性方程组(1 a)X 1X 2X n 0, 2x 1 (2 a)X 2 2x n 0, (n 2)n% nx 2(n a)X n0,并求出其通解9分)试问a 取何值时,该方程组有非零解, (21)(本题满分33的特征方程有一个二重根,求 a 的值,并讨论5(22)(本题满分9 分)求:(I )二维随机变量(X,Y)的概率分布;(23)(本题满分9分) 设总体X 的分布函数为其中是曲面z 1(z 0)的上侧.(18)(本题满分 11 分)设有方程x nnx 10,其中 n 为正整数.证明此方程存在惟一正实根X n ,并证明当 1时,级(19)(本题满分 12 分)设z=z(x,y)是由x 2 6xy 10y 22yzz 2 18 0确定的函数,求zz(x, y)的极值点和极值.设矩阵A 11A 是否可相似对角化.设A,B 为随机事件,且P(A) 右P(BA) 3‘P (AB)-,令XA发生, 0, A 不发生;Y 1, B 发生,0, B 不发生.(II ) X 和Y 的相关系数 XY -其中未知参数1,X!,X2, ,X n为来自总体X的简单随机样本,求: (I)的矩估计量;(II)的最大似然估计量.3 022004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y=lnx 上与直线x y 1垂直的切线方程为 y x 1 .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标.1【详解】由y (Inx)1,得x=1,可见切点为(1,0),于是所求的切线方程为xy 0 1 (x 1),即 y x 1.1【评注】本题也可先设切点为 (x 0,|n x 0),曲线y=lnx 过此切点的导数为 y— 1,得x 0 1,x x 0x 0由此可知所求切线方程为 y0 1(x1),即yx1.本题比较简单,类似例题在一般教科书上均可找到xx1 2(2) 已知 f (e ) xe ,且 f(1)=0,则 f(x) = (In x).2【分析】 先求出f (X )的表达式,再积分即可.【详解】令e x t ,则x lnt ,于是有ln tr, ln xf (t),即f (x)t x 积分得f(x)In x, 1 2dx (ln x) C .利用初始条件 f(1)=0,得C=0,故所求函数为 f(x)x 2丄仲x)2. 2【评注】 本题属基础题型,已知导函数求原函数一般用不定积分223 (3)设L 为正向圆周x y 2在第一象限中的部分,则曲线积分 L xdy 2ydx 的值为 -【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分 2 2【详解】 正向圆周x y2在第一象限中的部分,可表示为x 、 2 cos , 小y -2sin ,:0222si n 2【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参于是Lxdy 2ydx o 2 [一 2 cos 2 cos2 2sin ■- 2 sin ]d9数法化为定积分计算即可【分析】欧拉方程的求解有固定方法,作变量代换x e t 化为常系数线性齐次微分方程即可【详解】令xe t ,则 dy dy dt e 电1 dydx dt dxdt x dtd 2y 1 dy 1 d 2y dt 1[d 2 x 2[dt y dy F dt ]dx 2x 2 dt x dt 2dx 代入原方程,整理得d 2y c dy2y 0,.2 3 - dtdt解此方程,得通解为y tqe c 2e2tC1C22・2x x【评注】 本题属基础题型,也可直接套用公式,令 x e t ,则欧拉方程【详解】 已知等式两边同时右乘 A ,得ABA *A 2BA *A A ,而 A 3,于是有3AB 6B A ,即(3A 6E)B A ,再两边取行列式,有3A 6E||B A 3,1而3A 6E 27,故所求行列式为 B(4)欧拉方程2d 2y x dx 24x2y 0(x 0)的通解为y 纟乌dx x x可化为2 axd 2y dx 2cy f (x),2眷貉哼cy 讪.(5)设矩阵A2 1 01 2 0,矩阵B 满足ABA * 2BA * E ,其中A *为A 的伴随矩阵, 0 0 1E 是单位矩阵,则B【分析】可先用公式A *AA E 进行化简【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵A ,一般均应先利用公式A A AA * AE 进行化简.(6)设随机变量X 服从参数为 的指数分布,则P{X , DX } = 1 .e【分析】 已知连续型随机变量 X 的分布,求其满足一定条件的概率,转化为定积分计算即可1【详解】 由题设,知DX 冷,于是一1XP{X DX} = P{X -}ie X dx【评注】本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算 二、选择题(本题共8小题,每小题 把所选项前的字母填在题后的括号内)一个的高阶无穷小,则正确的排列次序是4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,(7 )把x0时的无穷小量Xcost 2dt,2xtan 、tdt,0 ':X 30 si nt dt ,使排在后面的是前(A)(B)(C)(D)【分析】 先两两进行比较,再排出次序即可【详解】 lim — x 0 tan 一tdt lim 卫厂 x 0cost 2dt 0limtanx 2x 2cosx0,可排除 (C),(D)选项,【评注】 limx 0limx 0=-lim 4 x 0x3sint dt_0 ___________X 2 tan )t dt3 2sin x 2 ,可见 lim2x tanx是比低阶的无穷小量,故应选 (B).本题是无穷小量的比较问题,也可先将 ,,分别与x n 进行比较,再确定相互的高低次序(8)设函数f(x)连续,且f (0) 0,则存在0,使得 (A) f(x)在(0,)内单调增加. (B) f(x)在(,0)内单调减少.(C) 对任意的 x (0,)有 f(x)>f(0)(D)对任意的 x ( ,0)有 f(x)>f(0)【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除 (A),(B)选项,再利用导数的定义及极限的保号性进行分析即可•【详解】 由导数的定义,知f(0) lim f(x) f(0)0,x 0 x根据保号性,知存在 0,当x (,0) (0,)时,有f(x) f(0)x即当 x (,0)时,f(x)<f(0);而当 x (0,)时,有 f(x)>f(0).故应选(C).【评注】题设函数一点可导,一般均应联想到用导数的定义进行讨论 (9) 设 a n 为正项级数,下列结论中正确的是n 12(C)若级数a n 收敛,则limn a “0.nn 1(E)若级数n1a n 发散,则存在非零常数,使得^m na n* "]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项1 2又取a n ----------------- ,则级数a n 收敛,但lim n a “nUnn1 n【评注】 本题也可用比较判别法的极限形式,a1 lim na n lim n0,而级数发散,因此级数a n 也发散,故应选(B).n n1n 1nn 1n【分析】 先求导,再代入t=2求F (2)即可.关键是求导前应先交换积分次序,使得被积函数中不含有(A)若lim na n =0,则级数na n 收敛.n 1(B )若存在非零常数,使得lim na nn,则级数a n 发散•n 1【详解】 取a n1 nln n,则 lim na n =0,但na nn 111n ln n发散,排除(A),(D);,排除(C),故应选(B).(10) 设f(x)为连续函数,F(t) (A)2f(2). (B) f(2).t t1 dy y f(x)dx ,贝U F (2)等于(C) -(2).(D)0.变量 t.【详解 】 交换积分次序,得t t t x tF(t) 1dy y f(x)dx = 1[1 f(x)dy]dx 1 f(x)(x 1)dx于是,F (t) f(t)(t 1),从而有 F (2)f(2),故应选(B).评注】 在应用变限的积分对变量 x 求导时,应注意被积函数中不能含有变量 x: b(x)[ a(x) f(t)dt] f [b(x)]b (x) f[a(x)]a(x)a(x)否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量 x 换到积分号外或积分线上 .( 11) 设 A 是 3 阶方阵,将 A 的第 1 列与第 2 列交换得 B, 再把 B 的第 2 列加到第 3 列得 C, 则满足 AQ=C 的可逆矩阵 Q 为0 1 0 0 1 0 0 1 0 0 1 1 (A)1 0 0. (B)1 0 1. (C) 1 0 0. (D) 10 0 1 0 10 0 11 10 0 1[ D ]分析 】 本题考查初等矩阵的的概念与性质,对 A 作两次初等列变换,相当于右乘两个相应的初等 矩阵, 而 Q 即为此两个初等矩阵的乘积 详解 】由题设,有0 1 01 0 0A 1 0 0B , B 0 1 1C ,0010 0 10 1 0 10 00 1 1 于是,A 1 0 0 0 1 1A 1 0 0 C.0 0 1 0 0 10 0 1可见, 应选 (D). 评注 】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系12) 设 A,B 为满足 AB=O 的任意两个非零矩阵,则必有 (D) A 的列向量组线性相关, (E) A 的列向量组线性相关, (F)A 的行向量组线性相关, (D) A 的行向量组线性相关,【详解1】 设A 为m n 矩阵,B 为n s 矩阵,则由AB=O 知,r(A) r(B) n .又 A,B 为非零矩阵,必有 r(A)>0,r(B)>0. 可见 r(A)<n, r(B)<n, 即 A 的列向量组线性相关, B 的行向量组线 性相关,故应选 (A).【详解 2】 由 AB=O 知, B 的每一列均为 Ax=0 的解,而 B 为非零矩阵,即 Ax=0 存在非零解,可见 A 的列向量组线性相关 .B 的行向量组线性相关B 的列向量组线性相关 B 的行向量组线性相关B 的列向量组线性相关【分析 】A,B 的行列向量组是否线性相关,可从 零解进行分析讨论 .A,B 是否行(或列)满秩或 Ax=0 (Bx=0 )是否有非同理,由AB=O知,B T A T O,于是有B T的列向量组,从而B的行向量组线性相关,故应选(A).【评注】AB=O是常考关系式,一般来说,与此相关的两个结论是应记住的:1) AB=O r(A) r(B) n;2) AB=O B的每列均为Ax=0的解.(13)设随机变量X服从正态分布N(0,1),对给定的(0 1),数u满足P{X u } ,若P{X x} ,则x等于(A) u_2(B) u1 -2(C) u L~2(D) u1(A) Cov(X n Y) (B) Cov(X「Y)Cov(X1, X i) 1Cov(X1,X1) 1 Cov(X1,X i)n i 1 n n i 2【分析】此类问题的求解,可通过u的定义进行分析, 也可通过画出草图, 直观地得到结论【详解】由标准正态分布概率密度函数的对称性知,P{XP{X x} P{X x} P{X x} P{X x} 2P{X x}即有P{X x}1,可见根据定义有x2本题【评注】A,故应选(C).u相当于分位数,直观地有2(14)设随机变量X1,X2, ,X n( n 1)独立同分布,且其方差为nX i,则n i 1(C) D(X1 Y) (D)【分析】本题用n方差和协方差D(X1 Y)-n的运算性质直接计算即可,注意利用独立性有:Cov(X1,X i) 0,i 2,3, n.【详解】Cov( X1,Y)(x) (e 2)= -DX 11 2.n n本题(C),(D)两个选项的方差也可直接计算得到:如2n 3n2 nn 2 2n 22n(15) (本题满分12分)$ (b a). e【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明In 2 b In 2 a24In x ,则e【证法1】 对函数2In x 在[a,b ]上应用拉格朗日中值定理,设(t)平,则(t),当t>e 时,0, 所以(t)单调减少,从而2 (e ),即In In e~2e2~~2,e故 In 2 b In 2 a 4(b a).所以当 即当e(x) (x) x>e 时, 2 .x e 时,In x 2 -xJ In x 2 2x(x)0,4_2 , e (x)单调减少,从而当(x)单调增加.e 2时,【评注】 D(X iY) D(^X 1n-X 2 n^X n ) n(1 n)2 n 2n 1 22nD(X in 1 Y) D( X 1n 1 X n )n(n 1)2 2nn 1 22~n2o2设 e a b e ,证明 In b In ab.【证法2】(x)因此当e x e 2时,(b)(a),v 0解得C v 0,两端积分得通解 v Cek —tm,代入初始条件v即 ln 2beln 2a4 ~~2a,故In 2 b ln 2 af (b e a).【评注】 本题也可设辅助函数为(x) 2 2 42In x In a 2 (x a),e a x e 或 e(x) ln 2 b ln 2 x$(b x),e x b2e ,再用单调性进行证明即可.e(16) (本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使 飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为 k 6.0 106).问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可 【详解1】 由题设,飞机的质量 m=9000kg ,着陆时的水平速度 v 0 700km/h .从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得dvm kv . dt dv dx dx dt所以,飞机滑行的最长距离为 1.05km.dvvdx ,又史dt由以上两式得dx 积分得x(t) x(t)m .dv ,k mv k m (v0 kC. 由于v(0)V 0, x(0)0,故得C — v °,从而k当 v(t)0时, v(t)). x(t)mv °k9000 700 66.0 101.05(km).【详解2】 根据牛顿第二定律,得 dv m — dtkv ,所以dv±dt. m【详解】取1为xoy 平面上被圆x 2 y 2 1所围部分的下侧,记 为由 与1围成的空间闭区域,(17) (本题满分12分) 计算曲面积分2x 3dydz 2y 3dzdx 3(z 2 1)dxdy,其中是曲面z 1 x 2 y 2(z 0)的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直 接投影法求解即可.jkt故 v(t)v 0e m .飞机滑行的最长距离为v(t)dtmv ° ekmv ° k1.05( km).或由dr上t v °e m,知x(t)t0v 0e上tmdtItm1),故最长距离为当t时,kv ox(t)m1.05(km).【详解3】 根据牛顿第二定律,d 2x m —亏dt 2dx k , dtd 2x dt 2k dx dt其特征方程为解之得m0, 2C 2edxx0,v --t 01 t 0dtkC 2 emV 0,得C 1C 2x(t) mv 0Atm).所以, 时,x(t)mv 0 1.05(km).k飞机滑行的最长距离为1.05km.【评注】本题求飞机滑行的最长距离, 可理解为t 或v(t)0的极限值,这种条件应引起注意•由 mv 0t 0C 1 Jkt m3 3 2I 2x dydz 2y dzdx 3(z 1)dxdy13 3 22x dydz 2y dzdx 3(z 1)dxdy.1由高斯公式知3 3 22x dydz 2y dzdx 3(z 1)dxdy122 1 1 r 2 2=6 d dr (z r )rdz3322x dydz 2y dzdx 3(z1 )dxdy 3dxdy 3x 2 y 2 1故123【评注】 本题选择 1时应注意其侧与围成封闭曲面后同为外侧(或内侧),再就是在 1上直接投影积分时,应注意符号(1取下侧,与z 轴正向相反,所以取负号).(18) (本题满分11分) 设有方程x nnx 1 0,其中n 为正整数.证明此方程存在惟一正实根 x n ,并证明当 1时,级数x n 收敛.n 1【分析】利用介值定理证明存在性,利用单调性证明惟一性 .而正项级数的敛散性可用比较法判定 .【证】记 f n (x)x n nx 1.由f n (O) 1 0, f n (1) n 0,及连续函数的介值定理知,方程x n nx 10存在正实数根x n (0,1).当x>0时,f n (x) n x n 1 n 0,可见f n (x)在[0,)上单调增加,故方程x n nx 1 0存在惟一正实数根 X n ・由x n nx1 0与 X n0知1 X :11 0 X n,故当1 时,0 X n(-).n nn 而正项级数1丄收敛, 所以当1时,级数x n 收敛n 1nn 1【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要2 26( x y z)dxdydz=121[1r(1 r 2) 22、2 r 3(1 r 2)]dr1(9, 3, 3)i ,C2z2x2z2z(9, 3, 3)(9, 3, 3)基本概念清楚,应该可以轻松求证 (19) (本题满分12分)设z=z(x,y)是由x 2 6xy 10y 2 2yz z 218 0确定的函数,求z z(x, y)的极值点和极值【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然 后用二阶偏导确定是极大值还是极小值,并求出相应的极值2 2 2因为 x 6xy 10y 2yz z 18 0,所以2x 6y 2^z 2z^0,x x6x 20 y 2z 2y-^ 2z —z 0. y y故 x 3y , z y.x 9, x 9, y 3, 或 y 3, z 3z3.类似地,由【详解】—0, x —0 yx 3y 0, 3x 10y z 0,将上式代入x 26xy 10y 2 2yz z 218 0,可得由于22 2— 2(上)2x x2z2z2x2z2yx y2z2z0,202— 2二 y y2y- 2z 2y2(二)2 y22z z y 0,2所以 A—z x1 B2 z1,C2z5 (9,3,3)6,x y(9,3,3)2y(9,3,3)3,21 1 故 AC B 236,又A6z(9,3)=3.6xxx y0 ,从而点(9,3)是z(x,y)的极小值点,极小值为21 1 可知AC B 0,又A0 ,从而点(-9,-3)是z(x,y)的极大值点,极大值为366z(-9, -3)= -3.【评注】本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意 x,y,z 满足原方程•(20) (本题满分9分) 设有齐次线性方程组(1 a)x 1 X 2 X n 0, 2捲 (2 a)X 2 2x n 0, (n 2)n% nx 2(n a)X n0,试问a 取何值时,该方程组有非零解,并求出其通解【分析】本题是方程的个数与未知量的个数相同的齐次线性方程组, 可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于 n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵 A 作初等行变换,有1 a 1 1 1 1 a 1 11A2 2 a 2 2 2a aBnnnn ana 0 0 a当a=0时,r(A)=1<n ,故方程组有非零解,其同解方程组为X i X 2x n 0,由此得基础解系为1( 1,1,0,,0)T,2( 1,0,1, ,0)Tj , n 1 (1,0,0,,1)T ,于是方程组的通解为x k 1 1 k n 1 n 1,其中k 1, ,k n1为任意常数.当a 0时,对矩阵B作初等行变换, 有1 a 11 1a n(n 1)0 0 0 B2 1 0 022 1n 00 1n0 01可知an(n 2 1)时,r(A) n 1 n ,故方程组也有非零解,其同解方程组为2%X20, 3%X3,n^X n0 ,由此得基础解系为(1,2, ,n)T,于是方程组的通解为x k ,其中k为任意常数. 【详解2】方程组的系数行列式为1 a 1 12 2 a 2An n n当A 0,即a=0或a n(n 1)时,方程组有非零解2当a=0时,对系数矩阵A作初等行变换,有1 1 11 1 1112 2 220 000An n n n0 00 00故方程组的同解方程组为x1x2X n 0,由此得基础解系为1 ( 1,1,0, ,0)T,2 ( 1,0,1,,0)T,,n 1(1,0,0, ,1)T于是方程组的通解为x k1 1 k n 1 n 1 ,其中k1, , k n 1为任意常数a2卫时,对系数矩阵A作初等行变换,有1 a111 1 a 1112 A 2 a222a a00n n n n a na 00a(a 3)a n112 3E A1 4 31a 511 0 =(2) 14 31a52 (2) 0 14 3 1a522 16 18 3a 0,解得 a= -2.1 a 1 1 1 0 0 0 02 1 0 0 2 1 0 0 n 01n 01故方程组的同解方程组为2% x 2 0,3x 1 X 30,n% x 0,由此得基础解系为(1,2, ,n)T ,于是方程组的通解为x k ,其中k 为任意常数【评注】 矩阵A 的行列式 A 也可这样计算:1 a 1 1 1 1 1 11 1 1 1 1 A2 2 a 2 2 2 =aE +2 22,矩阵2 2 2 2的nnnn an n nn n n nn特征值为0,,0, n(n °,从而A 的特征值为a,a, ,a n(n 1),故行列式 A (a n(n 1))a n 1.2 2 2(21) (本题满分9分)1 23设矩阵A 1 43的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.1 a 5【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可•【详解】 A 的特征多项式为(2)( 2 8 18 3a).2是特征方程的二重根,则有323a2时,A的特征值为2, 4,4,矩阵4E-A= 103秩为2,故4对应的线性无关32113的特征向量只有一个,从而A不可相似对角化求:(I)二维随机变量(X,Y)的概率分布;(II) X和Y的相关系数XY-【分析】先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】(I) 由于P(AB) P(A)P(BA) 2,P(B)P(AB) 1 P(AB) 6'所以,P{X1,Y1}1 P(AB)—,12P{X1,Y0}P(AB) P(A)P(AB)1 6P{X0,Y1}P(AB) P(B)P(AB)1 12,1 当a= -2时,A的特征值为2,2,6,矩阵2E-A=12 32 3的秩为1,故2 32对应的线性无关的特征向量有两个,从而A可相似对角化.若2不是特征方程的二重根,则18 3a为完全平方,从而18+3a=16,解得a【评注】n阶矩阵A可对角化的充要条件是: 对于A的任意k i重特征根i,恒有n r( i E A) 而单根一定只有一个线性无关的特征向量•(22) (本题满分9分)1设A,B为随机事件,且P(A) -,P(B A)43,P(AB)1, A发生,0, A不发1, B发生,P{X 0,Y 0} P(AB) 1 P(A B)=1 P(A) P(B) P(AB)(或P{X 0,Y 0}故(X,Y)的概率分布为i 1 1 丄2),12 6 12 3【评注】本题尽管难度不大,但考察的知识点很多,综合性较强•通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意(23)(本题满分9分)设总体X的分布函数为1,X1,X2, ,X n为来自总体X的简单随机样本,求:(I) 的矩估计量;(II) 的最大似然估计量•【分析】先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可【详解】X的概率密度为——X 1,X 1,40, X「(I)由于则EXX01Y013151P——P一—446611351-,EY DX DY=——,E(XY)=46163612'(II) X, Y的概率分布分别为故Cov(X,Y) E (XY) EX EY —,从而24XYCov(X,Y) 1515F(x,)x0,1,1其中未知参数f(x,)1,X i 1(i 1,2, ,n),(X 1X 2 X n )0,其他 n1) In X i , i 1dInL()d故的最大似然估计量为 nnIn X ii 1难度不大,但计算量比较大,实际做题时应特别注意计算的准确性 EX Xf (X ; )dX X — 1 X T dx 令X ,解得 1 1,所以参数 的矩估计量为(II )似然函数为两边对求导,得 令dInL( ) 0,可得 d nn, In x ii 1L() f (X i ; 当x i1(i 1,2, ,n)时, L( 0,取对数得 lnL()n In In X i ,【评注】本题是基础题型,。
考研数学真题答案20042004年的考研数学真题是一份非常经典的试卷,涵盖了数学各个领域的知识点。
在本篇文章中,将详细解答该年份的真题,帮助考生更好地理解和掌握数学知识。
第一部分选择题第1题:设函数f(x) = x^3 - 3x^2 + bx + c,若f(1) = -3,f(-1) = 3,则f(2)的值为多少?解析:首先代入f(1) = -3,得到-3 = 1 - 3 + b +c。
然后代入f(-1) = 3,得到3 = 1 - 3 - b + c。
将两个方程相加,可以消去c项,得到0 = -2b。
因此,b = 0。
代入其中一个方程,解得c = -3。
最后代入f(2),得到f(2) = 8 - 12 = -4。
第2题:设A为集合{1, 2, 3, 4, 5},B为集合{a, b, c, d, e},且映射f:A→B为单射。
若f(1) = a,则f(3)的可能取值有几个?解析:由于f是单射,即每个元素在A中有唯一的映射元素在B中,因此f(1) = a必定排除掉了a在B中的映射。
则f(3)的可能取值为B中除a以外的元素个数,即4个。
第3题:已知三角形ABC的边长满足a + b + c = 2s,其中s为三角形的半周长,且三角形的内切圆半径为r。
若S为该三角形的面积,求S与r的关系。
解析:三角形的面积S可以用海伦公式求解,即S = sqrt(s(s-a)(s-b)(s-c)),其中a、b、c为三角形的边长。
另外,根据三角形的内切圆半径r的定义有r = S/s。
将S带入得到r = sqrt((s-a)(s-b)(s-c))/s。
由于a +b +c = 2s,可以将其代入,得到r = sqrt((s-a)(s-b)(s-c))/(a + b + c)/2。
整理得到r = 2sqrt((s-a)(s-b)(s-c))/(a + b + c)。
因此,S与r的关系是S/r = (a + b + c)/2。
第4题:在二维直角坐标系内,点M(x,y)满足|x| + |y - 6| = 5,若点M到点(3,2)的距离为d,求d的最小值。