北师大版中心对称
- 格式:ppt
- 大小:269.50 KB
- 文档页数:14
北师大版数学八年级下册3.3《中心对称》教学设计一. 教材分析北师大版数学八年级下册3.3《中心对称》是学生在学习了平面几何的基本概念和性质之后的内容。
本节课主要介绍中心对称的概念,性质及其在实际问题中的应用。
通过学习,学生能够理解中心对称的定义,掌握中心对称的性质,并能运用中心对称解决一些几何问题。
二. 学情分析学生在学习本节课之前,已经学习了平面几何的基本概念和性质,具备了一定的几何思维和解决问题的能力。
但是,对于中心对称这一概念,学生可能比较陌生,需要通过实例和练习来理解和掌握。
同时,学生可能对于如何运用中心对称解决实际问题存在一定的困难。
三. 教学目标1.知识与技能:理解中心对称的定义,掌握中心对称的性质,能够运用中心对称解决一些几何问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的几何思维和解决问题的能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极向上的学习态度。
四. 教学重难点1.重点:中心对称的定义和性质。
2.难点:如何运用中心对称解决实际问题。
五. 教学方法1.讲授法:通过讲解中心对称的定义和性质,引导学生理解和掌握。
2.案例分析法:通过分析实际问题,引导学生运用中心对称解决几何问题。
3.小组讨论法:通过小组讨论,引导学生交流思想,共同解决问题。
六. 教学准备1.教具:多媒体课件、几何图形、黑板。
2.学具:学生手册、练习册。
七. 教学过程1.导入(5分钟)通过多媒体课件,展示一些生活中的中心对称现象,如旋转门、时钟等,引导学生观察和思考,引出中心对称的概念。
2.呈现(10分钟)讲解中心对称的定义和性质,引导学生理解和掌握。
3.操练(10分钟)通过一些练习题,让学生运用中心对称解决几何问题,巩固所学知识。
4.巩固(10分钟)让学生分组讨论,分析实际问题,运用中心对称解决。
引导学生交流思想,共同解决问题。
5.拓展(10分钟)通过一些综合性的练习题,提高学生的解题能力,拓展学生的思维。
北师大版数学八年级下册3.3《中心对称》教案一. 教材分析《中心对称》是北师大版数学八年级下册第3.3节的内容,本节主要让学生了解中心对称的概念,理解中心对称图形的性质,并学会运用中心对称解决一些实际问题。
教材通过实例引入中心对称的概念,然后引导学生探究中心对称图形的性质,最后通过一些练习题巩固所学知识。
二. 学情分析学生在学习本节内容前,已经学习了平面几何的基本概念,如点、线、角等,并掌握了一些基本的几何性质。
同时,学生也学习了图形的轴对称,对对称概念有一定的理解。
但是,中心对称与轴对称有所不同,学生可能需要一定的时间来理解和掌握。
三. 教学目标1.让学生了解中心对称的概念,理解中心对称图形的性质。
2.培养学生运用中心对称解决实际问题的能力。
3.培养学生合作探究的学习精神,提高学生的几何思维能力。
四. 教学重难点1.中心对称的概念和性质。
2.运用中心对称解决实际问题。
五. 教学方法采用问题驱动法、合作探究法、案例教学法等,引导学生通过实例认识中心对称,探究中心对称图形的性质,并运用中心对称解决实际问题。
六. 教学准备1.准备一些中心对称的实例,如圆、平行四边形等。
2.准备一些中心对称图形的性质的练习题。
3.准备一些实际问题,如在实际图形中寻找中心对称等。
七. 教学过程1.导入(5分钟)通过展示一些实例,如圆、平行四边形等,引导学生观察这些图形的特征,让学生初步认识中心对称。
2.呈现(10分钟)呈现中心对称的定义和性质,引导学生理解和记忆。
3.操练(10分钟)让学生通过练习题,运用中心对称的性质解决问题,巩固所学知识。
4.巩固(5分钟)通过一些实际问题,让学生运用中心对称解决实际问题,加深对中心对称的理解。
5.拓展(5分钟)引导学生思考中心对称在实际生活中的应用,让学生学会学以致用。
6.小结(5分钟)让学生总结本节课所学的内容,加深对中心对称的理解。
7.家庭作业(5分钟)布置一些有关中心对称的练习题,让学生课后巩固所学知识。
北师大版八年级下册数学《3.3 中心对称》教案一. 教材分析北师大版八年级下册数学《3.3 中心对称》一课,是在学生已经掌握了平面几何的基本知识,图形变换的基础知识上进行的一课。
本节课主要让学生了解中心对称的概念,理解中心对称的性质,能运用中心对称解决一些简单的问题。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,图形变换的基础知识,对图形变换有一定的理解。
但是,对于中心对称的概念和性质,以及如何运用中心对称解决实际问题,可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解中心对称的概念,通过实际操作,让学生感受中心对称的性质,提高学生解决实际问题的能力。
三. 教学目标1.了解中心对称的概念,理解中心对称的性质。
2.能运用中心对称解决一些简单的问题。
3.培养学生的观察能力,动手操作能力,提高学生解决实际问题的能力。
四. 教学重难点1.中心对称的概念和性质。
2.如何运用中心对称解决实际问题。
五. 教学方法采用问题驱动法,引导学生通过观察,操作,思考,总结中心对称的概念和性质。
通过实例,让学生了解如何运用中心对称解决实际问题。
六. 教学准备1.教学PPT。
2.中心对称的图片和实例。
3.练习题。
七. 教学过程1.导入(5分钟)通过展示一些图片和实例,如蜜蜂的蜂窝,让学生观察并思考:这些图形有什么共同的特点?引导学生发现这些图形都是中心对称的,从而引出中心对称的概念。
2.呈现(10分钟)讲解中心对称的概念,以及中心对称的性质。
通过PPT展示中心的定义,对称点的定义,对称性质的证明等,让学生理解和掌握中心对称的概念和性质。
3.操练(10分钟)让学生分组进行动手操作,每组选择一个中心,画出中心对称的图形。
然后,让学生观察和分析中心对称的性质,如对称点的坐标关系,对称图形的形状等。
4.巩固(10分钟)让学生解决一些实际问题,如已知一个图形的一个点,求这个图形的另一个点等。
通过这些问题,让学生运用中心对称的知识,提高解决问题的能力。
北师大版八年级下册3中心对称教学设计一、教学目标1.掌握3中心对称的概念。
2.了解3中心对称的性质和应用。
3.能够运用3中心对称的方法解决几何问题。
4.培养观察能力和创新思维,提高数学素养和综合素质。
二、教学内容1.3中心对称的定义和性质。
2.3中心对称的判定方法。
3.3中心对称的应用——构造对称图形。
4.3中心对称的延伸——与平移、旋转的关系。
三、教学方法1.探究法:通过引导学生提出问题,自主探究3中心对称的概念和性质。
2.演示法:通过板书、ppt等形式演示3中心对称的判定方法和应用。
3.课堂练习:通过个人和小组练习,巩固3中心对称的概念和判定。
4.开放式探究:通过开放式问题引导学生深入思考3中心对称与其他几何变换的关系。
四、教学过程1. 导入环节1.教师引导学生回顾对称的概念和性质。
2.教师提出问题:“大家有没有想过一个点对称到另一个点的影射是如何实现的?”3.学生讨论后,教师引导学生思考3中心对称的概念和性质,并引入下一环节。
2. 探究环节1.将4个点分别标在坐标系的四个象限上,以原点为第一个中心,以第一象限的点为第二个中心,以第四象限的点为第三个中心。
2.学生分别计算这4个点分别关于三个中心的坐标,并观察关系。
3.教师引导学生思考3中心对称的性质,并总结出3中心对称的定义。
3. 演示环节1.教师演示3中心对称的判定方法,并进行实例解析。
2.教师演示3中心对称的应用——构造对称图形,并进行实例解析。
4. 练习环节1.学生个人和小组练习3中心对称的判定方法和应用。
2.教师纠正练习中学生的错误,并进行讲解和解析。
5. 拓展环节1.教师提出开放性问题,引导学生深入思考3中心对称与其他几何变换的关系。
2.学生小组讨论并汇报成果。
6. 总结环节1.教师对3中心对称的概念、性质、判定方法和应用进行总结。
2.学生总结本节课的学习内容和心得体会。
五、教学评价1.教师通过教学反复强调概念和性质,巩固学生对3中心对称的理解。
八年级下册数学北师大版第一章1. 中心对称定义:如果一个图形绕某一点旋转180度,能与另一个图形重合,则这两个图形为中心对称图形。
性质:中心对称图形必定是旋转180度后重合的图形。
2. 中心对称图形定义:一个图形绕某一点旋转180度能够与自身重合,则这个图形叫做中心对称图形。
性质:中心对称图形的所有点都关于某一点对称。
3. 轴对称与轴对称图形定义:如果一个图形沿着某条直线对折,两侧的图形能完全重合,则这个图形称为轴对称图形。
性质:轴对称图形的对称轴两侧的图形是全等的。
4. 轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
如果两个图形关于某直线对称,那么它们的对应线段(或延长)相等。
如果两个图形关于某直线对称,那么它们的对应角相等。
5. 全等三角形定义:两个三角形能够完全重合,则这两个三角形称为全等三角形。
性质:全等三角形的对应边相等,对应角相等。
6. 三角形全等的判定边边边(SSS):如果两个三角形的三边分别相等,那么这两个三角形全等。
边角边(SAS):如果两个三角形的两边及其夹角分别相等,那么这两个三角形全等。
角边角(ASA):如果两个三角形的两角及其夹边分别相等,那么这两个三角形全等。
角角边(AAS):如果两个三角形的两角及其对边分别相等,那么这两个三角形全等。
7. 直角三角形全等的判定斜边直角边(HL):如果两个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等。
8. 角的平分线性质角的平分线上的点到这个角的两边的距离相等。
9. 平行四边形定义:两组相对边平行或相等的四边形叫做平行四边形。
性质:对边平行、对角相等、对角线互相平分。
10. 矩形、菱形、正方形定义:有一个角是直角的平行四边形叫做矩形;一组邻边相等的平行四边形叫做菱形;有一个角是直角的菱形叫做正方形。
性质:矩形、菱形、正方形都是特殊的平行四边形,它们都具有平行四边形的所有性质,此外还有各自特殊的性质。